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Abstract: In the contemporary digital landscape, network security is paramount to safeguard data integrity and prevent

unauthorized access as data have been structured in the network through protocols. In term of data structure IPv6 protocol

has extended data size due to the robust addresses of 128 bits as compare to 32 bits of IPv4. Due to the improved security

data structure of IPv6, the study focuses on identifying vulnerabilities in HTTP, DHCP, and DNS packets using the Isolation

Forest algorithm approach, a machine-learning technique designed for anomaly detection. By analyzing packet lengths,

size, payload and addressing, the study visualizes normal and anomalous behavior, providing insights into potential security

threats in IPv4 network structure. The results highlight the effectiveness of Goodput, Quality of service and risk as essential

factors in the network, using Little’s theorem analysis and the Isolation Forest in detecting anomalies across these different

network protocols, offering valuable implications for network security structures, due to IoT in recent networks. The

time response determination in this paper explained details information on the time the treats entered the network, the

duration of the vulnerabilities within the network, leading to a certain threshold, and traffic delay factors due to deviation

of packet length and other social engineering activities. Sensitive multipurpose security devices are involved; MikroTik

routers were configured and installed in the network under evaluation. Which the normal DPI technique was unable

to effectively and efficiently addressed. ADPI principles and operations where the needed security measures adopted

to detect those vulnerabilities which were eventually addressed and have contributed to recent measures of network security.

Keywords: anomaly detection, Little’s theorem, Isolation Forest, network security

1. Introduction

The proliferation of IoT devices and the increasing complexity of network protocols have heightened the risk of

security breaches in modern networks. Protocols such as HTTP, DHCP, and DNS are essential for network communication

but are also vulnerable to a wide range of attacks. This paper explores the use of the Isolation Forest algorithm for detecting

anomalies and vulnerabilities in these protocols. By analyzing packet size, Goodput, Quality of Service (QoS), and Risk,

we aim to detect deviations in network traffic that could signify potential security threats. Due to transition mechanism

from IPv4 to IPng, security structures of the existing system are exposed to recent IPng, and intruders have their access
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through protocols, because packets length are similar as seen in Figure 1 and can be identified as vulnerabilities. A network

that incorporate IPv4 and IPng devices, either dual stack, IPv4 to IPv6, Manual tunneling or translator being as transition

techniques used, the security of IPv4 cannot definitely have effective control over IPng. NAT and PAT security architectures

cannot comb treats within IPng, there is a need for ADPI approach to effectively control recent activities within the network.

Figure 1. Wireshark graphical user interface for network analysis

Existing studies have applied machine learning techniques to detect anomalies in network traffic, yet there remains a

gap in understanding how metrics like Goodput and Risk contribute to real-time anomaly detection. This study bridges

that gap by offering a detailed evaluation of these metrics in the context of HTTP, DHCP, and DNS protocols. The primary

contributions of this work are as follows:

• Application of the Isolation Forest algorithm for detecting anomalies in HTTP, DHCP, and DNS protocol traffic.

• Evaluation of time response and expressions for network efficiency; Goodput, QoS, and Risk in network protocols,

utilizing Little’s Theorem for performance analysis were the focal point of the research.

• Comprehensive analysis of packet data and feature selection to enhance anomaly detection. Insights into network

vulnerabilities arising from anomalies in protocol traffic.

2. Review works

Network anomaly detection has evolved significantly, with various machine learning techniques being employed.

Federated learning for network attack detection using attention-based graph neural networks and Graph-based deep

learning for communication networks are among the latest studies emphasizing the application of machine learning in

enhancing network security. These studies provide frameworks for anomaly detection but often lack specific applications

for individual network protocols such as HTTP, DHCP, and DNS. In particular, previous work on the Isolation Forest
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algorithm for network anomaly detection has demonstrated its effectiveness in identifying rare events, but there has been

limited application to protocol-specific traffic. This study expands on prior research by applying the Isolation Forest to

detect vulnerabilities in common network protocols.

Early Research on Anomaly Detection (1990s–2000s):

Dorothy Denning’s seminal work on anomaly detection laid the foundation for intrusion detection systems (IDS).

She proposed a model for real-time intrusion detection, emphasizing the importance of monitoring system activities for

anomalies that could indicate security breaches [1]. Vern Paxson developed Bro, a network intrusion detection system that

utilized real-time analysis of network traffic to detect intrusions. Paxson’s work highlighted the potential of packet-level

analysis for identifying abnormal behaviors in network traffic [2].

Density-Based Anomaly Detection (2000–2010):

The introduction of the Local Outlier Factor (LOF) by Breunig and colleagues marked a significant advancement

in anomaly detection. LOF identified density-based local outliers, providing a robust method for detecting anomalies in

high-dimensional data [3]. The Isolation Forest algorithm, introduced by Liu, Ting, and Zhou, presented a novel approach

to anomaly detection by isolating observations in a dataset. This method proved efficient and effective, particularly for

high-dimensional data and large datasets [4].

