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Abstract: The rapid expansion of the Internet of Things (IoT) brings a vast proliferation of network connections. This surge

in connectivity significantly increases the risk of private data exposure during transmission and processing. Traditional

public key encryption schemes face considerable challenges due to their high computational complexity and vulnerability

to quantum attacks. Recently, Lattice-based cryptography, particularly the Binary Ring Learning With Errors (BRLWE)

paradigm, has garnered significant attention for its quantum resistance and lightweight computational requirements.

However, BRLWE remains vulnerable to physical attacks, especially Side-Channel Attacks (SCA). This paper proposes a

novel 3-Decomposition Karatsuba multiplication-based random shuffling scheme to enhance both the efficiency and security

of BRLWE. We evaluate the security performance of our proposed scheme against quantum hybrid attacks and SCAs. We

assess the performances of different Karatsuba multiplication techniques in terms of computation cost, energy consumption

and memory usage to make choose which Karatsuba technique is suitable for our proposal. Our experimental results show

that our proposed approach provides the lowest encryption computation time of 18.97 ms and decryption computation time

of 9.53 ms compared to the BRLWE and its improved versions. Furthermore, it improves the security level while it decreases

the computation time of the original BRLWE by 32.49% and 20.58%, for the encryption and decryption phases, respectively.

Keywords: internet of things security, post-quantum cryptography, lattice-based cryptography, binary ring learning

with errors, shuffling and karatsuba multiplication

1. Introduction

The Internet of Things (IoT) is a well-established area of study that connects the physical world to the Internet through

existing network infrastructures. This technology enables smart devices, such as physical devices, vehicles, household

appliances, and more, to autonomously collect and share data via the Internet. The ‘Cluster of European Research Projects

on the Internet of Things’ (CERP-IoT) program [1] defines IoT as a dynamic infrastructure within a global network,

characterized by self-configuring capabilities based on standardized and interoperable communication protocols. Physical

and virtual objects within this network possess unique identities, physical attributes, virtual personalities, and intelligent

interfaces, facilitating seamless integration into the network.

The emergence of the IoT concept has led to the development of various applications, such as smart cities, smart

industries, smart transportation, smart energy, etc. These applications exhibit specific characteristics, generating vast
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volumes of data while requiring sustained connectivity and energy for extended periods. However, they face challenges

related to memory limitations, device capacity, network constraints, and power consumption. Ensuring the security and

privacy of the transmitted data within the IoT network is a primordial task. Besides, a robust security measure must take

into consideration the limitations of the IoT devices in terms of memory, device capacity and power consumption.

To ensure the secure communication of critical and private data between IoT nodes, it is crucial to implement

appropriate encryption primitives. However, conventional encryption schemes like AES [2], RSA [3], and ECC [4]

typically involve complex mathematical operations and require significant memory, making them unsuitable for resource-

constrained IoT devices. Moreover, classical public key encryption schemes relying on mathematical problems like

large integer factorization and discrete logarithms are vulnerable to polynomial-time methods through Shor’s quantum

algorithms [5, 6]. Simply increasing the key size of existing classical public key encryption schemes will not enhance

security against available quantum computers. Unfortunately, the rapid advancement of quantum computing puts at risk the

security of these classic encryption schemes, leading to substantial resource overhead. Therefore, there is a pressing need

for quantum-resistant and lightweight alternatives to address these challenges effectively. This need has prompted several

researchers and organizations to initiate the standardization process of post-quantum cryptography. Figure 1 depicts a

taxonomy of different post-quantum cryptography algorithms suggested by different researchers [7, 8, 9, 10].

Figure 1. Taxonomy of different post-quantum cryptography algorithms

Among current post-quantum cryptosystems, lattice-based cryptography, particularly the Learning With Errors (LWE)

problem [6, 8] and its variants, such as ring learning with error (Ring-LWE) [10] and BRLWE [9], have gained significant

attention of researchers. Lattice-based cryptography demonstrates superior efficiency and faster execution times compared

to other cryptographic approaches, and unlike code-based cryptography, it does not suffer from large key sizes. Moreover, it

provides a robust resistance against attacks leveraging quantum computers, which makes lattice-based public key encryption

an ideal choice for resource-constrained IoT nodes [7, 10, 11, 12, 13]. Especially the BRLWE, researchers in [9, 14] proved

that the BRLWE is practical for ultralightweight and resource-constrained IoT devices.

Over the last decade, IoT devices have encountered a range of SCA, including timing [15], fault injection attacks

[16, 17], Simple Power Analysis (SPA), and Differential Power Analysis (DPA) attacks [12, 14, 18, 19].

Side-channel analysis of BRLWE differs from RLWE because parts of the secret key (i.e., coefficients of the secret-key

polynomial) in BRLWE are drawn from a binary distribution, resulting in only two possible values: ‘0’ or ‘1’. On the other

hand, RLWE keys are sampled from a larger set with a Gaussian distribution. Therefore, the evaluation of side-channel

analysis for BRLWE is very important since unprotected proposals could be vulnerable to SCA.
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Several efforts have been made in the literature to enhance the security of BRLWE against SCA. However, many of

these approaches focus only on introducing complex computations to reinforce the algorithm’s resilience, often without

considering methods to minimize unnecessary computations. In this paper, we present an advanced version of BRLWE that

establishes a delicate balance between efficiency and security against timing, SPA and DPA side-channel attacks, while

optimizing the overall computation cost. Our approach aims to achieve a more robust and practical approach, addressing

the crucial challenge of mitigating side-channel vulnerabilities while maintaining the algorithm’s performance. We propose

a new random shuffling method designed to enhance the security of the BRLWE algorithm against SCA, specifically

against timing SPA and DPA. Moreover, we intend to optimize the polynomial multiplication using the 3-Decomposition

Karatsuba multiplication [20], in order to minimize the computation cost. To the best of our knowledge, this combination of

the random shuffling method with the 3-Decomposition Karatsuba multiplication, which aims to make a balance between

security and efficiency, did not exist in the literature before. We formally prove the security of our approach against

quantum hybrid attacks, timing, SPA and DPA attacks. In terms of efficiency, we have evaluated the computation cost, the

memory usage and the energy consumption of the proposed approach using a resource-constrained microcontroller, 32-b

ARM Cortex-M0. This microcontroller has limited computation resources to prove that our approach can be practical and

scalable to even tiny and low-power IoT devices.

The main contributions of this paper are as follows:

1) Enhance the security level of BRLWE using a random shuffling method, which provides timing, SPA and DPA-

resistant. Moreover, we provide security analysis against the mentioned attacks and quantum hybrid attacks.

2) Propose a lightweight approach 3DKSh-BRLWE with an optimized polynomial multiplication suitable for resource-

constrained IoT nodes, which provides a lower computation time than the original BRLWE.

3) Prove that 3DKSh-BRLWE dominates related works in terms of speed and efficiency on ARM Cortex M0

microcontroller.

The originality of this paper is based on the random shuffling method that is used on the 3-Decomposition Karatsuba

multiplication’s sub-polynomials to enhance the BRLWE security and efficiency.

The remainder of this paper is organized as follows. In Section 2, we detail the technical background. In Section 3, we

present an overview of the existing methods to resist timing, SPA and DPA attacks, as well as to improve the lattice-based

security and efficiency. We describe the proposed approach in Section 4. In Section 5, we discuss the security analysis

of the proposed approach. We analyze the complexity between the original BRLWE and our proposed 3DKSh-BRLWE

approach. In Section 6, we detail the implementation and discuss the results. Finally, we conclude the paper in Section 7.

2. Background

In this section, we present the BRLWE encryption algorithm with uSVP problem that will be used in the security

analysis section to evaluate the security level of the proposed approach. Next, we describe the Karatsuba multiplication

algorithm. Finally, a notation table summarizing the key symbols and terms used in the paper is provided in Table 1.

