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Abstract: Pre-processing is a key stage in the Machine Learning (ML) pipeline. In such a stage, data is prepared

and organized for feeding it to the MLmodels for a prediction task. One of the problems that might incur in this stage is that

data may have missing values, requiring that either the data is deleted or imputed with data points that resembles/ correlate

with the original one. Imputation is desirable, as having more data to be fed to MLmodels means the model will have more

context and thus better prediction results. From an imputation perspective, since the goal is that the imputed data faithfully

relates with the original data, the result of correlation metric is desirable to show that the imputed data and original data

are closely correlated. Herein, we present a novel imputation algorithm of Skewness Driven Distribution Imputation

(SDDI), and evaluate its efficacy compared to multiple state-of-the-art methods including, K-Nearest Neighbors (KNN),

Mean, Mode, Forward and Backward Fill (F&B-Fill) imputation methods. The comparison is done using accuracy metrics,

Root Mean Square Error (RMSE), correlation and computation time. Furthermore, a correlation analysis is conducted on

the subject 5G Vehicle-to-Everything (V2X) Quality of Service (QoS) dataset, aiming to enhance the understanding of

parameter selection in assessing the QoS for 5G networks by providing the comparison regarding the significance in terms

of correlation of various parameters in influencing 5G network’s QoS. The state-of-the-art Pearson correlation method is

used for said purpose. Moreover, we exploit an Extreme Gradient Boosting or XGBoost algorithm which is an ensemble of

other techniques and not as complex as deep learning algorithms, to predict QoS, given certain conditions relevant to the

5G network. The comparative analysis of various imputation methods revealed average correlation values (as a measure of

faithful data imputation) to be relatively close for Mean, Mode, F&B-Fill, SDDI, and K-Nearest Neighbors imputation

methods at 0.161, 0.176, 0.143, 0.143, and 0.196, respectively. In terms of accuracy, all methods achieved high rates, with

Mean and Mode at 93%, F&B-Fill at 90%, and both SDDI and KNN at 92%. Notably, in the second part of the research,

when only the 15 most correlated features were used, we observed a substantial 60.5% reduction in the amount of data

affected, with only a minimal impact of 3% on accuracy, achieving an impressive 93% accuracy. These results highlight

the effectiveness of targeted feature selection of parameters for QoS of 5G networks and underscore the potential of our

novel SDDI method in maintaining high data integrity while efficiently handling missing data, thereby enhancing the

predictive reliability of the XGBoost algorithm.
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Nomenclature

eMBB Enhanced Mobile Broadband

F&B-Fill Forward and Backward Fill

KNN K-Nearest Neighbors

ML Machine Learning

mMTC Massive Machine-Type Communications

MSE Mean Squared Error

NA Not Available

QoS Quality of Service

RMSE Root Mean Squared Error

SDDI Skewness Driven Distribution Imputation

URLLC Ultra-Reliable and Low Latency

V2X Vehicle-to-Everything

XGBoost Extreme Gradient Boosting

1. Introduction

Data imputation is a critical step in the pre-processing phase of a Data Science or Machine Learning (ML) workflow

[1], taking 80% time of the whole ML project [2]. The fundamental motivation for data imputation is that many models

cannot handle datasets containing missing values [3], e.g., the continuity of a time series is affected by missing values

since date and time would be missing [4]. Among various techniques used for filling the missing values of data, Mean

imputation [5] involves inserting the mean value throughout the dataset at missing positions, while Mode imputation uses

the mode of the data for the same purpose. In certain cases, deletion of missing parts may be appropriate for datasets

with less than 5% missing values [6], contingent on factors like resultant accuracy and project objectives. However, when

dealing with a substantial percentage of missing data, ML algorithms such as K-Nearest Neighbors (KNN) [7] or Decision

Trees [8] are often employed, though this introduces complexity and increases computational processing time compared to

statistical methods like mean/mode imputation. Additionally, when examining scientific trends over time, it is apparent

that the domain of data imputation is often overshadowed by the flourishing interest in new models pertaining to deep

learning and, more broadly, machine learning. This trend is highlighted in [9], where Google Trends analysis for the period

from November 2023 to November 2024 shows that searches related to data imputation and associated keywords average

at 8 points, whereas searches for machine learning models peak at 83 points. While the development of new models is

crucial, the significant portion of time (80%) spent on preprocessing in an ML project suggests that this area also deserves

considerable attention. Typically, the imputation techniques employed range from basic and less computationally intensive

methods such as mean or mode imputation and outright data deletion, to more advanced, but resource heavy deep learning

based models. For instance, recent studies like [10] have explored complex imputation methods such as the Bi-ConvRNN,

which combines Convolutional Neural Networks (CNN) and Bidirectional Recurrent Neural Networks (Bi-RNN), or [11],

which employs Conditional Generative Adversarial Networks (cGANs) for addressing imbalances and incompleteness in

time-series datasets. The statistical-based imputation methods serves as a middle ground, enhancing efficiency without

incurring high computational costs, and is the motivation for this research to contribute to such underrated yet essential

domain of imputation in ML pipeline.

