
Computer Networks and Communications

https://ojs.wiserpub.com/index.php/CNC

Research Article

Estimating Throughput in Optical Backbone Networks Using Deep

Neural Networks

Alexandre Freitas1 , João Pires2*

1Department of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa, Portugal
E-mail: jpires@lx.it.pt

Received: 1 November 2024; Revised: 19 December 2024; Accepted: 6 January 2025

Abstract: Optical backbone networks, which use optical fibres as the transmission medium, form the core infrastructure

used by network operators to deliver services to users, as well as by Internet companies to route traffic between data centres.

The network throughput is a key parameter in the analysis of the networks’ performance. However, its determination

can be a complex process that involves long computation times, since aspects related to both the physical and network

layers need to be accounted for. To face this challenge, we propose a machine learning solution: a deep neural network

(DNN) model, that has the goal of estimating the values of the network throughput and of a closely related parameter,

average channel capacity, accurately and with short computation times. The simulation results indicate that the DNN

model accurately predicts both outputs, with mean relative errors of 6.17% for the network throughput and 2.84% for the

average channel capacity. These predictions are made in just a few milliseconds, providing a significant advantage over

the heuristic routing algorithms, which can take up to tens of seconds in larger networks.
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1. Introduction

Recent years have seen a sustained increase in data traffic, a trend expected to persist as bandwidth-intensive services

continue to expand. Key drivers of this growth include video streaming, social media, cloud computing, and advancements

in technologies such as 5G and artificial intelligence applications. This growing traffic places considerable pressure on the

networks of telecommunications operators, particularly in the backbone segments, making the design of future optical

networks, which are the fundamental infrastructure for delivering these services, a significant challenge [1, 2].

Optical networks are communication infrastructures, typically owned by telecommunication operators (telcos) or

Internet companies, that use light signals transmitted through optical fibres to efficiently transfer data over long distances at

huge bit rates. The enormous bandwidth of optical fibres enables the simultaneous transmission of multiple optical signals

(also referred to as optical channels), each operating at a unique wavelength, over a single fibre. This technique is called

wavelength division multiplexing (WDM). The fibre bandwidth is divided into optical bands according to established

standards, with the C-band being the most widely used. The number of optical channels that can be carried over an optical

fibre is typically limited to about one hundred when utilizing the named extended C-band, which has a bandwidth of
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around 4800 GHz. This limitation may cause traffic blocking if no additional channels are accessible to route new traffic

demands. This problem can be overcome by employing other optical bands beyond the C-band, as well as space-division

multiplexing techniques, such as using multiple optical fibre pairs per link rather than just one, as is typical [3].

Network throughput is a key performance metric for optical networks, describing the rate at which data is successfully

transmitted. It is equivalent to network capacity in the absence of traffic blocking. This capacity is defined as the maximum

amount of data the network can transfer across all its nodes per unit of time and is closely tied to the concept of channel

capacity, as introduced by Claude Shannon in 1948 [4].

To estimate the optical network capacity, it is necessary not only to determine the optical channel capacity, which is

related to physical layer aspects including the characteristics of optical fibers, but also to consider topological aspects,

traffic demands, routing, as well as wavelength and modulation assignment.

The estimating of optical channel capacity has been the focus of many studies, with some relying on accurate numerical

simulations [5] and others on analytical models [6, 7].

Similarly, the topic of optical network capacity and network throughput have also received considerable attention. In

[8], the authors presented an algorithm to maximize the througput of an optical network in the presence of physical layer

impairments. The algorithm was based on an integer linear program (ILP) and aimed to optimize routing, wavelength

assignment, and other system parameters. An alternative approach to capacity estimation, which used a heuristic algorithm

for routing and wavelength assignment instead of the ILP was presented in [9]. To study the impact of network topology

on network throughput, [10] introduced a new graph model based on the Barabási-Albert model. This modified version

includes physical layer aspects and has been shown to outperform classical models in maximizing network throughput.

Additionally, a framework was proposed to explore the relationship between various topological parameters and network

performance metrics, including network capacity [11]. This framework offered important insights into the critical factors

that affect network capacity. Our recent work, [12], also addresses the issue of optical backbone network capacity. In this

study, we evaluated the impact of topological and physical aspects on network capacity. For this purpose, we generated a

set of random graphs that accurately describe real optical backbone networks and developed appropriate routing strategies.