2.1 Binary Ring Learning With Errors (BRLWE)

The Binary Ring-LWE (BRLWE) is a relatively new variant of the Ring-LWE scheme. It was recently introduced

in [9] with rigorous security analysis. The BRLWE scheme uses binary errors instead of Gaussian distributed errors

used in the original LWE scheme to reduce the key size and corresponding area complexity. It has great potential for

standardization in the future for lightweight applications, despite not being a NIST candidate yet [7]. The BRLWE involves

mainly operations over the ring Zq/f (x), where f(x) = xn+1, and a polynomial of degree n−1 with integer coefficients
modulo q is considered one typical element in the ring. The scheme can be secured with equivalent class and quantum

securities of 190/140 and 84/73 bits, respectively, for n = 512 and n = 256 [9, 10]. It is based on the hardness of the
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Ring-LWE problem, which involves finding the secret key given a set of noisy polynomial equations. The security of the

scheme relies on the assumption that the underlying problem is hard to solve, even with the use of quantum computers.

The BRLWE-based post-quantum cryptography has three main phases [9], as shown in Figure 2. The scheme in Figure 2

represents a use case of BRLWE in IoT applications, where devices encrypt the collected data and transmit it to the edge or

cloud for data analysis or storage after the decryption process.

Figure 2. BRLWE phases

Table 1. Notations table

Notation Description

Zq Ring of integers modulo q
f(x) Polynomial defining the ring.
A∈Zmxn

q Randomly and uniformly selected matrix in the LWE problem.
s Secret vector.
e Error vector.
l Samples in the LWE problem, combining the matrix, secret vector, and error.
`(L) Lattice defined by basis L.
αi Integer coefficients used in the linear combination of basis vectors in the lattice.
δ Hermitian delta, used to assess the quality of a lattice basis.
ρ Success probability of the quantum hybrid attack.
p Public key.
r2 Private key.
r1 Intermediate random polynomial.
Sh( ) Random shuffling function.
c1, c2 Ciphertext components.
m Message to be encrypted.
Tmul Timing complexity of classical polynomial multiplication.
Tsub Timing complexity of polynomial subtraction.
Tadd Timing complexity of polynomial addition.
Tkmul Timing complexity of Karatsuba polynomial multiplication.
TSh Timing complexity of the shuffling method.

For hardware implementation, as suggested by the authors in [12], coefficients of the polynomials within the ring

are adjusted to lie within an inverted range compared to the original. Here, each coefficient is represented in the interval

(−q/2, q/2−1), which aligns with the range used in the two’s complement representation. This approach allows modular
additions and subtractions of coefficients to occur seamlessly, eliminating the need for further reductions. Moreover,

we proceed to the LWE problem, the lattice framework, the unique Shortest Vector Problem (uSVP), and the Bounded

Distance Decoding problem (BDD). These foundations are essential as we need to convert the LWE problem to the uSVP
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problem [21], and then evaluate the security level as described in Section 5. Consider positive integers m, n, and q, where

A∈Zmxn
q represents randomly and uniformly a selected matrix. We denote e ∈Zm

q as the error vector, drawn from a specific

probability distribution, and s ∈Zn
q as the secret vector. The crux of the LWE problem is to deduce the secret vector s from

the given samples (l, A), where l = As + e.

Furthermore, we define the lattice structure and the lattice basis L, which serve as a discrete subset of Rm. A set of

vectors constitutes a lattice ` if it adheres to the expression:

`(L) =

{
x ∈ Rm | x =

m

∑
i=1

αili,αi ∈ Z

}
, (1)

where x represents any point in the lattice defined by L; m is the dimension of the lattice, indicating the number of linearly

independent vectors; and αi ∈ Z are integer coefficients used in the linear combination of the basis vectors li. For a linearly
independent vector ensemble L = {l1, . . . , lm} ⊂ Rm, such a collection is termed the basis of the lattice `. It is important

to note that lattice bases are not unique, encompassing numerous permutations. To assess the quality of Lattice basis L, we

use the Hermitian delta δ, with ||l1|| = δ
m det(`)1/m.

The uSVP challenge involves finding the shortest nonzero vector t in a lattice, which is distinctly shorter than any
other vectors that are not integer multiples of t. In contrast, the BDD problem uses a lattice basis L, a distance threshold α,

and a target vector t. The goal in BDD is to identify a vector e such that ||e|| < αλ and the difference t− e lies within the
lattice `.

2.2 Karatsuba multiplication in BRLWE

Karatsuba multiplication is a fast algorithm for multiplying two large polynomials, it works by recursively splitting

each polynomial into half-size polynomials until the base case of single-digit multiplication is reached. Then, it combines

the partial products to obtain the final product. It improves the computational complexity of schoolbook multiplication

by reducing the number of elementary operations from O(n2) to about O(n1.585), where n is the number of digits of the

operands. It can help optimize memory usage by computing partial products and combining them as needed. This can be

advantageous when dealing with limited memory resources or when performing polynomial multiplication on devices with

memory constraints [20, 22].

The conventional Schoolbook Polynomial Multiplication Algorithm (SPMA) for two polynomials of length n requires

n2 coefficient products. However, the Karatsuba algorithm can be adapted to polynomial multiplication to reduce the

number of coefficient multiplications at the cost of more coefficient additions. This adjustment involves the decomposition

of A(x) and B(x) into two distinct components, which are designated by:

A(x) = A1(x)∗Xn/2 +A0(x) (2)

B(x) = B1(x)∗Xn/2 +B0(x) (3)

where A(x) and B(x) are the original polynomials we aim to multiply; X represents the polynomial variable and acts as

the placeholder for terms raised to powers of X; n is the length (or degree) of the polynomials; A0(x) and B0(x) are the

low-order n/2 coefficients of A(x) and B(x); and A1(x) and B1(x) are the high-order n/2 coefficients, which are denoted by:

A0(x) =
n/2−1

∑
i=0

aiX i,A1(x) =
n/2−1

∑
i=0

ai+n/2X i (4)
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B0(x) =
n/2−1

∑
i=0

biX i,B1(x) =
n/2−1

∑
i=0

bi+n/2X i (5)

The Karatsuba formula enables computing P(x) and is denoted by:

P(x) = xn ∗P2(x)+ xn/2 ∗ (P1(x)−P0(x)−P2(x))+P0(x) (6)

where P(x) represents the resulting polynomial product ofA(x) and B(x); P0(x), P1(x) and P2(x) are intermediate polynomial

products computed as follows:

P0(x) = A0(x)∗B0(x) (7)

P1(x) = (A0(x)+A1(x))∗ (B0(x)+B1(x)) (8)

P2(x) = A1(x)∗B1(x) (9)

For conciseness, ‘(x)’ is omitted from the notations if no ambiguity occurs. In (7)–(9), we can see that only three

polynomial multiplications of length n/2 are required.

Consequently, these formulas reduce the number of coefficient multiplications from n2 to 3(n/2)2 = 3n2/4.

3. Related work

In this section, we review the existing lattice-based methods to improve the security and efficiency.

One of the challenges provided by the development of quantum computing is its potential threat to classical public-key

encryption schemes. To address this issue, NIST initiated a project to standardize post-quantum cryptography (PQC)

algorithms [23]. Out of the many candidates submitted, only four public key encryption and key establishment algorithms

have been chosen for the final round: Classic McEliece [24], CRYSTALSKyber [25], NTRU [26], and SABER [27]. These

three algorithms are based on hard problems on lattices, such as the closest vector problem (CVP) [28], the shortest vector

problem (SVP) [29], and learning with errors (LWE) [10]. Another five algorithms, namely BIKE [30], FrodoKEM [31],

HQC, NTRU Prime and SIKE [32], are still under consideration as alternatives.