This article introduces Skewness Driven Distribution Imputation (SDDI), an innovative algorithm crafted to tackle

the challenge of integrating natural distribution concept of data into imputation process, avoiding the intricacies associated

with ML methods. In contrast to traditional mean/mode imputation approaches, SDDI takes into account the distribution

characteristics of the dataset while maintaining a complexity level comparable to statistical techniques. While the primary

goal of this novel algorithm is to offer flexibility and comparable outcomes, it’s crucial to emphasize that SDDI is not

alternative to ML algorithms. Instead, it presents an additional streamlined option for data scientists and researchers to

impute and enhance results without delving into the complexities of intricate ML workflows. This enables the utilization
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of the traditional and simple mean/mode imputations while effectively addressing imputation in the dataset through the

statistical consideration of distribution characteristics.

Additionally, this research involves correlation analyses on a 5G network Quality of Service (QoS) dataset. Firstly,

subject correlation analysis assesses the correlation between the imputed data generated by the SDDI algorithm and the

original dataset, and subsequent comparisons with other state-of-the-art methods. Secondly, this correlation analysis

contribute to showing the significance of each of the input parameters that effects the QoS of a 5G network.

The fifth-generation cellular communication standard, known as 5G, offers significant broadcasting capacity of up

to Gigabit units, accommodating up to 65,000 connections simultaneously [12]. Additionally, 5G technology enables

the use of a single universal device, providing access to various cellular technologies simultaneously based on the

desired application [12]. From a technical standpoint, 5G technology encompasses three distinct scenarios [13]: (i)

Enhanced Mobile Broadband (eMBB), characterized by high-speed communication and improved performance compared

to earlier technologies; (ii) Ultra-Reliable and Low Latency (URLLC), dedicated to minimal latency, real-time and reliable

communication applications; (iii) Massive Machine-Type Communications (mMTC), prioritizing connectivity between

humans and machines, as well as inter-machine communication [14].

In this paper, the utilized data originate from Vehicle-to-Everything (V2X) network measurements and pertain to

the URLLC domain. We focus on the QoS dimension of 5G, a critical factor whose determination can contribute to not

only the dynamic allocation of network resources based on QoS conditions but also define the expectations of network’s

service providers, and customers [15], since, unlike 4G, the 5G network is characterized by those feature elements which

are distinct from traditional QoS network parameters. These elements are related to user satisfaction, aspects such as video

buffering and latency in online gaming etc. [16]. This study contributes in identifying the relevance of 5G QoS parameters

for V2X by examining the correlation between various factors. The analysis includes dataset with parameters related not

only to network architecture but also to location and physical scenarios, ultimately influencing the determination of QoS

[17]. Correlation analysis is employed to identify the parameters that significantly influence downlink throughput, and

thus can help researchers and industrial players to focus on these in future studies. Consequently, there will be savings in

time, logistical expenses associated with sensor and equipment measurements, computation costs, and overall efficiency

in both the measurement and QoS determination processes. Though, the downlink data rate is emphasized, the input

features, includes factors that affect traffic congestion, reliability and strength of the signal, which are all very important in

determining the QoS and will be discussed later in Section 2 [18].

This research utilizes an ensemble of low complex techniques, i.e., Extreme Gradient Boosting (XGBoost) ML

algorithm to predict the QoS in terms of throughput of the 5G V2X network. This specific model was selected for this

research due to several considerations. Advanced methods like deep learning algorithms have been applied in similar

studies, such as in [19]; where cascading Neural Networks (NN) were used instead of a single fully-connected NN such

that one part of the cascade finds optimal Bandwidth allocation and the second cascade finds the transmit power for optimal

5G QoS; and in [20], where a sophisticated resource allocation architecture for TV multimedia services in the 5G wireless

cloud network (C-RAN) is developed, employing a combination of LSTM (Long Short-Term Memory) for dynamic traffic

modeling and deep reinforcement learning with convex optimization for minimizing energy usage in Remote Radio Heads

(RRHs) while adhering to QoS constraints. However, the preference for ML algorithms arises from their faster processing

speed and lower resource requirements [21]. In particular, the use of XGBoost, an ensemble of computationally inexpensive

models [22], aligns with the subject research goal of achieving accurate predictions with minimal computational resources.

It should be emphasized that the central focus of this research is primarily on proposing and evaluating the novel

SDDI algorithm, comparing its effectiveness with other commonly used imputation methods. Consequently, it was deemed

more appropriate to assess the outcomes of each imputation technique using a single model with the same configuration

for all such techniques, XGBoost, as a representative use case. There were various other options of using ML models,

including promising latest research of [23], where a novel approach of NNBoost was proposed for the application of

network management in Software Defined Networking and it outperformed methods like XGBoost, LSTM, Random

Forest etc. Another interesting novel research [24], proposes CLpred paradigm which uses Contrast Learning approach to

implement a transformer encoder based architecture to infer QoS data time-awarely, with implications of data augmentation

application as well.
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However, the focus of this research is on the imputation domain and evaluating imputation methods, which differs from

the objectives of NNBoost and CLpred that target enhancements in network and data prediction architectures. Consequently,

XGBoost serves as a consistent use-case to evaluate subject research’s employed imputation methods.

The key contributions of this work are three-fold:

• Introduction of the SDDI algorithm for imputation of missing data in the pre-processing stage of an ML workflow.

The novel SSDI utilizes the distribution feature of skewness, of the analyzed dataset, and then imputes missing data

according to the identified distribution.