This framework is also used in the present work as a simulator, enabling the generating of adequate datasets.

The estimation of optical backbone network capacity, even when using analytical methods to deal with channel

capacity, faces the challenge of long computation times, particularly for large-scale networks [13]. Given the computational

advantage of machine learning (ML) techniques in solving complex problems, it makes sense to explore their utilization

to address this issue. These techniques have been used extensively in the context of optical networking (see [14] and

references therein). Among different ML techniques, neural networks, and more specifically deep neural networks (DNNs),

which are neural networks with multiple hidden layers of units (neurons) between the input and output layers, have been

proven to achieve better results in various contexts [15, 16, 17]. In particular, [15] demonstrated that DNNs exhibit superior

generalization capabilities compared to traditional MLmodels, such as XGBoost and others. Additionally, [16] showed that

DNNs achieve higher prediction accuracy in optical fibre design compared to XGBoost and random forests (RF). Similarly,

[17] highlighted the advantages of NNs in optical network design over RF and logistic regression in regression operations.

Furthermore, to deal with regression problems, such as network capacity estimation, it has been shown that neural networks

with at least one hidden layer can approximate any continuous function with any desired degree of accuracy, provided

they have enough neurons [18]. This makes them well-suited for problems characterized by particularly complex data

relationships.

DNNs have been the focus of many applications in the field of optical networks, including quality of transmission

prediction [19], optical signal-to-noise ratio monitoring [20], and routing and spectrum assignment [21]. However, to the

best of the authors’ knowledge, they have not yet been applied specifically to network throughput studies.

In this paper, we propose the utilization of DNN techniques to address the problem of estimating the throughput of

optical backbone networks, as well as the average channel capacity, assuming a uniform traffic demand pattern between all

network nodes. To train the DNN model, a dataset of 15,245 random networks was generated using the tool described in

[12]. The estimation capabilities of the model are very good for network sizes included in the training dataset, but it finds

it difficult to generalize and provide accurate results for network sizes outside this range.
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The remainder of this paper is organized as follows: Section 2 provides an overview of key aspects of network

modelling and random network generation. Section 3 introduces the proposed DNN model. Section 4 discusses simulation

results and highlights the model’s accuracy. Finally, Section 5 concludes the paper.

2. Networking aspects

2.1 Network modelling

In our analysis, we assume that the optical backbone networks are transparent, meaning that optical signals are

transmitted from the source to the destination without conversion to electrical signals, maintaining their optical nature

throughout the entire network. Therefore, in these networks, all node functionalities (such as multiplexing, switching,

routing, etc.) take place in the optical domain, and the node structure is based on reconfigurable optical add-drop

multiplexers (ROADMs). The ROADM is responsible not only for locally adding and dropping optical channels but also

for performing optical bypassing by switching optical channels from the incoming to the outgoing optical links. In terms of

switching paradigms, an optical network can be seen as a circuit-switched network, where the circuits correspond to optical

channels and ROADMs serve as circuit switches. An optical link is a physical interconnection between two adjacent nodes,

consisting of a pair of optical fibres to support bidirectional traffic. The link also includes optical amplifiers strategically

placed to compensate for fibre losses. Each optical fibre carries WDM signals, comprising multiple optical channels, with

each channel defined by its unique wavelength. The reliance on wavelengths set optical networks apart from electrical

ones, making the wavelength assignment a key design problem in the former. The count of optical channels in a single link,

termed as Nch, is determined by the channel frequency spacing, which in this work is assumed be equal to the baud rate Rs,

and the bandwidth of the optical amplifier, which we consider to be equal to the bandwidth of the C-band (4800 GHz).

An optical network can be modelled as an undirected weighted graph G(V,E), where V = {v1, . . . , vN} is a set of

nodes and E = {e1, . . . , eK} is a set of links, with N = |V | being the number of nodes, and K = |E| being the number of
links. Each link (vi,v j) ∈ E is characterized by two attributes: (i) li, j the length of the link in kilometres between the nodes
vi and v j; (ii) ui, j, the link capacity, expressed as the number of channels Nch.