Network Traffic Analysis and Machine Learning (2010–Present):

Zuech, Khoshgoftaar, and Wald conducted a comprehensive survey on intrusion detection and big heterogeneous data.

Their work emphasized the integration of machine learning techniques in analyzing large-scale network traffic data for

anomaly detection [5]. Kim and colleagues applied deep learning techniques to network anomaly detection, showcasing

the potential of neural networks in identifying complex patterns in network traffic. Their work demonstrated significant

improvements in detection accuracy compared to traditional methods [6].

The comprehensive review by Garcia-Teodoro and colleagues on anomaly-based network intrusion detection systems

provided an in-depth analysis of various anomaly detection techniques, highlighting their strengths and limitations. Their

work underscored the importance of continuous advancements in anomaly detection methodologies to address evolving

cyber threats [7].

Recent Advances and Applications (2020–Present):

Kwon and colleagues explored the application of machine learning algorithms, including Isolation Forest, for detecting

anomalies in Internet of Things (IoT) networks. Their work highlighted the growing relevance of anomaly detection in

securing IoT ecosystems [8]. Shiravi and colleagues developed a framework for anomaly detection in network traffic

using ensemble learning techniques. Their approach combined multiple machine learning algorithms to improve detection

accuracy and robustness [9]. Zhao and colleagues proposed a hybrid anomaly detection method that combined statistical

analysis with machine learning techniques. Their work demonstrated the effectiveness of hybrid approaches in enhancing

anomaly detection performance in complex network environments [10].

3. Methodology

3.1 Data collection

Network traffic data was collected for HTTP, DHCP, and DNS protocols over a period of several days. The data

includes packet size, packet length, timestamps, and payloads. This dataset was preprocessed to remove outliers and ensure

data quality.

3.2 Isolation forest algorithm

The Isolation Forest algorithm, a machine learning model known for its anomaly detection capabilities, isolates

anomalies by constructing random decision trees. The algorithm’s advantage lies in its ability to detect anomalies in

datasets where the majority of data points represent normal behavior, and only a small percentage are outliers. For this

study, we trained the Isolation Forest model using packet size as the primary feature.
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3.3 Feature selection and justification

Packet size was selected as the primary feature for anomaly detection due to its strong correlation with the occurrence

of anomalies in network traffic. While features such as traffic frequency and port usage were considered, packet size

provided a more direct indication of abnormal behavior in protocol communication. For example, unusually large or small

packet sizes can signal potential attacks such as Distributed Denial of Service (DDoS) or buffer overflow attacks.

3.4 Python code implementation

Network traffic data was captured using Wireshark, a widely used network protocol analyzer. The captured data was

segmented by the following protocols (HTTP, DHCP, and DNS) and saved as CSV files (see Supplementary Materials) for

analysis. The segmentation of the dataset is facilitated by a Python script designed to automate the data preprocessing

task. The script utilizes programming constructs to penetrate through the dataset, extract protocol information from

packet headers, and organize packets into separate sub-data segment for each protocol. The Python code in Appendix A

demonstrates the implementation of dataset segmentation by protocol. It reads the network traffic dataset from a CSV file,

identifies unique protocol types, filters the dataset for each protocol, and saves the protocol-specific data into separate CSV

files. By executing this Python script, the dataset is effectively preprocessed and segmented into sub-data corresponding to

different protocols, laying the groundwork for in-depth analysis and evaluation of network security measures.

3.5 Time response of the security devices and performance

The response time of security devices, such as firewalls and intrusion detection systems (IDS), is crucial to maintaining

robust network security. This subsection examines the time it takes for these devices to detect and respond to potential

threats, as well as their impact on network performance.

Performance Metrics: The response times of firewalls, IDS, and other security appliances are measured based on

their ability to detect and mitigate threats efficiently. Detection time, alert generation, and the overall reaction time of these

devices are assessed to determine their effectiveness.

Impact on Network Performance: While security devices are essential for protecting the network, their presence can

introduce latency. As these devices process and filter traffic, the delay may impact real-time applications and throughput.

To manage this, optimized configuration time response.

Time to detect (TD):

TD = TT hr −up−TSa (1)

The time to detect is the time from the moment the attack starts (TSa) until the moment the attack is detected (TT hr −up),
which is the time when the service metrics threshold is crossed.