• The comparison of SDDI with state-of-the-art Mean, Mode, KNN and Forward and Backward Fill (F&B-Fill)

imputation techniques in terms of correlation, Root Mean Square Error (RMSE), Accuracy and computation time of

imputation has been implemented with SDDI getting 0.0499 RMSE, 0.143 correlation, 92% accuracy and 10 s in

computation time for execution. The results corroborate that SDDI offers comparable results with respect to the

counterparts.

• Correlation analysis of input parameters/features of subject data set and consequent conclusion of which parameters

holds relevance, subsequently helping future V2X QoS determination processes to only consider the meaningful

features for measurement and dynamic resource allocation.

The paper is organized as follows. In Section 2, an overview of the pre-processing procedures is outlined. Furthermore,

a comprehensive overview is provided for the XGBoost ML algorithm employed in the study, along with the implementation

of Pearson correlation and the assessment metrics ofAccuracy and RMSE utilized. In Section 3, numerical experimentations

along with their respective interpretations are shown. Lastly, the inferences of the research are summarized in Section 4.

2. Methodology

Herein, we first present the dataset and pre-processing methods, specifically related to the imputation, adopted in this

research work. Then, we discuss the implementation of Pearson correlation method and the ML algorithm of XGBoost.

Finally, we discuss the evaluation metrics used to evaluate the model’s performance.

Figure 1 gives an overview of the proposed research methodology. More specifically, it illustrates the methodology

employed in our study to analyze 5G Quality of Service (QoS) using V2X (Vehicle to Everything) data from Berlin which

features 37 input variables and downlink throughput as the target variable.

In the preprocessing phase, two different paths are taken for achieving two different objectives of this research.

The path where correlations study takes place (orange arrows) and non-correlated features are dropped (features with

zero correlation) and further passed through the imputation stage where five imputation techniques are applied, has the

objective of evaluating the novel SDDI technique in terms of how much faithful reproduction of missing data has resulted

in (evaluated by average correlation) and how such imputation leads to effect accuracy when an ML algorithm is applied

(in this case XGBoost applied and evaluated using RMSE, MSE, accuracy and compute time). This path is basically used

to evaluate the efficacy of novel SDDI compared to other existing methods.

The secondary route (green arrows) aims to identify the essential input features necessary for general 5G QoS

assessment. By isolating only the correlated features, our methodology can reduce costs and save time by suggesting that

future research focus solely on these critical features. This streamlined approach ensures that only relevant data is collected

and utilized, saving costs and time in terms of sensor deployments for recording data of the non-essential parameters. This

is specifically done here by dropping weather related features and features with less than equal to 0.1 correlation (only 15

input features remain out of original 37, after dropping low correlated features). To test whether the choice of dropping

criteria is suitable and low correlated features indeed had negligible impact on the final outcome of QoS prediction, the

data is passed through ML implementation (in this case XGBoost) and results are evaluated via RMSE, MSE, and accuracy.

The results are elaborated with interesting outcomes in Section 3.
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Figure 1. Proposed methodology of the subject research

2.1 Pre-processing

The 5G V2X dataset [25] corresponds to the city of Berlin, Germany and includes 37 input features and 1 target

variable with a total of 34,274 data points or rows for each of the 38 total columns. The data had a total 131,506 missing

data points from all the columns. A short description for each column is given in Table 1. The investigation employs

identical column names as those present in the original dataset for ease of reference, and these names will be consistently

used to denote these columns in subsequent discussions. It is to be noted that the study further includes research in the

scenario of dropping parameters related to weather, and less than equal to 0.1 correlation features (as shown in Table 2

with further results oriented insights given in Section 3.2). Hence, the resultant scenario is using parameters that not only

employs to V2X but to 5G network in general. Therefore, any conclusions of this study are usable in terms of 5G QoS

description as well.

Table 1. Short description of the subject dataset

Input parameters Description

PCell_RSRP_max Maximum reference signal received power in dBm from the primary cell
PCell_RSRQ_max Maximum reference signal received quality in dB from the primary cell
PCell_RSSI_max Maximum received signal strength indicator in dBm from the primary cell
PCell_SNR_max Maximum signal to noise ratio in dB from the primary cell

PCell_Downlink_Num_RBs Aggregated number of received resource blocks in downlink from the primary cell
PCell_Downlink_TB_Size Aggregated transport block size in downlink from the primary cell

PCell_Downlink_Average_MCS Average modulation and coding scheme weighted by received resource blocks from the primary cell
PCell_Downlink_bandwidth_MHz Downlink bandwidth in MHz from the primary cell

PCell_Cell_Identity Cell ID of the primary cell
PCell_freq_MHz Carrier frequency in MHz of the primary cell
SCell_RSRP_max Maximum reference signal received power in dBm from the secondary cell
SCell_RSRQ_max Maximum reference signal received quality in dB from the secondary cell
SCell_RSSI_max Maximum received signal strength indicator in dBm from the secondary cell
SCell_SNR_max Maximum signal to noise ratio in dB from the secondary cell

SCell_Downlink_Num_RBs Aggregated number of received resource blocks in downlink from the secondary cell
SCell_Downlink_TB_Size Aggregated transport block size in downlink from the secondary cell

SCell_Downlink_Average_MCS Average modulation and coding scheme weighted by received resource blocks from the secondary cell
SCell_Downlink_bandwidth_MHz Downlink bandwidth in MHz from the secondary cell

SCell_Cell_Identity Cell ID of the secondary cell
SCell_freq_MHz Carrier frequency in MHz of the secondary cell

operator ID of the operator
Latitude GPS latitude of the vehicle
Longitude GPS longitude of the vehicle
Altitude GPS altitude of the vehicle
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Table 1. Cont.