Besides N and K, other important parameters of a graph G include the node degree δ (G), the network diameter d(G),

and the algebraic connectivity a(G). δ (G) indicates the number of links connected to a given node, d(G) represents the

length of the longest shortest path between any two nodes, while a(G) is the second smallest eigenvalue of the Laplacian

matrix L, which is a N ×N matrix whose elements are given as [22]

Li, j =


δ (vi) if i = j
−1 if vi is adjacent to v j, i 6= j

0 otherwise

(1)

where δ (vi) denotes the degree of node vi. Algebraic connectivity provides valuable structural information about network

connectivity and robustness and, in this way, complements other metrics like degree and diameter. Furthermore, as shown

in [11] the algebraic connectivity is strongly correlated with the network’s capacity.

In the context of DNNs, large datasets are required for training and testing the model. Due to the unavailability

of network monitoring data or experimental data, we rely on synthetic datasets. To address this, we generated a large

number of network topologies using random graphs designed to accurately represent the characteristics of real-world

optical networks. In [12], we presented a tool we developed for generating random networks suitable for modelling optical

backbone networks. The tool is based on a modified Waxman model and is capable of generating networks resilient to

single-link failures. This model works by dividing a two-dimensional (2D) square plane with area A = L2, where L is

the side length of the plane, into a set of regions. In the first step of the process, N nodes are randomly placed within

these regions. In the subsequent steps, nodes are interconnected with links both within each region and across different

regions according to the Waxman probability, subject to certain constrains on node degree and λ-connectivity, where λ
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represents the maximum number of link disjoint paths between two nodes. The Waxman probability is characterized by the

parameters α and β , both within the range [0,1], with α influencing the link length and β controlling the link density [23].

2.2 Traffic, RWA and network throughput modelling

Network throughput is closely related with network capacity, which is defined as the maximum amount of data that

can be transferred across all network nodes in a given period of time. This capacity depends on various network properties,

such as the physical and logical topology, physical parameters, link capacity, node structure, routing, and wavelength

assignment, etc. The physical topology defines the interconnection pattern of nodes and is represented by the graph G(V,E).
A key step in evaluating network capacity is defining the logical topology, which describes the profile of traffic demands

between nodes. This profile is defined by the demand matrix D = [ds,t ], which is a N ×N matrix, where each entry ds,t

represents the number of traffic demands between source node s and termination node t with s, t ∈V . In this analysis, we
assume a uniform demand profile of ds,t =1 for all node pairs, corresponding to a full-mesh logical topology in which each

node is logically connected to every other node in the network.

For each traffic demand ds,t , it is necessary to find a lightpath πs,t in the physical topology between each pair of nodes

and assign a wavelength to this path. This operation is known as routing and wavelength assignment (RWA). Given that

there are multiple paths between each pair of nodes, the routing objective is to determine the shortest path using a heuristic

such as Dijkstra’s algorithm. The shortest path is the one that minimizes the total path length, defined as the sum of the

lengths of all the links traversed by the path, represented as l (πs,t) = ∑i, j li, j. Furthermore, the wavelength assignment
must ensure that the same wavelength is used for all the links traversed by the lightpath to maintain continuity, and that no

two lightpaths can share the same wavelength on a single link. Each lightpath is physically established using an optical

channel characterized by its wavelength λk and capacity Cch,k, specifically for the case of channel k = (s, t). Note that
k ∈ S, where S = {1, 2, . . . ,N(N −1)} is the set of channels required to implement a logical full mesh topology.

By knowing the path length l (πk) , it is possible to compute the maximum capacity Cch,k of the corresponding optical

channel, also known as the Shannon capacity, given in bits per second. This calculation makes use of the optical reach

values of the lightpath (see Table 2 of [12]), where optical reach is defined as the maximum path length that can achieve a

specified capacity, assuming a baud rate of 64 Gbaud.

Having in mind that the total bandwidth available per link is 4800 GHz, we arrive at the maximum of 75 optical

channels per link (Nch.max = 75) for a baud rate of 64 Gbaud. This limitation in link capacity can result in traffic demand
blocking when no free optical channel is available on at least one of the links traversed by the lightpath. By applying a

constrained routing algorithm along with a first-fit wavelength assignment [12, 24] (see Algorithm 1 in the Appendix), we

obtain the matrix of established paths, Π = [πk] , and the matrix of blocked paths, B = [bk], where

bk =

{
1 if path πk is blocked

0 otherwise.
(2)

This allows us to determine the average blocking ratio, given by

BR = ∑
k∈S

bk/N(N −1). (3)