Lattice-based encryption schemes rely on the hardness of lattice problems, which are believed to be resistant to

quantum attacks. Several related works used Lattice cryptography to improve the existing security algorithms to resist

quantum attacks. In [33], a new scheme for Ciphertext-Policy Attribute-Based Encryption (CP-ABE) based on the Lattice

problem is proposed, in which the authors combined the known CP-ABE algorithm with the Lattice cryptography to resist

quantum attacks. The main advantage of this scheme is that it reduces the computation and communication overhead of

existing lattice-based CP-ABE schemes, it uses a Linear Secret Sharing Scheme (LSSS) to represent monotone access

policies and applies a private key randomization technique to ensure resistance against collision attacks. A variant of

pre-quantum RSA called a post-quantum lattice-based RSA (LB-RSA) is proposed in [34] to secure the shared data

and information for IoT-based cloud applications. It improves the security level by increasing key dimensions instead

of increasing key size. On the other hand, several related works have been proposed to improve Lattice encryption in

terms of security and efficiency. In [35, 36] authors improve the complexity and the computation cost of a post-quantum

lattice-based SABER algorithm using Number Theoretic Transform (NTT) polynomial multiplication. In [37], a new

hardware architecture is proposed to improve the computation cost of post-quantum lattice-based SABER algorithm based

on an efficient Karatsuba multiplication algorithm. On the other hand, Lyubashevsky et al. [10] introduced a new variant

of the Learning With Errors (LWE) problem that applies the ideal lattices in the LWE, this variant is called ring-LWE. The
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polynomial ring is used for all operations and the error polynomials are sampled from a discrete Gaussian distribution.

Ring-LWE reduces the public key and the private key size by n times while keeping the same security level as standard

LWE instances. The ring-LWE has been used for key exchange, homomorphic encryption, digital signature, public key

encryption, etc. However, it faces challenges in efficient deployment due to the complexity of its Gaussian sampler and

the high cost of polynomial multiplication in terms of time and resources [38]. A shuffling method is proposed in [39] to

avoid the expensive constant-time Gaussian sampler. Many hardware and software implementations in the literature aim to

optimize these aspects of polynomial multiplication. Howe et al. [40] presented a comprehensive evaluation of different

methods for sampling from a discrete Gaussian distribution. They proposed novel optimized hardware architectures for

several sampling techniques, such as the Cumulative Distribution Table (CDT), the Bernoulli, the Knuth-Yao and the

discrete Ziggurat samplers. Moreover, the authors presented the first constant-time hardware designs for some of these

samplers, which offer protection against timing analysis. They concluded that the CDT sampler is the most suitable for

a balanced performance, achieving a high throughput and a low area consumption for both encryption and signature

applications. Another work that tries to improve the Ring LWE is the Binary Ring LWE (BRLWE) [9]. The authors

proposed a new public-key encryption scheme using the binary noise distribution instead of the Gaussian one, which reduces

the size of the ciphertexts and the computational cost of encryption and decryption. It presents efficient implementations of

the scheme on 8-bit and 32-bit microcontrollers, which are suitable for low-power and low-cost scenarios such as the IoT.

Based on BRLWE, Aydin et al. [14] proposed a hardware implementation of BRLWE along with low-cost power

side-channel countermeasures, they use a randomization of intermediate states and masked threshold decoding to improve

the security against DPA. Another hardware implementation of BRLWE is presented in [41], it is based on masking

countermeasures against differential power analysis (DPA) attacks without employing any pseudo-random number generator

(PRNG) module on lightweight implementations, which improves the speed and efficiency. In [42], authors proposed

an efficient hardware architecture for the BRLWE-based cryptographic scheme, targeting lightweight applications. The

architecture computes the arithmetic operation AB + C, which includes polynomial multiplication and addition over

the polynomial ring. It reduces resource utilization, increases frequency, and lowers power consumption compared to

existing BRLWE-based schemes. Ebrahimi et al. [17] proposed fault-resilient implementations of BRLWE for IoT Devices.

The paper analyzes the vulnerability of previous BRLWE implementations to different types of fault attacks, such as

randomization, zeroing, and skipping faults, and shows how they can be easily broken by an adversary. Moreover, it

proposes new fault-resilient software implementations of BRLWE on two resource-constrained microcontrollers, namely

AVRATxmega128A1 and ARM Cortex-M0, which are suitable for IoT devices.

A variant of Ring-LWE, known as the Ring-ExpLWE scheme [21], has been introduced, where the error vector is

drawn from an exponential distribution. This makes the noise distribution more discrete and increases the security level of

the scheme. Its security level is evaluated by comparing and analyzing the runtime of BRLWE and Ring-ExpLWE when

subjected to quantum hybrid attacks, as well as examining the noise polynomials in each scheme. The Ring-ExpLWE

scheme has a high performance and a low area-time product compared to BRLWE while maintaining a strong security

level.

All the previous proposed works that aim to improve the BRLWE try to improve the security of the algorithm against

SCA by adding more computation tasks. They tried to present lightweight methods, but it was still not enough. The

computation time was always higher than the computation time of the original BRLWE. In this paper, we aim to enhance

the security of the BRLWE algorithm against SCA, including timing, SPA, and DPA, and to optimize the polynomial

multiplication process which is a complex task within the BRLWE algorithm. The combination of adding computation

tasks to improve the security and at the same time optimize the polynomial multiplication helps us to create a balance

between security efficiency.
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4. Proposed approach

In this section, we present the different variants of Karatsuba multiplication algorithms then, we display the new

shuffling method-based Karatsuba multiplication and how it enhances the security of BRLWE and improves its computation

cost. Moreover, we exhibit the main approach including a detailed description of each phase of the proposed BRLWE.

4.1 Karatsuba polynomial multiplication

Figure 2 depicts a summary of all the arithmetic operations involved with each phase of the BRLWE. In the key

generation phase, polynomial multiplication and polynomial subtraction are performed to generate the public key p. The

encryption phase involves polynomial multiplication and polynomial addition to compute the first part of the ciphertext, c1,

and requires additional polynomial multiplication and two polynomial additions to generate c2. Finally, in the decryption

phase, polynomial multiplication and polynomial addition are used to recover the original message.

We can see that the major arithmetic complexity of each phase of the BRLWE scheme lies mainly in the polynomial

multiplication (Polynomial addition and substruction are just point-wise operations). To improve the BRLWE computation

cost we need to optimize the polynomial multiplication.

SPMA is a highly efficient method for multiplying polynomials due to its straightforward computational structure.

Its folded architecture is simple to implement, consumes a small hardware area and has a low throughput performance.

The complexity of the SPMA is O(n2). On the other hand, the NTT is an advanced method that can achieve high-speed

polynomial multiplication with a complexity of O(nlogn). However, NTT requires complicated pre-computation and array

re-ordering to achieve high speed, requiring much higher memory usage and area consumption compared to SPMA.

The Karatsuba algorithm offers a middle ground between these two extremes. It has a computational complexity

of O(nlog2
3), which is lower than SPMA but higher than NTT. This makes Karatsuba a favorable choice for balanced

implementations of resources-constrained Lattice-Based Cryptography (LBC). Furthermore, in the round 3 submission

to the NIST Post-Quantum Cryptography (PQC) standardization process, the authors of the Saber cryptographic scheme

advised against using NTT for polynomial convolution. The primary reason is that the ring structure used in Saber, typically

does not facilitate a straightforward implementation of NTT due to the difficulty in finding appropriate roots of unity

and ensuring compatibility with the modulus [37]. Similarly, in the context of BRLWE, which often involves rings with

binary coefficients, implementing NTT can be challenging. The absence of suitable roots of unity and the specific modulus

requirements make NTT impractical for such schemes. Therefore, alternatives like Karatsuba are preferred for their more

manageable complexity and compatibility with the ring structures used in BRLWE.