Input parameters Description

speed_kmh GPS-based speed of the vehicle in km/h
COG GPS-based course over ground of the vehicle

precipIntensity Precipitation intensity
precipProbability Precipitation probability
temperature Temperature

apparentTemperature Apparent temperature
dewPoint Dew point
humidity Humidity
pressure Atmospheric pressure
windSpeed Wind speed
cloudCover Cloud cover
uvIndex Ultraviolet index
visibility Visibility due to weather conditions

Traffic Jam Factor Factor of traffic congestion (a higher factor corresponds to heavier traffic)
area Categorical urban area among Avenue/Park/Residential/Highway/Tunnel
target Prediction target: downlink data rate in bits per second

Table 2. Parameters related to Weather and less than equal to 0.1 correlation

Parameters Parameters

SCell_Downlink_bandwidth_MHz apparentTemperature
SCell_freq_MHz dewPoint

Latitude humidity
Longitude pressure
Altitude windSpeed

speed_kmh cloudCover
COG uvIndex

precipIntensity visibility
precipProbability Traffic Jam Factor
temperature area

2.2 Adopted imputation algorithms

In this research work, the novel method of Skewness Driven Distribution Imputation (SDDI), the KNN imputer,

Mean, Mode, and Forward and Backward Fill (F&B-Fill) imputation methods are used for filling any missing values in the

original dataset. These are explained in subsequent sub-sections.

2.2.1Skewness driven distribution imputation (SDDI)

The SDDI has mainly 3 components: Skewness, Normal Distribution, and Gamma Distribution, which are explained

below.

Skewness is a measure of the asymmetry of a probability distribution. It quantifies the extent and direction of skew

(departure from horizontal symmetry) in the data. A positive skewness indicates a longer right tail, while negative skewness

indicates a longer left tail. Mathematically, skewness is calculated as

Skewness =
∑

N
i=1 (Xi −X)3

(N −1) σ
3 (1)

where N is number of variables in the distribution, Xi is the i-th data point, X is the sample mean of the distribution and σ

is the sample standard deviation.

ANormal Distribution, is symmetric around its mean, forming a bell-shaped curve. It is fully characterized by its

mean and standard deviation. The code uses the numpy.random.normal function to generate random numbers from a normal

distribution with a mean and standard deviation specific to the subject data calculated by numpy.log(data_column.mean())

and numpy.log(data_column.std()) functions, respectively. Mathematically, the probability density function (PDF) of the

normal distribution is given by
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f (x) =
1

σ
√

2π
e−

x−X2

2σ2 (2)

The 99.7% of all the values lie within the first 3 standard deviations as seen in the area under the curve of the graph in

Figure 2.

Figure 2. PDF of a normal distribution

AGamma Distribution is used in this research for both right and left skewed data. Mathematically, the PDF of the

gamma distribution is given by

f (x) =
1

Γ(k)θ k xk−1e−
x
θ (3)

where, k denotes shape and influences the form of the probability distribution, e.g., higher k would give more peaked and

less skewed shape), θ is the scale and captures the compression or stretch of distribution, e.g., larger θ values gives wider

distribution), and Γ(k) is the gamma function.
Figure 3 illustrates the shape of data according to 3 types of distribution. The algorithm of SDDI checks for skewness

of data. If the data is skewed, returning either left skewed or a right skewed distribution, the Gamma Distribution is fitted

on the data based on data’s distribution’s shape, scale and location parameters. Then, using its PDF, a pool of data points

are formed from using the gamma distribution model as described in Equation (3). These generated data points are equal to

the number of data points as in the original dataset and have a gamma distribution (in case the original data was skewed).

As a result, at places where the original dataset have data missing, the gamma distributed generated values are imputed.

Alternatively, if the data is normally distributed, then using the PDF of Normal Distribution, a pool of data points that

adheres to this distribution are formed for imputing missing values. The values from the Normal Distribution or Gamma

Distribution ensures that the generated values align with the natural distribution of that column since data’s own statistical

parameters like mean, skewness, shape, location, standard deviation and scale parameters has been used. This means that

even in the presence of missing values, the filled values from the distribution obtained will closely resemble the overall

natural distribution of the column.
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Figure 3. An illustration of normal distribution (No skewness, left image), right skewed (middle image), and left skewed (right image)

It is of importance to note that this method can be used in time-series data. Its non-seasonal counterparts Mean and

Mode imputation [26, 27] can be used as well but their usage depend on the use-case, specifically the computation time,

complexity requirements of a project and the amount of prediction accuracy needed. In general, imputation methods,

including Seasonal Mean Imputation [28], are better suited for time-series data. This research involves the use of seasonal

methods of ML based KNN imputation and statistical method of F&B-Fill for comparison to the SDDI, in addition to

non-seasonal methods of Mean and Mode imputation such that the SDDI is evaluated with both seasonal and non-seasonal

state-of-the-art. This comprehensive evaluation allows for a robust comparison of SDDI against a wide range of techniques

when applied to non-time series data.