According to the previous discussion, network capacity can be redefined as the maximum amount of data that the

entire network can transfer across all optical channels simultaneously, per unit of time. It can therefore be calculated by

summing the capacities of all optical channels in the set S, giving

Cnet = ∑
k∈S

Cch,k. (4)
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Another important metric in our study is the network throughput. This metric describes the actual data rate achieved

across the entire networks, but taking into account real operating conditions, such as the presence of blocking. Consequently,

we define network throughput in the following way:

Tnet =Cnet
(
1−BR

)
. (5)

An additional metric for network analysis is the network-wide average channel capacity, defined as [25]

Cch =
∑k∈S Cch,k

∑k∈S γk
(6)

where γk denotes the expected utilization ratio of channel k. For the sake of simplicity, it is assumed that γk = 1 for all
channels. As a result, the sum in the denominator of (6) equals the total number of paths in the network, which for a

full-mesh logical topology, amounts to N(N −1). With this simplification, the average channel capacity reduces to

Cch =Cnet/N(N −1). (7)

3. Neural network design

3.1 Model

A four-layer neural network is used to implement the model used in this study. The first layer is the input layer, the

second and third layers are hidden layers, and the fourth layer is the output layer. A schematic diagram of this model is

depicted in Figure 1. Mathematically, the set of input features is described by the vector X = [x1, x2 . . . ..xn] and the set of

outputs by the vector Y = [y1, y2] where y1 and y2 denote the predicted value for the network throughput (Tnet ) and average

channel capacity (Cch), respectively. Furthermore, to characterize the model it is necessary do define the weight matrices:

• W1, between the input layer and the first hidden layer with size (n, m1) ,

• W2, between the first hidden layer and second hidden layer with size (m1,m2) ,

• W3, between the second layer and the output layer with size (m2,2) .

As well as the bias vectors:

• b1, for the first hidden layer with size (1, m1),

• b2, the second hidden layer with size (m1,m2),

• b3, for the output layer with size (1,2).

To learn complex patterns in data, the input-output relationships in the hidden layers of a DNN must be non-linear. In

this work, this non-linearity is achieved through activation functions such as the ReLU (Rectified Linear Unit) function,

defined as

g(x) = max(0, x). (8)

For the output layer, a linear activation function is instead used, given by
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f (x) = x. (9)

Note that both these activation functions are typically used in regression problems [14, 26].

Figure 1. Model of a neural network with 2 hidden layers

3.2 Training neural networks

The training of neural networks involves determining the values of allW matrices and bias vectors that minimize a

given loss function using an appropriate iterative method (optimizer algorithm).

In the training process, a dataset consisting of features (vector X) and labels (vector Y ) is split into three subsets: a
training set, a validation set, and a test set. The training set is used by the model to learn by adjusting its internal parameters

(weights and biases) in order to minimize a loss function. The validation set permits an unbiased evaluation of the model’s

fit on the training data while tuning various model parameters, also known as hyperparameters. Finally, the test set is used

to evaluate the performance of the optimized trained model on the previously unseen data. Before the data is split into

these three sets, it needs to be pre-processed and shuffled. Data pre-processing consists in preparing the data to make it

more suitable for the training process.

The loss function measures the difference between the value predicted by the neural network (NN) and the actual

value. In other words, it quantifies the error in the model’s predictions. For regression problems, the Mean Squared Error

(MSE) is normally used [26]. The MSE can be written as

MSE =
1
M

M

∑
i=1

(ŷi − yi)
2

(10)

where M is the number of data values being considered, ŷi are the estimated values and yi are the actual values.

The optimizer algorithm determines how the weight matrices and bias vectors are adjusted during training. Common

optimizers include the Stochastic Gradient Descent (SGD) and the Adaptive Momentum Estimation (Adam). Updating

the network parameters requires computing the gradient of the loss function, a task performed by the backpropagation

algorithm [27]. The backpropagation algorithm is used in neural networks to calculate the gradient of the loss function

with respect to the network’s weights and biases by applying the chain rule of calculus and propagating the loss backward

from the output layer to the input layer. The resulting gradients, which indicate the direction and rate of change of the

loss function, guide the optimizer algorithm in iteratively adjusting the weights and biases. An important parameter of the

optimizer is the learning rate, which determines the magnitude of the updates applied to the weights and biases during each

iteration.