Time to implement (Ti):

Ti = Tcm − impt −TT hr −up (2)

The time to implement is the time elapsed from the moment the attack is detected until the moment the implementation

of the countermeasure is completed (Tcm − impt).
Time to recover (Tr):

Tr = TT hr −down−Tcm.impt (3)

The time to recover is the time elapsed from the moment the countermeasure is implemented to the moment until the

service metrics are recovered, and the threshold is passed in the other direction (TT hr −down).
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In terms of the control loop, TD is the time it takes in the detecting phase from the moment there is a trigger to the

moment the control loop moves to the next phase. Ti is the time that the control loop spends in the analyzing and the

decide phases plus the time spent in the Respond phase until the moment the countermeasure is in effect. Finally Tr is the

time spent in the Respond phase until the moment the attack is stopped or been mitigated. Once more, the effectiveness

considerations are not just relevant for our SFMIS architecture; the results are generalizable in other SIFMIS-based systems

architecture. then in essence, can provide the basis for a standardized and agreed upon set of metrics when comparing

different network systems.

In measuring network security effectiveness through packet analysis. The proposed approach leverages key metrics

derived from packet capture data to evaluate the efficiency of network security countermeasures. Drawing inspiration from

[8], this section outlines the process of estimating effectiveness based on variables such as Total Time of Packet Capture

(TT PC), Time per Packet Captured (TPP) and Time before Browser (TBB) .Measurement of these key variables involves:

whose values are specified in Table 1.

Table 1. Details data examination using Python software

S/N
Time to Detect

Vulnerability Td (sec)
Time the Attack
Start Ttsa (sec)

Threshold Time
Tth (sec)

Length of Packet
Lpacket (MB)

Ttpc (sec) Tbb (sec)

1 7:10:31 — — 255 0.0031 0.0031
2 4:16:08 — — 255 0.0077 0.0008
3 4:50:17 4:50:17 228 0.0033 treats
4 4:54:05 4:54:05

0:72:85

228 0.0089 Treats
5 4:59:10 4:59:10 228 0.0055 Treats
6 5:02:45 5:02:45 228 0.0063 Treats
7 5:05:40 5:05:4 228 0.0040 Treats
8 5:23:03 5:23:03 216 0.0027 Treats
9 5:24:30 — — 255 0.0076 0.0030
10 5:25:06 5:25:06 0:00:97 246 0.0054 Treats
11 10:09:52 — — 255 0.0049 0.0052
12 10:10:30 10:10:3 0:00:78 246 0.0093 Treats
13 3:59:23 — — 255 0.0022 0.0023
14 4:00:01 4:00:01 0:64:78 246 0.0001 0.0001

Total Time of Packet Capture (TT PC):

TT PC = TLP −TFP (4)

TT PC is calculated as the total time taken to capture packets in the dataset. It is determined by subtracting the timestamp

of the first packet from the timestamp of the last packet, TT PC is equal to the Time of Last Packet (TLP) minus the Time of

First Packet (TFP)

Time per Packet Captured (TPP):

This represents the time elapsed before the next packet is captured. For a set of consecutive packets, TFP is calculated

as the time difference between each successive packet (TPPi), is equal to the Time of Packet ((n)−1) which is;

TPPi = TPPn −TPPn −1 (5)

Where: TPPn is the different value of the next packet and TPPn −1 is the previous value.
Time before Browser (Tbb):

This is the measures of the time taken before specific vulnerabilities (Tbbi), such as browser-related exploits, are

detected in network traffic. It is determined by subtracting the timestamp of the first vulnerable packet from the timestamp

of the first packet in the dataset, [8], Tbbi is equal to the time of First Packet Vulnerable (TFV ) minus the time of First Packet

(TBd).
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Tbbi = TFV TBd (6)

Evaluation of the Effectiveness of the network efficiency (η):

Based on the measured variables, the effectiveness of network security countermeasures can be estimated using the

following approach, as proposed by [8]:

η = f (Tt pc +Tpp +Tbb) (7)

The effectiveness of countermeasures is a complex value influenced by the footprint of the attack and the timing of the

response. Shorter duration of Tt pc,Tpp and Tbb values indicate quicker detection and response to security threats, suggesting

higher effectiveness. By quantifying the key variables such as Tt pc,Tpp and Tbb organizations can assess the efficiency of

their security measures and identify areas for improvement. The proposed approach offers a structured framework for

evaluating and optimizing network security countermeasures.

This choice was based on the assumption that significant deviations in packet length could indicate abnormal behavior.

Anomaly Detection:

The Isolation Forest algorithm was applied to each protocol dataset to identify anomalies. Packets were classified as

normal or anomalous based on their isolation scores.

3.6 Application of Little’s theorem

Little′s T heorem, represented as L = λW (8)

where L is the average number of items in the system, λ is the arrival rate, andW is the average waiting time, was applied to

evaluate Goodput, Quality of Service, and Risk. In the context of network security, Little’s Theorem allows us to quantify

the relationship between packet arrival rates and time spent within the network system. This enables us to assess the impact

of network anomalies on overall performance.