The pseudo code in Table 3 examines the skewness of columns containing missing values in the dataset. If the

skewness exceeds 0.05 or below −0.05, it fits a gamma distribution to the non-null values of the column using parameters
of a_fit (shape), loc_fit (location), and scale_fit (scale). The code creates a linear space (x) spanning the range of the

column values and calculates the PDF of the fitted gamma distribution at each point in the linear space. Imputed values

are generated by randomly sampling from the fitted PDF. Finally, the missing values in the original column are replaced

with the generated imputed values, aligning the imputation with the natural distribution characteristics inferred from the

fitted gamma distribution. At last, if the skewness is in the range of −0.05 to 0.05, the normal distribution of the particular
column is generated.

Table 3. Pseudo code for SDDI implementation

for each column col in df_Train.columns:
if df_Train[col] has missing values:
calculate skewness = skew(dropna values of df_Train[col])
if absolute value of skewness > 0.05:
# Impute using Gamma Distribution
[a_fit, loc_fit, scale_fit] = fit_gamma_distribution(dropna values of df_Train[col])
x = create_linear_space(minimum value of df_Train[col], maximum value of df_Train[col], length of df_Train[col])
calculate PDF values using gamma distribution parameters (x, a_fit, loc=loc_fit, scale=scale_fit)
generate imputed values using random choice and PDF values
fill missing data points in df_Train[col] with imputed values

else:
# Impute using Normal Distribution
generate random seed using default random number generator
calculate mean mu and standard deviation sd of df_Train[col]
create filler values from normal distribution (size=len(df_Train))
fill missing data points in df_Train[col] with filler values
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2.2.2Mean imputation

Taking a simple average or mean of the whole data as shown in the Figure 4A (gives an example of data named x),

and then using the resultant value to fill any NA (not available) values in the data, is defined as Mean imputation.

Figure 4. Example of mean, mode, and F&B-Fill imputation working

2.2.3Mode imputation

Taking a value repeated most time in the whole data as shown in the Figure 4B, and then using the resultant value to

fill any NA (not available) values in the data, is defined as Mode imputation. However, discrete datasets having repeated

values are compatible with this method, such as the subject data utilized in this research.

2.2.4Forward and backward fill imputation

Forward filling involves filling a missing value in a dataset by taking the nearest non-missing value that precedes

it. This method utilizes the value immediately before the target missing value to populate it. While, backward filling

addresses the gaps left by forward filling, particularly when data points are positioned at the extremes of the dataset. In

backward filling, missing values are filled by using the nearest non-missing values that succeed the target missing values.

The Figure 4C shows first NA value backward filled while the second NA value forward filled.

2.2.5K-nearest neighbors imputation

In KNN, the label or parameter for which a result is required and the variables or features or input data points that

effect such a label are considered on a 2D plane. Depending on their values, the features are scattered over the plane. The

algorithm works by calculating distance of label with each feature points through Euclidean distance as

Euclidean distance(a,b) =
√
(a1 −b1)2 +(a2 −b2)2 (4)

As represented in Figure 5, the features that are being observed are then ranked by how far they are from the label

parameter. The ‘K’ number is allotted by the user, which represents, e.g., how many neighbors or feature points come

inside the specified group defined by K number. Then the average value of each feature is taken, and the result of this

average is the prediction value.
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Figure 5. Visualization of basic working of KNN

2.3 XGBoost ML algorithm

In this section, we delve into the XGBoost algorithm, a scalable ML system designed for tree boosting. Boosting

serves as a ML technique applicable to both regression and classification problems. It involves generating a weak learner at

each step and incorporating it into the overall model. If, at each step, the weak learner is constructed based on the gradient

direction of the loss function, the technique is referred to as Gradient Boosting Machines (GBM) [29].

A key distinction between Random Forest (RF) and Gradient Boosted Machines lies in that trees are constructed

independently of each other in RF, while in GBM, a new tree is introduced to complement those already built [30]. XGBoost

outperforms the other tree boosting methods for three main reasons: (i) the incorporation of a regularized loss function, (ii)

the ability to scale down the weights of each new tree by a specified constant η , thereby reducing the influence of a single

tree on the final score, and (iii) column-sampling, which operates similarly to random forests [31, 32]. The XGBoost ML

model is conveniently implemented in the ‘xgboost’ Python package [33].

2.4 Pearson Correlation

Pearson correlation is a measure of the linear relationship between two variables. It is commonly denoted by the

symbol r. For two data sequences X and Y with N data points, the Pearson correlation coefficient is calculated as

r =r =r =
∑

NNN
i=1i=1i=1(X(X(Xiii−−−XXX)))(Y(Y(Y iii−−−YYY)))√

∑
NNN
i=1i=1i=1(X(X(Xiii−−−XXX)))2

22
∑

NNN
i=1i=1i=1(Y(Y(Y iii−−−YYY)))2

22
(5)

where Xi and Yi are individual data points of X and Y respectively. X and Y are the means of X and Y respectively.

The numerator represents the covariance between X and Y, which measures how much X and Y change together. The

denominator involves the standard deviations of X and Y, and the correlation is essentially the normalized covariance. The

Pearson correlation coefficient ranges from −1 to 1 with r = 1 indicating a perfect positive linear relationship, while r =
−1 indicates a perfect negative linear relationship and r = 0 indicates no linear relationship. The correlation coefficient is a
measure of the strength and direction of the linear relationship between two variables.