Besides the reduced computation cost of Karatsuba and its simplicity to implement, it can provide another layer of

security for BRLWE. By recursively splitting polynomials and shuffling each sub-polynomial separately, even if an attacker

discovers the shuffling factors, they will only gain partial information about the secret key rather than the entire key.

4.1.1Decompositions of karatsuba multiplication

In Karatsuba multiplication, increasing the decomposition factor can further decrease the number of coefficient

multiplications, thus lowering computational costs. When A(x) and B(x) are divided into three segments, each of length

n/3 rather than two, their product P(x) can be represented as:

P(x) = P0(x)+P1(x)xn/3 +P2(x)x2n/3 +P3(x)xn +P4(x)x4n/3 (10)

It can be computed according to [43] as follows:

P0(x) = A0(x)B0(x) (11)
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P1(x) = (A0(x)+A1(x))(B0(x)+B1(x))−A1(x)B1(x)−A0(x)B0(x) (12)

P2(x) = (A0(x)+A1(x)+A2(x))(B0(x)+B1(x)+B1(x))− ((A0(x)+A1(x))(B0(x)+B1(x))−A1(x)B1(x))
−((A1(x)+A2(x))(B1(x)+B2(x))−A1(x)B1(x))

(13)

P3(x) = (A1(x)+A2(x))(B1(x)+B2(x))−A1(x)B1(x)−A2(x)B2(x) (14)

P4(x) = A2(x)B2(x) (15)

Using three segments, six multiplications between polynomials of length n/3 are required, leading to a total of 6(n/3)2

= 2n2/3 coefficient multiplications. For a four-segment decomposition, ten multiplications are needed between polynomials

of length n/4, resulting in 10(n/4)2 = 5n2/8 coefficient multiplications. The formulas for two-segment decompositions, as

shown in (6)–(9), and for three-segment decompositions in (10) through (15), can be iteratively applied to achieve higher

decompositions and further minimize the number of coefficient multiplications.

4.1.2Karatsuba polynomial multiplication with integrated modular reduction

The Karatsuba algorithm aims to reduce the number of coefficient multiplications, but the intermediate segment

products must be assembled appropriately to compose the final polynomial product. This assembly process needs more

storage for intermediate results and supplementary additions and subtractions. These can cause problems, especially for

applications with limited memory.

The works [44, 43] proposed to apply the integrated modular reduction by xn+1 directly on the segment products during

Karatsuba multiplication before adding them up. This technique optimizes the assembly process before the final addition/

substruction of segments, thereby reducing the number of additions/ substructions without increasing multiplication

complexity. Furthermore, the shared terms help to minimize the memory size, which stores intermediate results and

accounts for a significant portion of the silicon area required for polynomial multiplication as shown in Figure 3.

Figure 3. Segment products needed to be added up in Karatsuba multiplication with 2-decomposition: (a) original; (b) with integrated modular reduction
by xn + 1 [44]

4.2 The proposed Karatsuba multiplication based random shuffling method

The shuffling method aims to add randomness through permitting operations order. It effectively hides the correlation

between the secret key and the ciphertext, making it harder for an attacker to extract information. The shuffling method

provides strong security guarantees and can withstand attacks based on statistical analysis [45, 46]. However, typically,
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it produces additional computation costs and memory usage. The effectiveness of the shuffling method and the exact

computation cost relies on the shuffling algorithm used.

In this paper, we propose to use the Fisher-Yates Shuffle algorithm known as the Knuth shuffle [45]. It is a widely

used algorithm for shuffling a finite sequence, due to its simplicity to understand and implement. This algorithm shuffles

the element of the array in place without requiring additional memory or data structures and performs a linear number

of permutations that make it efficient for IoT applications. Moreover, it produces uniformly random permutations and

provides good randomness proprieties which make it efficient against Timing and SPA attacks.

However, in [45], the authors proved that the simple shuffling algorithm can not protect against DPA attacks. These

attacks exploit the correlations in power consumption between different clock cycles, making it possible to infer sensitive

information despite the simple shuffling.

To eliminate these correlations between the power consumption and the sensitive information, we propose to divide

the polynomials into sub-polynomials during the polynomial multiplication and randomly shuffle the order of operations of

each sub-polynomial multiplication. Each multiplication involves several smaller operations, and because these operations

are performed in a random order, the overall power consumption pattern becomes more complex and less correlated with

any specific sub-operation. Which reduces the ability of an attacker to combine information from different parts of the

trace to deduce the key.

We propose to apply Karatsuba multiplication algorithm in polynomial multiplication. This algorithm is based on

recursively splitting each polynomial into n-size sub-polynomials then combining the partial products to obtain the final

product. The main objective of this algorithm is to optimize the polynomial multiplication cost, which improves the

computation cost of the random shuffling method.

To determine the most efficient Karatsuba multiplication algorithm to enhance the computation cost and security

of BRLWE. We implement the simple Karatsuba multiplication (2-Decompositions) based shuffling for BRLWE, 3-

Decompositions Karatsuba based shuffling for BRLWE, 4-Decompositions Karatsuba based shuffling for BRLWE and

3-Decompositions Karatsuba with integrated modular reduction-based shuffling for BRLWE, as shown in Table 3 in

Section 5. According to the results presented in Table 3, the 3-decomposition Karatsuba-based shuffling for BRLWE gives

the best results. Algorithm 1 represents the proposed 3-Decomposition Karatsuba-based random shuffling method.

Generally, Karatsuba multiplication is particularly effective for multiplying large numbers. It gives better results

than the SPMA only with big numbers because it requires more additions and digit shifts. For this reason, as illustrated in

Algorithm 1, we apply the Karatsuba algorithm only when the polynomial degree is more than 32.

Furthermore, to introduce additional noise and enhance randomization and to cancel the correlation between clock

cycles, we propose to refresh the shuffling factor in each cycle. During each cycle, a new random number is used for

shuffling, breaking the link between consecutive clock cycles. As a result, potential DPA attackers cannot extract any

meaningful information from trace analysis across different cycles. By applying this approach, the shuffling method

effectively obscures the actual sequence of operations, making it significantly more challenging for attackers to deduce

sensitive information from side-channel leakage.

The polynomial splitting and the updates of the shuffling factor in each cycle provide an added layer of security,

ensuring the resilience of the cryptographic scheme against DPA attacks.

Algorithm 2 exhibits the random shuffling algorithm for each sub-polynomial. The proposed random shuffling

algorithm generates a random number r between <1, n/3−k>, called shuffling factor, where n is the length of the polynomial

in each cycle and k is the number of elements already processed in the cycle. We divide n by 3 because we used 3-

Decomposition Karatsuba multiplication (see (14), (15), (17) and (18)), and we shuffle each sub-polynomial separately to

add more noise and make it harder for an attacker to predict the whole polynomial of the secret key. In the first iteration,

the algorithm swaps the last element of the sub-polynomial with the r-th element, and the iteration continues to reduce

the size of the sub-polynomial by 1 until the first element is reached. This made the time complexity O(n) with space

complexity O(1) for the random function.
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Algorithm 1 3-Decompositions Karatsuba based Shuffling

1: Input: A(x),B(x)←{0,1}n, n is power of 3
2: Output: P(x) = A(x) ·B(x)
3: N←max(degree(A),degree(B))
4: if n = 1 then

5: P(x)← A(x) ·B(x)
6: else if n < 32 then

7: P(x)← Schoolbook Polynomial Multiplication(A,B)
8: else

9: Pre-processing Phase

10: m← n/3
11: A0(x)← A0(x)[m−1 : 0];
12: A1(x)← A1(x)[2m−1 : m];

13: A2(x)← A2(x)[n−1 : 2m];

14: B0(x)← B0(x)[m−1 : 0];
15: B1(x)← B1(x)[2m−1 : m];