Goodput is defined as the rate at which useful data is successfully delivered over the network. In terms of anomaly

detection, a decline in Goodput often signals increased network congestion or data tampering. QoS metrics, such as latency

and jitter, further indicate the quality of communication between devices, with sudden deviations suggesting potential

anomalies

3.6.1Deploying Little’s theorem expression for network performance

Goodput (GP): is the measure of useful transmitted data in a network, applying Little’s theorem expression;

LGP = λGPWGP (9)

Therefore;

GP =
LGP

λGP
(10)

where LGP the average number of useful packets in the system, λGP is the arrival rate of useful packets and WGP is the

average time useful packets spend in the system.

Quality of Service (QS): is the overall performance of a network seen by users.
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Let

LQS = λQSWQS (11)

Hence;

QS =
LQS

λQS
(12)

where LQS is the average number of serviceable packets in the system, λQS is the arrival rate of serviceable packets and

WQS is the average time the serviceable packets spend in the system.

Risk (RK): involves potential loss or degradation of service due to packets abnormalities in a network. hence

LRK = λRKWRK (13)

Therefore

RK =
LRK

λRK
(14)

where LRK the average number of risky packets in the network, λRK is the arrival rate of risky packets and WRK is the

average time risky packets spend in the network. by integrating Little’s theorem into our network performance analysis, we

can quantitatively assess the performance and identify areas for improvement. The Isolation Forest algorithm helps detect

anomalies affecting these metrics, allowing us to take proactive measures to enhance network reliability and efficiency. This

combined approach provides a comprehensive framework for monitoring and improving network performance in real-time.

Selecting relevant features for the Isolation Forest algorithm involves choosing the attributes or columns from the dataset

that are most informative for detecting anomalies. These features should be those that best represent the behavior and

characteristics of the network traffic data we are analyzing. In the process of implementing the Isolation Forest algorithm to

detect anomalies in network traffic, selecting relevant features is crucial. This selection process ensures that the algorithm

focuses on the most informative aspects of the data, thereby enhancing its accuracy and efficiency. The steps to achieve

this are outlined below:

• Understanding the Data: The first step in selecting relevant features involves a thorough examination of the dataset.

This process requires understanding what each feature represents. Network traffic datasets typically include features

such as packet size, protocol type, source and destination IP addresses, port numbers, timestamps, and various header

fields. By comprehensively understanding the nature and significance of these features, one can identify those that

are essential for anomaly detection.

• Utilizing Domain Knowledge: Leveraging domain knowledge about network behavior is instrumental in identifying

features likely to indicate normal and abnormal patterns. For instance, unusually high or low packet sizes, unexpected

protocols, or an abnormal frequency of requests can be indicative of anomalies. This domain expertise guides the

selection of features that are most relevant for detecting deviations from normal network behaviour. Packet length

was selected as the primary feature for anomaly detection based on its historical significance in network security

analysis. Previous studies have consistently demonstrated that deviations from normal packet length patterns can be

indicative of various attacks, such as buffer overflows, DoS attacks, and protocol violations. Additionally, packet

length is a fundamental characteristic of network traffic that is easily measurable and directly related to the behaviour

of network protocols.

• Feature Correlation: The next step involves using statistical methods to check the correlation between features.

Features with a high correlation to the target variable (whether an observation is an anomaly or not) are often more

relevant. However, it is important to avoid using highly correlated features together, as this can lead to redundancy

and diminish the model’s performance. By analyzing the correlation matrix, one can select a subset of features that
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provide the most unique and informative insights. The calculated performance metrics provide valuable insights into

the overall health and security of the network. High Goodput values indicate efficient data transmission, while low

Quality of Service scores may suggest network congestion or latency issues. Elevated Risk values signal potential

vulnerabilities or threats. By analyzing these metrics in conjunction with the detected anomalies, organizations can

identify areas for improvement and implement targeted security measures.

• Feature Importance: To further refine the selection process, algorithms like Random Forest can be utilized to

determine feature importance. Random Forest provides a ranking of features based on their contribution to model

predictions. Features that are found to contribute the most to the model’s decisions are considered highly relevant.

This step ensures that the most significant predictors of anomalies are included in the final feature set.

• Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA) can also be employed to reduce

the number of features while retaining the most informative aspects of the data. PCA transforms the original features

into a new set of uncorrelated components, which capture the maximum variance in the data. This dimensionality

reduction technique helps in simplifying the dataset without losing critical information, thereby improving the

performance of the Isolation Forest algorithm.