2.5 Evaluation metrics

For performance evaluation of the proposed model, evaluation metrics of Root Mean Square Error (RMSE) and

Accuracy are used. The RMSE is one of the popular standards in the context of ML [34]. The RMSE is given by
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RMSE ===

√
∑

NNN
i=1i=1i=1(K−(K−(K−ǨKK)))222

NNN
(6)

where KKK shows the actual observed values and ǨKK shows the predicted output values, respectively. N is the total number of

records. The accuracy in percentage is given by point wise utilization of the equation

Accuracy (%) ===

(
No. o f correct predictionsNo. o f correct predictionsNo. o f correct predictions

Total predictionsTotal predictionsTotal predictions

)
×100 (7)

3. Numerical experimentations

In this section, details regarding implementation of imputation techniques of Mean, Mode, KNN, F&B-Fill and SDDI

are presented and discussed. Furthermore, correlation analysis is done on the dataset to find which parameters are relevant

in determining 5G QoS. In addition, XGBoost is applied to predict QoS with the research focusing on lowering computation

and time costs for 5G QoS V2X parameter selection.

3.1 Pertinent implementation of the imputation techniques

Firstly, the correlation of subject dataset is computed. Figure 6 offers a full overview of what columns or input

parameters has correlation with the target label (downlink throughput in bits per second). The variables of SCell_ f req_MHz
and windSpeed with zero correlation are consequently discarded. Similarly, the variable of visibility shows a white strip

because it had a constant value throughout the dataset on inspection. Hence, this parameter is also discarded. Parameters

exhibiting correlations as low as 0.02 were retained, as the intention is to initially consider every minor aspect of significance

to discern its potential impact on accuracy results. However, further correlation analysis is discussed later in detail.

Figure 6. Correlation of the whole original data set with respect to target label column
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After the initial correlation inspection and discarding absolutely non-correlated parameters the five imputation

techniques are implemented to impute the original dataset and fill its missing values, then using the XGBoost (with tree

depth = 6, learning rate = 0.01, estimators = 350), prediction of the target variable (downlink throughput in bits per second)

is performed. The 0.75–0.25 train-test split ratio has been selected meaning that 75% data is used for training and 25% is

used for testing. The training dataset contains 35 features including the target variable of data rate in bps and excludes the

completely non-correlated features as discussed above. The testing dataset contains 34 columns that excludes the data rate

variable and the ML model is given the task to predict this against the 34 input features.

Figures 7 and 8 depict the outcomes of curve fitting (original and predicted data points are compared to each other on

the same chart) when the XGBoost algorithm is employed on five distinct versions of the identical dataset. These versions

correspond to datasets that underwent various imputation techniques, including SDDI, F&B-Fill, KNN, Mean and Mode

imputation. The y-axis represents the Data Rate, plotted against the x-axis, which corresponds to individual samples or

data points.

Figure 7. Curve fitting (Original vs. Predicted values) of XGBoost applied for imputation methods of (A) SDDI (B) F&B-FILL and (C) KNN
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Figure 8. Curve fitting (Original vs. Predicted values) of XGBoost applied for imputation methods of (A) Mean and (B) Mode

There are two additional metrics shown specific to the Figures 7 and 8: Residual (%), which is an average of the

difference between original and predicted values of every data point in the testing dataset; the r-squared evaluation metric

or represented as R2 in this study and given as

R2 ===
∑

NNN
111 (((ǨKK−−−K̂KK)))222

∑
NNN
111 (K−(K−(K−K̂KK)))222

(8)

where KKK shows the actual observed values, ǨKK shows the predicted output values and K̂KK shows the mean value. The more

closer to value of 1 the R-squared is, the more precise is the prediction such that 1 means exact value match between

predicted and observed value.

The definite results and comparison is shown in the Figures 9 and 10. Evaluation metrics of RMSE and average

correlation obtained using the subject imputation methods are plotted in Figure 9. While the Figure 10, compares the five

techniques with respect to Accuracy (%) and computation time (seconds).
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Figure 9. Comparison of various imputation methods’ average correlation effect on data and RMSE performance achieved when XGBoost applied

Figure 10. Comparison of various imputation methods’ computation time for imputation in seconds and accuracy achieved when XGBoost applied

In Figure 9, RMSE values for various imputation techniques are presented, with the Mode imputation technique

leading, having the lowest RMSE of 0.0414, closely followed by Mean imputation with an RMSE of 0.0422. In contrast,

F&B-Fill lags behind with an RMSE of 0.0491. Interestingly, the advanced KNN imputer and the novel SDDI technique

exhibit similar performance, both yielding an RMSE of 0.0445. Close to zero results are desirable, which is being acquired

here. These results highlight that in ML or Data Science projects, no single algorithm consistently outshines the others.

Success depends on the unique characteristics of datasets and research objectives. Despite these differences, the algorithms

in this study performed similarly, and with very close to zero RMSE, emphasizing their comparable effectiveness.