16: B2(x)← B2(x)[n−1 : 2m];

17: Shuffling Phase

18: A′0(x)← Random Shuffling(A0(x),m);

19: A′1(x)← Random Shuffling(A1(x),m);

20: A′2(x)← Random Shuffling(A2(x),m);

21: B′0(x)← Random Shuffling(B0(x),m);

22: B′1(x)← Random Shuffling(B1(x),m);

23: B′2(x)← Random Shuffling(B2(x),m);

24: Recursive and Polynomial multiplication

25: P0(x)← Karatsuba(A′0(x),B
′
0(x),m);

26: P1(x)← Karatsuba(A′0(x)+A′1(x),B
′
0(x)+B′1(x),m);

27: P2(x)← Karatsuba(A′0(x)+A′1(x)+A′2(x),B
′
0(x)+B′1(x)+B′2(x),m);

28: P3(x)← Karatsuba(A′1(x)+A′2(x),B
′
1(x)+B′2(x),m);

29: P4(x)← Karatsuba(A′2(x),B
′
2(x),m);

30: P5(x)← Karatsuba(A′2(x),B
′
1(x),m);

31: Post-processing Phase

32: P1(x)← P1(x)−P5(x)−P0(x);
33: P2(x)← P2(x)− (P1(x)−P5(x))− (P3(x)−P5(x));
34: P3(x)← P3(x)−P5(x)−P4(x);
35: P(x)← x4n/3P4(x)+ xnP3(x)+ x2n/3P2(x)+ xn/3P1(x)+P0(x);
36: end if

37: return P(x)
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Algorithm 2 The Proposed Random Shuffling Algorithm

1: Input: sub-polynomial of coefficients c, sub-polynomial degree m
2: Output: Shuffling c
3: for each Karatsuba cycle do

4: m← n/3
5: for j from (m−1) down to 1 do
6: random integer r between 0 and j
7: Swap c[ j] and c[r]
8: end for

9: end for

10: return c

4.3 Main approach

In this paper, we focus primarily on data confidentiality and encryption to secure transmitted data within the 3DKSh-

BRLWE scheme. We assume that IoT devices are pre-authenticated on the Cloud/Edge side, and the Cloud/ Edge

infrastructure itself is treated as a secure entity. This assumption allows us to ensure that data is only encrypted and

transmitted by verified devices, while enabling our efforts to be dedicated to developing a robust encryption approach to

protect data confidentiality during transmission.

In this section, we present the main components and functions of the proposed robust encryption approach, as shown in

Figure 4. First, we present the two components of the proposed approach which are: IoT device and cloud/edge computing.

Figure 4. The proposed 3DKSh-BRLWE phases

(1) Cloud/Edge COMPUTING

This entity is responsible for generating both the public and private keys. It generates and securely stores the private

key, while the public key is shared with authenticated devices. Additionally, cloud/edge computing performs decryption

operations using the private key, which is retained solely within the cloud infrastructure and not distributed.

(2) IoT Device

This entity is tasked with encrypting the data it collects using the public key provided by the cloud.
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Second, we present the main three functions of the proposed approach which are, key generation, encryption and

decryption:

(1) Key generation

This phase is responsible for generating the public and the private keys. In this phase, two binary polynomials, r1 and

r2, are randomly selected, where r2 is the secret key. Therefore, the main operation is to produce the public key using (10).

p = r1−Sh(a∗ r2), (16)

where a is the public polynomial of the integer, Sh( ) is the random shuffling function, and the operation (*) is the

3-Decomposition Karatsuba polynomial multiplication. The size of public key p and private key r2 is different, private

key r2 is composed of n bits while the public key p consists of n_log2 q bits, and the polynomial r1 will be ignored

after the public key calculation. To optimize the polynomial multiplication and to protect the secret key from timing and

power analysis attacks (SPA and DPA), we apply a 3-Decomposition Karatsuba-based random shuffling on the public key

computation to protect sensitive information such as a secret key.

(2) Encryption

This phase is responsible for the encryption of n-bit message m. Firstly, the message is mapped to a polynomial m

∈Rq using (17), and secondly, it generates the ciphertexts c1 and c2 from the message using (18) and (19). The polynomials

c1 and c2 are computed using the public key (p) and the random vector errors e1, e2 and e3 ∈ Rq are uniformly and

randomly selected from {0,1}n. To add noise and reduce the computation time of the ciphertexts, we apply the proposed

3DKSh algorithm on c1 and c2 computation. We apply the 3-Decomposition Karatsuba multiplication (*) and randomly

shuffle (Sh) each sub-polynomials in the polynomial multiplication of c1 and c2.

m = ENCODE (m)

(m0, . . . ,mn−I)→
n−1

∑
i=0

mi

(
−q

2

)
xi (17)

where (m0,…,mn−1) represents the message as a vector of coefficients, mi denotes the i-th coefficient of the message, q is a
prime number related to the modulus used in the cryptographic scheme and xi represents the power of x corresponding to

the position of each coefficient.

c1 = Sh(a∗ e1)+ e2 (18)

c2 = Sh(p∗ e1)+ e3+m (19)

It is worth noting that in (17), we use the new variant proposed by [15]. This variant used the two’s complement

range to manage the reduction operation and eliminate individual reduction checks using natural overflow. The range of

polynomial coefficient values is adjusted from (−bq/2c +1, bq/2c) to (−bq/2c, bq/2c−1).

(3) Decryption

This phase is responsible for ciphertext decryption and message recovery. It uses the secret key r2 and the ciphertexts

c1 and c2 to generate the decryption polynomial d∈Rq calculated by (20). In this phase, we also apply the proposed 3DKSh
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algorithm in the polynomial multiplication of c1 and r2. Using the random shuffling method (Sh) and the 3-Decomposition

Karatsuba multiplication (*), to protect the secret key while reducing the computation time. The threshold decoder in (22)

processes each coefficient separately. It outputs a binary ‘0’ if the calculated polynomial’s coefficient falls outside the range

of (q/4, 3q/4), otherwise, it outputs a ‘1’. The application of the BRLWE decryption function directly can cause half of the

decoding failure, thus it is necessary to take into consideration the boundary overflow problem under the discrimination

condition [15].

d = Sh(c1∗ r2)+ c2 (20)

DECODE : Rq→{0, 1}n

n−1

∑
i=0

dixi→ (m0 . . .mn−1) , (21)

mi =

{
0, |di− i−| n−3

2

⌋∣∣> q
4

1,else
(22)

5. Security analysis

In this section, we formally analyze the security of 3DKSh-BRLE against quantum hybrid attacks and timing, SPA

and DPA attacks.

5.1 Quantum hybrid attack

To analyze the security level of our approach against a quantum hybrid attack and compare it with BRLWE, we

evaluate the runtime for both schemes under the same parameter set. Initially, we explore the runtime for our approach

using a quantum hybrid attack, which is suitable for evaluating both BRLWE and our enhanced version due to their sparse

secret and error vectors [10]. Hybrid attacks consist of classical and quantum versions [47]. The quantum hybrid attack

replaces the classical meet-in-the-middle technique [48] with a quantum search algorithm for faster guessing. In the

quantum hybrid attack [47], we first convert the LWE instance into a uSVP problem using (23):

`=
{

x ε Zd : (A |Im| − b) x = 0 mod q
}

(23)

where ` is a d-dimensional lattice, in which d = n + m + 1; (A |Im| − b) is an augmented matrix that includes: Aε Zm×n
q a

randomly chosen matrix representing the public part of the LWE instance, Im the identity matrix of size m × m, which

ensures that the error vector e is incorporated into the lattice structure; and −b which is a column vector representing the
negation of the known vector b from the LWE instance. This component links the lattice definition directly to the original

LWE instance. The vector v = (s, e, 1) is an element of the lattice `, because of s ∈ Zn
q and e ∈ Zm

q .