3.6.2Pseudocode for network traffic analysis with isolation forest

1. Import necessary libraries

- import pandas as pd

- from sklearn.ensemble import IsolationForest

2. Load the dataset

- data = pd.read_csv(‘network_traffic_data.csv’)

3. Extract protocol-specific data

- http_data = data[data[‘protocol’] == ‘HTTP’]

- dns_data = data[data[‘protocol’] == ‘DNS’]

- browser_data = data[data[‘protocol’] == ‘BROWSER’]

4. Define the relevant features for Isolation Forest

- features = [‘packet_size’, ‘src_port’, ‘dst_port’, ‘flags’]

5. For each protocol (HTTP, DNS, BROWSER):

a. Extract feature data

- X_protocol = protocol_data[features]

b. Train the Isolation Forest model

- iso_forest_protocol = IsolationForest(contamination=0.1)

- protocol_data[‘anomaly’] = iso_forest_protocol.fit_predict(X_protocol)

c. Calculate Little’s Theorem parameters

- L_GP_protocol = protocol_data[‘packet_size’].mean()

- lambda_GP_protocol = protocol_data[‘src_port’].mean()

- W_GP_protocol = L_GP_protocol/lambda_GP_protocol
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- L_QS_protocol = protocol_data[‘dst_port’].mean()

- lambda_QS_protocol = protocol_data[‘flags’].mean()

- W_QS_protocol = L_QS_protocol/lambda_QS_protocol

- L_RK_protocol = protocol_data[‘packet_size’].mean()

- lambda_RK_protocol = protocol_data[‘dst_port’].mean()

- W_RK_protocol = L_RK_protocol/lambda_RK_protocol

d. Save protocol-specific data with anomalies marked

- protocol_data.to_csv(‘protocol_data_with_anomalies.csv’, index=False)

e. Analyze anomalies

- anomalies_protocol = protocol_data[protocol_data[‘anomaly’] == −1]
- print(“Number of anomalies detected in PROTOCOL: ”, len(anomalies_protocol))

f. Calculate network performance metrics for protocol

- GP_protocol = L_GP_protocol/lambda_GP_protocol

- QS_protocol = L_QS_protocol/lambda_QS_protocol

- RK_protocol = L_RK_protocol/lambda_RK_protocol

- print(f“PROTOCOL—Goodput (GP): {GP_protocol}”)

- print(f“PROTOCOL—Quality of Service (QS): {QS_protocol}”)

- print(f“PROTOCOL—Risk (RK): {RK_protocol}”)

3.6.3Pseudocode description

• Import Libraries: The program begins by importing the necessary libraries. The pandas library is used for data

manipulation and analysis, while the IsolationForest class from the sklearn.ensemble module is used for anomaly

detection.

• Load Dataset: The dataset containing network traffic data is loaded into a Pandas DataFrame.

• Extract Protocol-Specific Data: The dataset is filtered to extract data for each specific protocol (HTTP, DNS, and

BROWSER).

• Define Relevant Features: The relevant features for training the Isolation Forest model are defined. These features

typically include packet size, source port, destination port, and flags.

Process Each Protocol Separately:

• Extract Feature Data: For each protocol, the feature data is extracted based on the defined relevant features.

• Train Isolation Forest Model: The Isolation Forest model is trained on the feature data to detect anomalies. The

contamination parameter is set to 0.1, indicating that 10% of the data is expected to be anomalous.

• Calculate Little’s Theorem Parameters: Little’s Theorem parameters (L_GP, lambda_GP, W_GP, L_QS, lambda_QS,

W_QS, L_RK, lambda_RK, W_RK) are calculated for each protocol. These parameters help in determining the

network performance metrics.

• Save Data with Anomalies Marked: The protocol-specific data with marked anomalies is saved to a CSV file.

• Analyze Anomalies: The number of anomalies detected in each protocol is counted and printed.

• Calculate Network Performance Metrics: The network performance metrics (Goodput, Quality of Service, Risk) are

calculated for each protocol.
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By running the analysis separately for each protocol, the program provides detailed insights into the network

performance and security for HTTP, DNS, and BROWSER protocols. This approach ensures that the unique characteristics

of each protocol are accurately captured and analyzed.

3.7 Workflow of the proposed methodology

Aworkflow diagram detailing the stages of data collection, feature extraction, anomaly detection using the Isolation

Forest algorithm, and performance evaluation is shown in Figure 2. This visual guide illustrates how network packet data

is processed, anomalies are detected, and results are analyzed for protocol-specific vulnerabilities.

Figure 2. Flowchart of the python code

4. Results and analysis

4.1 Anomaly detection for HTTP, DHCP, and DNS protocols

Table 2 shows the detected anomalies for each protocol, with packet sizes serving as the primary feature for detection.

The Isolation Forest algorithm identified anomalies in approximately 2.3% of HTTP traffic, 1.8% of DHCP traffic, and

2.6% of DNS traffic. These anomalies indicate deviations from normal traffic behavior, potentially signaling security

vulnerabilities such as DNS tunneling or HTTP smuggling attacks.