The effect of imputation is evident from the observed correlation results for the imputed versions of the dataset,

indicating the importance of understanding how a certain imputation technique affects the core pattern-related structure

of the dataset, suggesting how faithfully a dataset is imputed if compared to the original dataset. In this situation, KNN

surpasses other imputation techniques by producing a dataset with significantly higher correlation of 0.196. Following

closely are the Mode and Mean imputed datasets, averaging correlations of 0.176 and 0.161, respectively. F&B-Fill and

Computer Networks and Communications 198 | Saifullah Khan, et al.



SDDI exhibit comparable performance with an identical correlation of 0.143. These average correlation values has been

obtained by the Table 4.

Table 4. Correlation of imputed data sets with respect to the target label column

S No. Input features
Employed imputation methods

Mean Mode F&B-Fill SDDI KNN

1 PCell_RSRP_max 0.476838 0.476838 0.476838 0.476838 0.476838
2 PCell_RSRQ_max 0.199297 0.199297 0.199297 0.199297 0.199297
3 PCell_RSSI_max 0.509748 0.509748 0.509748 0.509748 0.509748
4 PCell_SNR_max 0.578254 0.578254 0.578254 0.578254 0.578254
5 PCell_Downlink_Num_RBs 0.407318 0.407318 0.407318 0.407318 0.407318
6 PCell_Downlink_Average_MCS 0.453623 0.453623 0.453623 0.453623 0.453623
7 PCell_Downlink_bandwidth_MHz 0.25083 0.252155 0.248252 0.247159 0.258138
8 PCell_Cell_Identity 0.405961 0.391666 0.400921 0.399899 0.416747
9 PCell_freq_MHz −0.163348 −0.163348 −0.163348 −0.163348 −0.16335
10 SCell_RSRP_max 0.396969 0.566138 0.295311 0.29746 0.589953
11 SCell_RSRQ_max 0.23106 0.563075 0.171816 0.173502 0.456744
12 SCell_RSSI_max 0.362379 0.499563 0.269224 0.271616 0.472675
13 SCell_SNR_max 0.511597 0.505822 0.377273 0.383103 0.68511
14 SCell_Downlink_Num_RBs 0.37531 −0.023593 0.271604 0.276286 0.585413
15 SCell_Downlink_Average_MCS 0.487332 0.647561 0.356428 0.358503 0.665922
16 SCell_Downlink_bandwidth_MHz 0.013356 0.007616 0.011586 0.007559 0.073391
17 SCell_Cell_Identity 0.117944 0.354039 0.083687 0.073209 0.333047
18 operator −0.431571 −0.431571 −0.431571 −0.431571 −0.43157
19 Latitude 0.018893 0.018893 0.018893 0.018893 0.018893
20 Longitude 0.063113 0.063113 0.063113 0.063113 0.063113
21 Altitude −0.065053 −0.064986 −0.065059 −0.065159 −0.06509
22 speed_kmh −0.072416 −0.072416 −0.072416 −0.072416 −0.07242
23 COG −0.056743 −0.056743 −0.056743 −0.056743 −0.05674
24 precipIntensity 0.158196 0.158196 0.158196 0.158196 0.158196
25 precipProbability 0.179002 0.179002 0.179002 0.179002 0.179002
26 temperature −0.248663 −0.248663 −0.248663 −0.248663 −0.24866
27 apparentTemperature −0.248663 −0.248663 −0.248663 −0.248663 −0.24866
28 dewPoint −0.244297 −0.244297 −0.244297 −0.244297 −0.2443
29 humidity 0.230256 0.230256 0.230256 0.230256 0.230256
30 pressure 0.180679 0.180679 0.180679 0.180679 0.180679
31 cloudCover 0.246949 0.246949 0.246949 0.246949 0.246949
32 uvIndex −0.060957 −0.060957 −0.060957 −0.060957 −0.06096
33 Traffic Jam Factor 0.065516 0.065844 0.065587 0.065448 0.065333
34 area_Avenue −0.018871 −0.018871 −0.018871 −0.018871 −0.01887
35 area_Highway −0.088661 −0.088661 −0.088661 −0.088661 −0.08866
36 area_Park 0.091808 0.091808 0.091808 0.091808 0.091808
37 area_Residential −0.015681 −0.015681 −0.015681 −0.015681 −0.01568
38 area_Tunnel −0.055163 −0.055163 −0.055163 −0.055163 −0.05516

Average 0.161 0.176 0.143 0.143 0.196

Nevertheless, the results in Figure 9, shows minimal deviation from each other, and there doesn’t appear to be a

discernible leader. This suggests that SDDI is a promising candidate as an alternative method for imputation when compared

to both simple statistical techniques and ML-based approaches.

In Figure 10, the observed accuracy does not vary significantly. The mean/mode achieves 93%, while KNN and SDDI

exhibit 92%, and F&B-Fill records 90%. Despite the perception that KNN, as a more advanced algorithm with a ML-based

approach, would yield superior results, it underscores the idea that in data science projects, determining the best algorithm

is subjective and highly dependent on the specific characteristics of the dataset. The computation time, shows that simplest

techniques of Mean and Mode imputation took 1 s to execute and impute the whole dataset while 10 s each were spent by

SDDI and F&B-Fill. The highest computation time of 310 s was taken by KNN as it is an ML based algorithm.

The insight derived from these results indicates that SDDI has demonstrated its efficacy, showcasing comparable

performance to both statistical and ML-based algorithms.