The second step is to solve the uSVP problem using (17):

Ĺ=

(
L C
0 Ir

)
∈ Zd×d , (24)

where Ĺ is a basis for lattice `, L ∈ Z(d-r)×(d-r), r ∈ N and r < m, n. We can represent the short vector v = (vl , vg) by

lattice basis Ĺ as it belongs to the lattice ` using (15):
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v =

(
vl

vg

)
= Ĺ

(
h
vg

)
=

(
Lh+CVg

vg

)
(25)

where Lh ∈ Zd−r is a vector in Lattice `'∈Zd−r and vl− Lh = Cvg, h ∈Zd−r. Therefore, by solving the BDD problem with

Cvg as the target vector, we can recover the vector vl ∈ Zd−r, provided that vg ∈Zr is guessed. To enhance the efficiency

of solving the BDD problem using the Nearest Plane algorithm [49], it is necessary to precompute a high-quality lattice

basis L ∈ Z(d−r)× (d−r) for the Lattice `. The total runtime of the quantum hybrid attack is denoted by:

T =
Th +Tr

ρ
, (26)

where Th = l ·(d − r)2/21.06 is the runtime for the hybrid attack, Tr is the lattice reduction runtime and ρ is the quantum

hybrid attack success probability [47], which is designated by:

ρ ≈
d−r

∏
i=0

1− 2

B
(
(b−r)−1

2
1
2

) ∫ max(−ri−1)

−1

(
1− t2) (d−r−r)−3

2 dt

 , (27)

where B(·,·) denotes the Euler beta function. We define ri as Ri/2 ‖vl‖, where i ∈{1, . . . , d−r} and Ri is the length of
the Gram-Schmidt basis vectors [47] corresponding to the basis L. Here, ‖vl‖ is the Euclidean norm of the vector vl. The

runtime of lattice basis reduction depends on both the basis quality δ the lattice dimension d−r. Therefore, optimizing the
total runtime for a quantum hybrid attack is dependent on the attack parameters r and δ. Hence, it is crucial to optimize the

total runtime across all possible choices of attack parameters is crucial for performance. Given the same attack parameters

(r, δ) in both schemes, the runtime Tr for BRLWE and our proposal remains consistent since their lattice dimensions remain

the same. Th denotes the runtime of the hybrid attack, where l is the number of guessing cycles for vg. The computational

complexity of a single run of the Nearest Plane algorithm is (d − r)2/21.06. Based on this analysis, the Nearest Plane

algorithm’s runtime is equivalent in both our scheme and BRLWE, given the same d and r. For a structured search space,

Q-search yields more efficient search cycles. When distributed over a set S = {−16, . . . , 16}r, using the more generalized

Grover’s search algorithm [48], the search cycles l is designated by:

l =

((
32

∑
i=0

ρ
3
2 i

)r) 3
2

≈ 21.85r , ρi =

(
32
i

)
2−32 (28)

We apply a generalized version of Grover’s search algorithm across both schemes, resulting in identical cycles

required for guessing the vector vg. Thus, the runtime Th remains the same for both schemes. However, when evaluating

the success probability ρ, it’s crucial to recognize that the vector vl in our approach exhibits a larger Euclidean norm

compared to BRLWE. This is due to the error vector e. In our approach, we hide the error vector by shuffling the order

of operations and refreshing the shuffling factor which adds more noise. As a result, when computing the integral in the

attack success probability (27), the value of ri for our scheme is smaller than that of BRLWE. As a result, the integral term

in the success probability ρ increases for our approach due the upper bound of the integral being-ri. This increase in the

integral’s result causes each factor in the continuous multiplication in Equation (27) to be smaller, thereby reducing the

quantum hybrid attack’s success probability for our scheme relative to BRLWE, and consequently leading to a larger total

runtime. Furthermore, this conclusion assumes that both schemes employ identical attack parameters. In a more general

scenario, when both schemes are evaluated across the complete set of attack parameters, the total runtime of our approach

is higher than that of BRLWE (before applying 3-Decopsition Karatsuba algorithm). Thus, our approach exhibits higher

runtime complexity, before reducing the polynomial multiplication cost, when optimized on the attack parameter set. This

observation also indicates that it offers a stronger security level compared to BRLWE.
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5.2 Timing and power analysis countermeasures

An encryption scheme is considered robust and reliable when it not only provides sufficient security at the algorithmic

level but also demonstrates resistance to side-channel attacks [48]. NIST specifically requires practical evaluations of

submitted schemes for resilience against such attacks, especially in IoT infrastructures where long-term security is critical

[23]. Attackers often have physical access to devices that store secret cryptographic keys. Without specific countermeasures,

side-channel attacks, such as timing and power analysis, can be exploited to extract these keys, compromising the security

of the entire system.

In this section, we discuss how timing, SPA and DPA side channel attacks can infect the BRLWE and how can our

enhanced approach improve the security to resist these attacks. Precisely, we analyze the decryption phase because of

the direct dependency of each round’s behavior on the secret key. In the proposed scheme, the parameter set (n, q) offers

flexibility and extensibility. By increasing the values of n and q, the security level improves, when (n, q) takes the value

(256, 256), the scheme achieves 84-bit and 73-bit classical and quantum security, respectively. On the other hand, for (n, q)

= (512, 256), the security level reaches 190-bit and 140-bit, respectively [9, 10]. However, increasing the values of n and q

demands more computing resources.

In our approach, and because we use the 3-Decomposition Karatsuba polynomial multiplication, the polynomials of

the ciphertext and the secret key are divided into three sub-polynomials with degree n/3. The polynomial multiplication is

computed using (11)–(15). To explain how our approach can resist timing, SPA and DPA attacks, we give the following

example:

C1= (90,50,30,120,80,150,20,60,70,59,85,94)

R2 = (1,1,1,0,1,0,1,1,0,0,1,1)

Two polynomials with n = 12 and q = 256. First, we split the polynomials into three sub-polynomials with n = 4 and q

= 85, which gives: C10 = (90,50,30,120), C11 = (80,150,20,60), C12 = (70,59,85,94), R20 = (1,1,0,1), R21 = (1,1,1,0) and

R22 = (0,0,1,1).

Second, we randomly shuffle each sub-polynomial using different shuffling factors to eliminate the correlation

between the sub-polynomials, where: C10 = (50,90,120,30), C11 = (60,150,80,20), C12 = (85,94,70,59), R20 = (1,1,0,1),

R21 = (1,1,0,1) and R22 = (0,1,0,1).

By using these steps, we added a new security layer against Timing, SPA and DPA attacks by eliminating any

correlation between the sub-polynomials. Consequently, if an attacker manages to determine the shuffling factor of a

sub-polynomial multiplication, they would only be able to detect a portion of the secret and not the entire secret message.

This significantly enhances the security of the BRLWE scheme by compartmentalizing the information and making it

substantially more difficult for an attacker to reconstruct the full secret.

To eliminate the correlation during the polynomial multiplication, we randomly shuffle each multiplication cycle

using different shuffling factors. Figure 5 shows the polynomial multiplication of the first sub-polynomials C10 and R20.

Figure 5. The difference between: (a) simple polynomial multiplication. (b) polynomial multiplication with simple shuffling. (c) polynomial
multiplication with random shuffling
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The calculation involving the private key R20 entails polynomial multiplication. Notably, when R20 is 0, the

corresponding partial product becomes 0, as shown in Figure 5a. A crucial concern arises when performing the addition

operation directly, as one input of the adder is 0. This leads to distinct spikes in the measured power trace, which allows

the adversary to analyze the power differences caused by these operations. Yet, the attacker could attempt a Simple Power

Analysis (SPA) attack, extracting the private key with only a few measurements. Such attacks rely on interpreting power

trace variations due to specific operations like addition and memory updates, which do not occur by default.