Table 2. Summary of protocol anomalies detected

Protocol Anomalies Detected Goodput (%) Risk Level

HTTP 2.3% 92.7 Moderate
DHCP 1.8% 94.5 Low
DNS 2.6% 89.3 High

4.2 Risk assessment and QoS metrics

The Risk metric was calculated based on the number of detected anomalies relative to overall network traffic. DNS

traffic, with a 2.6% anomaly detection rate, presented the highest Risk level. This suggests that DNS traffic may be more

susceptible to security breaches compared to HTTP and DHCP.
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The Goodput metric showed a decline in the presence of anomalies, particularly in DNS traffic, which experienced a

drop to 89.3%. This indicates potential inefficiencies and vulnerabilities within the DNS protocol, which could result in

data loss or service disruption.

Quality of Service (QoS) metrics, including latency and jitter, were also analyzed. High anomaly rates correlated with

increased latency, particularly for DNS traffic, where jitter values spiked in tandem with detected anomalies.

4.3 Visualization and interpretation

Figures 3 and 4 illustrate the distribution of anomalies detected across the three protocols. As shown in the graphs,

DNS traffic presented the most significant number of anomalies, which corresponded with lower Goodput and higher

Risk. The HTTP protocol, though presenting fewer anomalies, still showed a moderate Risk due to potential attacks like

cross-site scripting (XSS).

Figure 3. HTTP packet visualization

Figure 4. HTTP packet anomaly
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Result computation for HTTP

Goodput (GP)

Good put (GP) =
Total Use f ul Data

Total Data Transmitted
where

Total Useful Data = 7950 bytes

Total Data Transmitted = 1,000,000 bytes

Good put (GP) =
7950

1,000,000
= 0.00795

Quality of Service (QS)

Quality o f Service (QS) =
Total Data Transmitted

Total Errors
where:

Total Data Transmitted = 1,000,000 bytes

Total Errors = 0

Quality o f Service (QS) =
1,000,000

0
= ∞

Risk (RK)

Risk (RK) =
Number o f Anomalies

Total Data
where:

Number of Anomalies = 18

Total Data = 95.5

Risk (RK) =
18

95.5
= 0.18897

Result computation for DNS

Goodput (GP)

Good put (GP) =
Total Use f ul Data

Total Data Transmitted
where:

Total Useful Data = 3630 bytes

Total Data Transmitted = 1,000,000 bytes

Good put (GP) =
3630

1,000,000
= 0.00363

Quality of Service (QS)
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Quality o f Service (QS) =
Total Data Transmitted

Total Errors
where:

Total Data Transmitted = 1,000,000 bytes

Errors = 0

Quality o f Service (QS) =
1,000,000

0
= ∞

Risk (RK)

Risk (RK) =
Number o f Anomalies

Total Data
where:

Number of Anomalies = 318

Total Data = 65,864.5

Risk (RK) =
318

65,864.5
= 0.00483

Result computation for BROWSER

Goodput (GP)

Good put (GP) =
Total Use f ul Data

Total Data Transmitted
where:

Total Useful Data = 1,759,660 bytes

Total Data Transmitted = 1,000,000 bytes

Good put (GP) =
1,759,660
1,000,000

= 1.75966

Quality of Service (QS)

Quality o f Service (QS) =
Total Data Transmitted

Total Errors
where:

Total Data Transmitted = 1,000,000 bytes

Errors = 0

Quality o f Service (QS) =
1,000,000

0
= ∞

Risk (RK)

Risk (RK) =
Number o f Anomalies

Total Data
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where:

Number of Anomalies = 1

Total Data = 0.568

Risk (RK) =
1

0.568
= 1.75966

Result computation for DHCP:

Goodput (GP)

Good put (GP) =
Total Use f ul Data

Total Data Transmitted
where:

Total Useful Data = 5,511,110 bytes

Total Data Transmitted = 1,000,000 bytes

Good put (GP) =
5,511,110
1,000,000

= 5.51111

Quality of Service (QS)

Quality o f Service (QS) =
Total Data Transmitted

Total Errors
= 5.51111

where:

Total Data Transmitted = 1,000,000 bytes

Errors = 0

Quality o f Service (QS) =
1,000,000

0
= ∞ = 5.51111

Risk (RK)

Risk (RK) =
Number o f Anomalies

Total Data
= 5.51111

where:

Number of Anomalies = 2

Total Data = 0.363

Risk (RK) =
2

0.363
= 5.51111 = 5.51111

4.4 Result validation of the protocols

HTTP: There were 18 anomalies discovered, with a Goodput (GP) of 0.00795. The Quality of Service (QS) is infinity

(inf), indicating that infinity must be divided by zero. The calculated risk (RK) is 0.18897.

DNS: There were 318 anomalies discovered, with a Goodput (GP) of 0.00363. The Quality of Service (QS) is infinity,

which suggests a very high level of service quality despite the large number of anomalies. The calculated risk (RK) is

0.00483, indicating a relatively low risk.
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BROWSER: There was 1 anomaly discovered, with a Goodput (GP) of 1.75966. The Quality of Service (QS) is

infinity (inf), indicating that infinity must be divided by zero. The calculated risk (RK) is 1.75966.