3.2 Parameter relevance and ML prediction for 5G QoS

Examining the correlation results from Section 4.1, the investigation explores whether satisfactory QoS predictions

can be achieved by omitting low-correlation parameters, specifically, those with correlations of 0.1 or lower and excluding

Volume 2 Issue 2|2024| 199 Computer Networks and Communications



weather-related parameters. If the QoS predictions are satisfactory and exhibit no significant deviation from previous

results obtained using the same XGBoost ML model variant, it implies that these selected parameters can be safely

utilized. This approach can be advantageous for substantial cost and time savings in measurement equipment, as well as

computational efficiency, especially in real-time production tasks where the deployed model needs to process lower data

volumes. Additionally, this study will contribute in signifying what parameters are needed to give 5G QoS parameters, not

just for V2X but also generally for the 5G network. The Table 5 gives the names of those columns which are selected after

discarding the parameters with 0.1 or lower correlation and the weather parameters.

Table 5. Columns selected after considering only greater than 0.1 correlation parameters and dropping weather parameters

No. Parameters Correlation No. Parameters Correlation

1 PCell_RSRP_max 0.4768 11 SCell_RSRQ_max 0.1735
2 PCell_RSRQ_max 0.1992 12 SCell_RSSI_max 0.2716
3 PCell_RSSI_max 0.5097 13 SCell_SNR_max 0.3831
4 PCell_SNR_max 0.5782 14 SCell_Downlink_Num_RBs 0.2763
5 PCell_Downlink_Num_RBs 0.4073 15 Cell_Downlink_Average_MCS 0.3585
6 PCell_Downlink_Average_MCS 0.4536 16 target 1.0
7 Cell_Downlink_bandwidth_MHz 0.2471
8 PCell_Cell_Identity 0.3998
9 PCell_freq_MHz −0.1633
10 SCell_RSRP_max 0.2974

For comparison purposes, two variants named for convenience as XGBoost V1 (depth = 6, learning rate = 0.01,

estimators = 350) and XGBoost V2 (depth = 8, learning rate = 0.01, estimators = 400) have been used. The XGBoost V1

is the same as used in the Section 4.1 to get results for imputed datasets. While the XGBoost V2 is a bit more complex

with slightly more depth and estimators used. More complexity is not desired since the study is focusing on faster results

with low computing power. The SDDI imputed dataset is used for this section. The results for RMSE were observed to

be 0.0484 and 0.0436 for XGBoost V1 and XGBoost V2, respectively. The accuracy of 90% and 93% were observed

in Figure 11 for XGBoost V1 and XGBoost V2, respectively. However, the 3% accuracy was gained at more than 50%

computation cost with computation time of 24 and 60 s for XGBoost V1 and XGBoost V2, respectively.

Figure 11. Comparison of XGBoost V1 with XGBoost V2 for accuracy and compute time taken on smaller correlation prioritized dataset

Hence, the results do show that obtained result from the same XGBoost V1 are satisfactory, especially considering the

fact that only 15 input parameters are considered compared to original 38 original input columns in Section 4.1. Meaning,
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a 60.5% reduction in data affected only 3% accuracy, which is in itself an evidence that non-correlated features were

definitely not of a significant value to measure with or use in ML pipeline.

This is even further realized in the Figure 12 by comparing r-squared metric results for XGBoost V1 and XGBoost

V2, with 0.9114 and 0.9285 values which are very close in the context of 60.5% data reduction.

Figure 12. Curve fitting (original vs. predicted values) of XGBoost applied on smaller correlation prioritized dataset with variation of (A) XGBoost V1,
and (B) XGBoost V2

Consequently, it can be concluded that these 15 parameters can be confidently selected, given their minimal impact

on accuracy, thereby streamlining the data and contributing to more efficient and resource-effective analyses.

4. Conclusions

This work introduced a novel imputation method utilizing the distribution of the data itself to fill the missing values.

This alternative approach, was shown to be computationally simple but strategic enough to be on par with other state-of-

the-art methods. The research also contributed to the 5G QoS parameter selection in both general and V2X contexts by

utilizing Pearson correlation and XGBoost implementations.

With data collected in Berlin, Germany, in the initial stages of the research, Pearson correlation method was used to

identify the outliers that had no correlation at all, and then imputation methods were applied including the novel SDDI

algorithm, KNN, F&B-Fill, Mean and Mode methods. The resulting imputed data was trained on XGBoost algorithm and

evaluated via RMSE, accuracy (%), computation time, and average correlation. The results showed that the novel SDDI

algorithm was on par with the other methods.
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The study also identified the most significant parameters in determining 5G QoS and therefore, to evaluate the

potential of selected features for QoS prediction suitability, XGBoost’s two variants were applied with excellent accuracies

of 90% and 93%. RMSE results were observed to be both very close to zero and therefore, successful.

The results from this research hold promising implications for the wireless communication sector, particularly in the

context of 5G QoS parameter selection and prediction. The methodological advancements presented in this study offers

alternative imputation method in imputing datasets, offering valuable insights into application of statistical, low compute

cost and strategic algorithms in the Data Science and ML domains.

Future research could focus on further application of the proposed imputation method (SDDI method) by testing it on

various other datasets and comparing its performance across various domains. Investigating its adaptability to different

types of missing data scenarios, will open up even more insights of the efficacy of the said technique.
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