Using the shuffling method enables the manipulation of the order of operations during polynomial multiplication

without affecting the result. This introduces randomness and confusion, making it significantly more challenging for

adversaries to extract sensitive information from side-channel leakage. Moreover, using Karatsuba multiplication and

especially dividing the polynomial into three sub-polynomial and shuffling the sub-polynomial multiplications will add

more noise and protect the secret key.

As shown in Figure 5a, each addition row is computed in one cycle, so to generate the first-row addition it will

compute: (30 + 0), (120 + 0), (90 + 0), and (50 + 0). Using the simple shuffling method, as shown in Figure 5b, the

first-row addition can be generated as follows: (30 + 0), (120 + 0), (90 + 30), and (50 + 120). This adds confusion to the

attacker to detect the position of the zero and in which the vector exists. Here, our proposed approach resists the simple

power analysis (SPA) attacks. Furthermore, it enhances resistance against timing attacks. Each clock cycle now yields

different operations, disrupting any correlation between the computation time of each cycle and the processed data. In the

example illustrated in Figure 5a, the computation time for each cycle might be distinguishable due to the consistent order

of operations in each cycle. The shuffling method, however, disrupts this regularity, making the timing attack ineffective in

capturing meaningful timing differences.

On the other hand, the simple shuffling method has been shown vulnerable to DPA attack, as demonstrated in [45].

This differential attack leverages a random input during decryption and formulates hypotheses on an intermediate addition.

Subsequently, the attack validates these hypotheses through power trace analysis on each cycle, enabling the detection of

the shuffling factor’s value and facilitating the recovery of the first part of the secret key (R20).

Therefore, it is hard for a DPA attacker to make a hypothesis and recover the two other parts of the secret key (R21),

(R22) but it is still possible. In response to this DPA vulnerability, we propose to refresh the shuffling factor’s value in each

cycle in sub-polynomial multiplication. This strategic refreshment aims to break any correlation between consecutive

cycles, rendering hypothesis-making and power trace analysis ineffective. The constant alteration of the shuffling factor

during each cycle completely changes the order of operations, preventing any meaningful correlation between consecutive

cycles, as shown in Figure 5c. Consequently, the lack of correlation between the shuffling factors in successive cycles

introduces substantial noise, effectively thwarting the DPA attacker’s efforts to recover the first sub-polynomial of the

secret key R20.

5.3 Complexity analysis

In this section, we present a comprehensive comparison between the original BRLE scheme and our proposed enhanced

version, 3DKSh-BRLWE in terms of complexity analysis. As illustrated in Table 2, our 3DKSh-BRLWE presents better

complexity than the original BRLWE even if we added the shuffling computation. This is because we have optimized the

most costing operation (i.e., polynomial multiplication).

Table 2. Time complexity analysis of the proposed approach

Phases BRLWE 3DKSh-BRLWE

Key generation Tmul + Tsub →O(n2) Tkmul + xTSh + Tsub →O(nlog3(6))
Encryption 2Tmul + 3Tadd →2O(n2) 2 Tkmul + xTSh + 3Tadd →2O(nlog3(6))
Decryption Tmul + Tadd →O(n2) Tkmul + xTSh + Tadd →O(nlog3(6))

Tmul, Tsub, Tadd, Tkmul, TSh, represent the timing complexity of classical polynomial
multiplication, Polynomial Substruction Polynomial addition, Karatsuba polynomial
multiplication and Shuffling method, respectively. x represents the number of random
shuffling operations.
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Table 3. Comparison of polynomial multiplication techniques based random shuffling for BRLWE

Scheme
Computation time (ms) Energy consumption (mJ) Memory usage (bytes)
Enc Dec Enc Dec Enc Dec

SPMA-Sh for BRLWE 49.8 29.5 1.83 1.07 180 132
2-DKSh for BRLWE 29.3 14.4 1.05 0.51 180 120
3-DKSh for BRLWE* 18.97 9.53 0.7 0.35 168 132
4-DKSh for BRLWE 33.4 16.3 1.16 0.57 168 132
3-DMRKSh for BRLWE 25.8 12.7 1.41 0.69 160 128

The primary operations in our scheme include polynomial addition, subtraction, and multiplication, with multiplication

being the most computationally intensive. Below is a detailed explanation of each operation’s efficiency and its impact:

Polynomial Addition and Subtraction: These operations have a time complexity of O(n), where n is the degree of the

polynomial. Due to their linear complexity, they contribute minimally to the overall computational load and thus have a

limited impact on performance.

Standard Polynomial Multiplication: Standard polynomial multiplication has a time complexity of O(n2), While this

method can be effective for small polynomials, it becomes computationally demanding as the polynomial degree increases,

making it less suitable for larger polynomials, especially in resource-constrained IoT environments.

3-Decomposition Karatsuba Polynomial Multiplication: To address the limitations of standard multiplication, we

employ 3-Decomposition Karatsuba polynomial multiplication, which reduces the computational cost from O(n2) to

O(nlog6
3), which is approximately O(n

1.464) [20, 22]. This reduction represents a significant improvement over the standard

Karatsuba algorithm (2-decomposition) with complexity O(n1.585).

Shuffling Method: The shuffling method is used to enhance security by obfuscating data, but it has a relatively low

impact on overall time complexity compared to polynomial multiplication. This method operates in linear time, adding

minimal computational overhead.

6. Implementation and experimental results

In this section, we provide device-specific optimization of the proposed method. To emphasize the relevance of

the scheme for the Internet of Things, we choose a widely used and resource-constrained microcontroller as the target

platform for our implementation, namely the ARM Cortex-M0. To assess the effectiveness of our approach, we conducted

a comprehensive comparison against the original BRLWE [9] algorithm and the enhanced versions [17, 21] of the BRLWE

that are implemented on the same platform.

The ARM Cortex-M0 is a 32-bit microcontroller processor core designed for low-power, cost-sensitive, and resource-

constrained applications. It offers a compact and efficient architecture, making it ideal for various embedded systems,

IoT devices, and other applications that require energy efficiency and real-time processing capabilities, such as:

Healthcare: Wearable health monitoring devices, such as heart rate monitors and fitness trackers, which require low

power consumption and efficient processing.

Smart Home: Home automation sensors, such as temperature, humidity and motion sensors, operate on limited

computational resources while ensuring reliable data transmission.

Industrial IoT (IIoT): Environmental monitoring sensors used in factories and warehouses to track parameters like air

quality and machine vibration, often deployed in large numbers and optimized for energy efficiency.

Agriculture: Soil moisture sensors and environmental monitoring devices in precision agriculture, which rely on

battery-powered devices, must be highly energy-efficient and reliable.

To benefit from the advantage of the 32-bit architecture, we applied the same vectorizing method proposed by [9] to

optimize the polynomial multiplication in our Karatsuba multiplication implementation. This method enables storing two

coefficients into one data word, thereby reducing the time required for each multiplication operation by 50%.

We implemented the proposed 3DKSh-BRLWE cryptographic scheme on a resource-constrained, 32-bit ARM Cortex

M0 microcontroller, specifically using the Arduino Zero platform and its integrated development environment (IDE).
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This setup enabled us to evaluate the efficiency of our scheme in terms of computation time, memory usage, and energy

consumption—three critical metrics for Internet of Things (IoT) applications where resources are highly limited.

To assess the benefits of our approach, we implemented the baseline BRLWE with a proposed random shuffling

algorithm using standard polynomial multiplication (referred to as SPMA-Sh for BRLWE). We then extended this with

several variations of Karatsuba polynomial multiplication techniques to improve computational efficiency, including:

2-Decomposition Karatsuba-based shuffling for BRLWE, (2-DKSh), 3-Decomposition Karatsuba-based shuffling for

BRLWE (3-DKSh), 4-Decomposition Karatsuba-based shuffling for BRLWE (4-DKSh), and 3-Decomposition Karatsuba

with integrated modular reduction-based shuffling for BRLWE (3-DMRKSh). Each variation allowed us to investigate the

trade-offs between computational cost, memory usage, and energy consumption, with particular attention to the suitability

of each approach for the ARM Cortex M0 microcontroller.