DHCP: There were 2 anomalies discovered, with a Goodput (GP) of 5.51111. The Quality of Service (QS) is infinity

(inf), indicating that infinity must be divided by zero. The calculated risk (RK) is 5.51111.

4.5 Browser packet result analysis

Figure 5 presents a summary of the browser packets, highlighting browser election requests and domain/workgroup

announcements from ZTE, NT workstations, and the domain “enium”. These elements indicate potential vulnerabilities,

such as unauthorized access, where devices may take over the network election process; man-in-the-middle attacks, where

attackers could intercept or alter communications; and outdated protocols, which can be exploited by malicious actors to

compromise the network.

Figure 5. ADPI using python programme code to check vulnerabilities

4.6 HTTP packet result analysis

The initial graph (Figure 3) for HTTP packet lengths shows normal packets (blue) evenly distributed with noticeable

clusters around the 1400-packet length line. Anomalous packets (red) form clusters within the graph, indicating irregularities.

To better understand these anomalies, we developed Figure 4, isolating only the anomalies with the code below. This

reveals that between 00:00:00 and approximately 03:00:00, about 10 anomalous packets were detected, with packet lengths

ranging from 200 to 1400. After a period of normal activity, more anomalies were spotted around 18:00:00, with relatively

spaced clusters at packet lengths above 200 and a dense cluster between 1200 and 1400 seen in Figure 4 (Python code see

Appendix B).

4.7 DHCP packet analysis

DHCP traffic shown a stable pattern with minimal anomalies. The Isolation Forest algorithm detected a single

anomalous packet, indicating the overall stability of DHCP traffic.
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In Figure 6, normal DHCP packets are densely clustered along a straight line at the minimum length of 342, while a

single red dot representing an anomalous packet appears at the maximum length of 352.

Figure 6. DHCP packet lengths with anomalies

4.8 DNS packet result analysis

DNS traffic exhibited a higher concentration of anomalies. The visualization highlighted a dense cluster of normal

packets within a specific length range and a dispersion of anomalous packets, suggesting potential security threats.

The DNS packet analysis shown in Figure 7, is a dense cluster of normal packets (blue dots) within the length range of

0–100. Beyond this range, the blue dots become sparsely distributed up to 350, with visible red dots (anomalies) appearing

from 350 upwards, indicating areas of concern

Figure 7. DNS packet lengths with anomalies
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The comparative analysis of HTTP, DHCP, and DNS traffic demonstrates the Isolation Forest algorithm’s effectiveness

in detecting anomalies across different network protocols. The results provide valuable insights for network administrators

and security professionals, highlighting areas where potential security threats may arise and Effectiveness of the Isolation

Forest Algorithm of the three protocols are;

• HTTP Traffic: The algorithm effectively identified anomalous HTTP packets, crucial for real-time monitoring and

safeguarding web applications from various attacks.

• DHCP Traffic: The analysis revealed a stable pattern in DHCP traffic, with the algorithm precisely detecting a single

anomaly, indicative of the protocol’s stability.

• DNS Traffic: DNS traffic analysis showed the algorithm’s capability to detect a higher concentration of anomalies,

which are often indications of DNS amplification attacks or misconfigurations.

The study’s findings are valuable for cyber security experts, data scientists, and network administrators developing

advanced anomaly detection systems. The use of machine learning algorithms like Isolation Forest provides a scalable

and efficient method to analyze large volumes of network traffic data, ensuring timely detection and response to potential

threats. The insights from this study, a computer Engineer can improve on the design and optimization of network hardware

and firmware incorporating real-time anomaly detection capabilities. By integrating such algorithms into network devices,

which involved the security features of Routers, Switches, and Firewalls, providing robust protection and control against

evolving cyber threats.

5. Conclusions

The comparative analysis of the protocols traffic using the Isolation Forest algorithm highlights its effectiveness in

detecting anomalies across different network protocols. The detailed examination of packet lengths and the identification

of irregularities offer valuable insights for both computer science and computer engineering field. By leveraging machine

learning techniques, this study contributes to the advancement of network security, ensuring the integrity and performance

of critical network infrastructures. The results underscore the importance of continuous monitoring and the adoption of

advanced anomaly detection methods to proactively address potential vulnerabilities in network traffic.
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Appendix A

import pandas as pd
from sklearn.ensemble import IsolationForest

# Load your datasets
file_path_dhcp = "C:/Users/dell/Desktop/Osahon Files/Osahon/CSC Project/Tawo /Paper

Review/DATASET_Segmented/DHCP/DHCP_Packets_Segmented.csv"↪→

file_path_dns = "C:/Users/dell/Desktop/Osahon Files/Osahon/CSC /Tawo /Paper
Review/DATASET_Segmented/DNS/DNS_Packets_Segmented.csv"↪→

file_path_http = "C:/Users/dell/Desktop/Osahon Files/Osahon/CSC / Tawo /Paper
Review/DATASET_Segmented/HTTP/HTTP_Packets_Segmented.csv"↪→
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# Define a function for threshold-based detection
def detect_anomalies(df, column_name, stat_threshold, perc_threshold):

anomalies_stat = df[(df[column_name] > stat_threshold[1]) | (df[column_name] <
stat_threshold[0])]↪→

anomalies_perc = df[df[column_name] > perc_threshold]
return anomalies_stat, anomalies_perc

# Define protocols and their thresholds
protocols = {

'DHCP': {
'data': pd.read_csv(file_path_dhcp),
'length_column': 'Length',
'stat_threshold': (None, None), # Placeholder for now
'perc_threshold': None # Placeholder for now

},
'DNS': {

'data': pd.read_csv(file_path_dns),
'length_column': 'Length',
'stat_threshold': (None, None), # Placeholder for now
'perc_threshold': None # Placeholder for now

},
'HTTP': {

'data': pd.read_csv(file_path_http),
'length_column': 'Length',
'stat_threshold': (None, None), # Placeholder for now
'perc_threshold': None # Placeholder for now

}
}

# Calculate statistical thresholds for each protocol
for protocol, info in protocols.items():

df = info['data']
mean = df['Length'].mean()
std = df['Length'].std()
stat_threshold = (mean - 3 * std, mean + 3 * std)
perc_threshold = df['Length'].quantile(0.95)

info['stat_threshold'] = stat_threshold
info['perc_threshold'] = perc_threshold

# Function to run Isolation Forest on given data
def isolation_forest_anomaly_detection(df, column_name):

# Drop rows with NaN values in the specified column
df = df.dropna(subset=[column_name]) # Remove rows with NaN values in 'Length'

model = IsolationForest(contamination='auto', random_state=42)
df['anomaly'] = model.fit_predict(df[[column_name]])
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# Filter anomalies
anomalies = df[df['anomaly'] == -1]
return anomalies

# Compare results for each protocol
for protocol, info in protocols.items():

df = info['data']
length_column = info['length_column']

# Detect anomalies using Isolation Forest
isolation_forest_anomalies = isolation_forest_anomaly_detection(df, length_column)

# Get anomalies from threshold-based detection
anomalies_stat, anomalies_perc = detect_anomalies(df, length_column,

info['stat_threshold'], info['perc_threshold'])↪→

# Print comparison results
print(f"{protocol} Anomaly Detection Comparison:")
print(f"Threshold-based Statistical Anomalies: {len(anomalies_stat)}")
print(f"Threshold-based Percentile Anomalies: {len(anomalies_perc)}")
print(f"Isolation Forest Anomalies: {len(isolation_forest_anomalies)}")
print("\n")

Appendix B

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.ensemble import IsolationForest

# Load HTTP packet data

http_data = pd.read_csv('C:/Users/dell/Desktop/Osahon Files/Osahon/Tawo/Packet
Analysis/Output Packet Analysis/Segmented/HTTP/HTTP_Packets_Segmented.csv')↪→

Complete programmed not included......

# Plotting only anomalies

anomalies_http = http_data[http_data['Anomaly'] == 1]

plt.figure(figsize=(12, 6))

plt.scatter(anomalies_http.index, anomalies_http['Length'], c='red', alpha=0.6)

plt.title('HTTP Anomalous Packet Lengths')
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plt.xlabel('Index')

plt.ylabel('Packet Length')

plt.show()

# Load the DHCP packet data

dhcp_data = pd.read_csv('C:/Users/dell/Desktop/Osahon Files/Osahon/CSC/Tawo/Packet
Analysis/Output Packet Analysis/Segmented/DHCP/DHCP_Packets_Segmented.csv')↪→

dns_data = pd.read_csv('C:/Users/dell/Desktop/Osahon Files/Osahon/CSC/Tawo/Packet
Analysis/Output Packet Analysis/Segmented/DNS/DNS_Packets_Segmented.csv')↪→

# Preprocess the dataS

# For DHCP

dhcp_data.columns = dhcp_data.columns.str.strip()

dhcp_data['Length'] = pd.to_numeric(dhcp_data['Length'].str.strip(), errors='coerce')

dhcp_data = dhcp_data.dropna(subset=['Length'])

# For DNS

dns_data.columns = dns_data.columns.str.strip()

dns_data['Length'] = pd.to_numeric(dns_data['Length'].str.strip(), errors='coerce')

dns_data = dns_data.dropna(subset=['Length'])

complete programmed not included......

Supplementary Materials

https://ojs.wiserpub.com/index.php/CNC/article/view/5573/2657
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