The primary goal of introducing Karatsuba decomposition methods was to reduce the time complexity of polynomial

multiplication, which is the most computationally demanding operation in BRLWE. As summarized in Table 3, the results

demonstrate a clear advantage of using Karatsuba-based methods over standard polynomial multiplication. Among the

variations, the 3DKSh-BRLWE approach demonstrated the best computation times, requiring only 18.97 ms for encryption

and 9.53 ms for decryption. This represents a significant improvement over the SPMA-Sh method and even outperforms

other Karatsuba decomposition methods. The 2-DKSh for BRLWE requires 23.9 ms for encryption and 14.4 ms for

decryption. While this approach achieves faster computation than SPMA-Sh due to fewer polynomial multiplications, it is

less efficient than 3DKSh-BRLWE because the 2-Decomposition structure has a lower degree of decomposition, resulting

in a higher number of coefficient multiplications. Conversely, 4-DKSh for BRLWE requires 33.4 ms for encryption and

16.3 ms for decryption. Although it has a higher decomposition factor, the 4-Decomposition method performs more

addition operations and intermediate calculations, which exceed the processing capabilities of the ARM Cortex M0. This

limits its efficiency on this microcontroller and makes it less suitable for resource-constrained environments. Meanwhile,

3-DMRKSh for BRLWE requires 25.8 ms for encryption and 12.7 ms for decryption. While modular reduction in this

variation reduces memory usage (discussed below), the additional operations required for integrated modular reduction

increase computation time, making it less efficient than standard 3-Decomposition (3DKSh-BRLWE).

Memory usage is another critical factor for IoT devices with limited storage, such as the ARM Cortex M0. As shown

in Table 3, each variation of the scheme impacted memory usage differently, based on the decomposition method and

the addition of modular reduction. The SPMA-Sh for BRLWE consumes 180 bytes for encryption and 132 bytes for

decryption. By contrast, 2-DKSh for BRLWE requires 180 bytes for encryption but reduces the decryption memory to

120 bytes, achieving modest memory savings during decryption. In 3-DKSh for BRLWE, the scheme uses 168 bytes for

encryption and 132 bytes for decryption, offering a small reduction in encryption memory usage compared to SPMA-Sh

while maintaining similar decryption memory requirements. In 4-DKSh for BRLWE, the memory requirements are 168

bytes for encryption and 132 bytes for decryption, similar to 3-DKSh, although it incurs higher computation costs. The

3-DMRKSh for BRLWE further reduces memory usage to 160 bytes for encryption and 128 bytes for decryption. This

approach provides the most memory-efficient solution, achieving a 4.8% reduction in encryption memory and a 3%

reduction in decryption memory compared to standard 3-DKSh for BRLWE. However, as noted earlier, this memory

savings is accompanied by increased computation time due to additional modular reduction operations.

Energy consumption is also a key metric for IoT devices operating on limited power sources, such as batteries. Energy

usage is determined by the power required for each operation in combination with the overall computation time. In our

analysis, we observed that the power needed for 2-DKSh, 3-DKSh, and for 4-DKSh schemes for BRLWE is consistent

at approximately 35 W. However, the 3-DMRKSh for BRLWE approach, which integrates modular reduction, has a

higher power consumption of approximately 54 W. This increased power demand results from the additional operations

required for modular reduction, which, when combined with the extended computation time, significantly increases energy

consumption.

Overall, our results indicate that 3DKSh-BRLWE offers the best balance of low computation time, manageable memory

usage, and energy efficiency, making it the optimal choice among the evaluated approaches for resource-constrained IoT

applications. While the 3-DMRKSh for the BRLWE variant achieves minor memory savings, its increased computation

and energy costs make it less favorable for devices with strict power and performance limitations.
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To demonstrate the effectiveness of our proposed 3DKSh-BRLWE scheme, we conducted a comparative analysis of

computation time in both the encryption and decryption phases against the original BRLWE scheme [9], as illustrated in

Figure 6. The results indicate that 3DKSh-BRLWE achieves a 32.49% reduction in computation time for encryption and a

20.58% reduction for decryption compared to the original BRLWE scheme. This substantial improvement in computation

efficiency highlights the advantage of using our 3-Decomposition Karatsuba approach for lightweight encryption schemes.

The significant reduction in computation time, combined with the enhanced security features of our approach, positions

3DKSh-BRLWE as a highly promising solution for securing resource-constrained applications, especially IoT devices

where computational resources are limited, and efficiency is crucial.

Figure 6. The reduction percentage of the original BRLWE and the proposed 3DKSh-BRLWE in the computation time

Additionally, we conducted a comparative study against the schemes presented in [17, 21], which were implemented

using the sameARMCortexM0microcontroller and aimed to enhance BRLWE security. Our findings, summarized in Table

4, reveal that 3DKSh-BRLWE achieves the lowest computation time among the schemes tested, while also withstanding

timing attacks, Simple Power Analysis (SPA), and Differential Power Analysis (DPA) attacks. By demonstrating resilience

against these specific types of side-channel attacks, our proposed scheme achieves a higher level of security compared to

the schemes in [17, 21], which are more susceptible to timing and power-based attacks due to longer computation times

and less efficient shuffling methods.

Table 4. Implementation results compared with previous software implementations in arm Cortex-M0

Scheme Parameters set
Resistance

Freq. MHz
Clock cycle (1K) Time (ms)

Timing SPA DPA Enc Dec Enc Dec

InvRBLWE [17] (p = 256, q = 256) X × × – 1755 3404 52.3 101.4
Ring-ExpLWE [21] (p = 256, q = 256) X X × 32 1567 792 49.0 24.7

This research work * 3DKSh-BRLWE (p = 256, q = 256) X X X 32 621 307 18.97 9.53

Overall, these results confirm that 3DKSh-BRLWE offers a unique combination of low computation time and robust

security against side-channel attacks, providing a clear advantage over alternative schemes on the same ARM Cortex M0

platform. This makes it particularly well-suited for secure IoT applications, where efficient and resilient encryption is

critical.
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7. Conclusions

In this paper, we proposed an improved version of BRLWEusing the random shufflingmethod and the 3-Decomposition

Karatsuba multiplication to improve the security and optimize the polynomial multiplication cost.

We formally proved that 3DKSh-BRLWE resists the hybrid quantum attacks and the timing, SPA and DPA Side-

Channel attacks. Moreover, we provide a software implementation usingARM Cortex-M0. In our evaluation, we examined

the SPMA-based random shuffling for BRLWE with various Karatsuba multiplication techniques to demonstrate the

advantages of Karatsuba multiplication and to determine the most suitable Karatsuba variant for our implementation.

Furthermore, we compared our results with the original BRLWE and the existing software implementations that aim to

improve it. Our approach requires only 18.79 ms and 9.53 ms for the encryption and the decryption respectively, which

makes it a very good candidate for lightweight and resource-constrained IoT devices.

As future work, we aim to enhance the proposed approach to resist other types of side-channel attacks (SCAs), such as

fault attacks. Our algorithm is currently optimized for polynomials of degree 256 and below on the Cortex M0, making it

suitable for lightweight applications. However, for higher polynomial degrees, scalability needs to account for the increased

cost of the random shuffling phase. To address this, implementing an adapted j-decomposition Karatsuba algorithm on

more capable microcontrollers could help reduce computational overhead while maintaining efficiency in larger and more

demanding cryptographic scenarios.
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