Optimizing the hyperparameters is an essential part of training a NN. Hyperparameters are the variables that control

how the model learns from the data. These include the number of hidden layers, the number of hidden units, and the
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learning rate. During the training, different combinations of hyperparameters are tested to find the one that results in the

best performance on the validation set.

In this work, the performance of the model on the validation set is assessed using two metrics: the R2 score and the

Mean Relative Error (MRE). The first metric is defined as

R2 = 1− ∑
M
i=0 (yi − ŷi)

2

∑
M
i=0 (yi − yi)

2 (11)

where yi represents the actual value, ŷi represents the predicted value, y is the mean of the actual values, and M is the

number of data values being considered. The R2 score ranges from 0 to 1, where a value of 1 indicates perfect fit of the

model to the data, and a value of 0 indicates no fit at all. Therefore, the closer the R2 score is to 1, the better the model is

performing [28].

TheMRE is the average of the relative errors between the predicted and actual values. A lowerMRE indicates a better

performance of the model on average [29]. It is defined as follows:

MRE =
1
M

M

∑
i=0

∣∣∣∣yi − ŷi

yi

∣∣∣∣ . (12)

The strategy employed for the hyperparameter tuning process in this work was the Grid Search method [30]. In this

method, each hyperparameter is assigned a predefined list of discrete values (called a search space) and every possible

combination of these values is tested, with the validation set results being evaluated through (11) and (12). The values that

yield the best performance are then selected.

Through the hyperparameter tuning process, the structure of the DNN was defined (see Figure 1). The model that

achieved the best performance on the validation set consists of two hidden layers, each with 10 units (m1 = m2 = 10). The
learning rate optimization resulted in a value of 0.01. This model structure and learning rate achieved relatively high R2

scores (0.9773 for y1 and 0.9792 for y2) and low mean relative errors (0.0598 for y1 and 0.0294 for y2). Additionally, the

model has a relatively low number of trained parameters (the total number of weights and biases), with 262 parameters,

offering a good balance between complexity and performance. The optimizer algorithm chosen was the SGD.

A possible application of the developed DNN model is in optical network planning tools, allowing for a quick

estimation of network throughput in various scenarios characterized by multiple factors, such as network topology, traffic

demands, and physical limitations, to support the design and optimization of optical networks. In the following section, we

will see that each network instance can be analysed in time intervals on the order of a few milliseconds.

4. Simulations and discussion

4.1 Simulation parameters

To train the DNN model, a dataset of 15,245 networks was used. These networks were generated using the tool

described in [12], considering a 2D square plane with side lengths ranging from 1000 km to 5000 km in increments of

1000 km, 4 regions in the plane, a number of nodes varying from 5 to 55, and an average node degree ranging from 2 to

approximately 5. The Waxman parameters chosen were α = β = 0.4. This range of number of nodes was chosen because

it covers the values typically found in reference networks [23], while also allowing for a short computation time with

the routing algorithm. The constrained routing solution was determined using Algorithm 1 (see Appendix) assuming a

full-mesh logical topology and transmission at 64 Gbaud in the C-band, which leads to a limit of 75 optical channels per

link.

Table 1 shows the inputs (features), which are the various parameters related to the optical network’s physical topology,

and the outputs (labels) of the DNN model, presenting their minimum, mean and maximum values. As can be seen, there
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is a great variability in the network parameters. This is intended to reflect the variability in real-world optical backbone

networks, training the model for a wide range of possible networks.

Table 1. Features, labels, and their statistics

Features and labels Minimum Mean Maximum

x1 : number of nodes 5 33.79 55
x2 : number of links 5 60.33 138

x3 : minimum link length (km) 75 109.79 692
x4 : maximum link length (km) 204 1604.58 5042
x5 : average link length (km) 119.52 550.30 2260

x6 : variance of link length (km2) 968 141,063.71 1,953,209
x7 : minimum node degree 2 2.04 5
x8 : maximum node degree 2 6.36 14
x9 : average node degree 2 3.57 5.14

x10 : variance of node degree 0 1.58 6.68
x11 : network diameter 1 9.33 27

x12: algebraic connectivity 1.93 217.34 8351.29
y1 : network throughput (Tb/s) 11.8 514.87 1934.96

y2 : avg. channel capacity (Gb/s) 211.92 538.79 970

4.2 Results and discussion

To evaluate the predictive performance of the DNN model on both randomly generated networks and reference

networks, the trained DNN model was used to make predictions on different test sets. The goal of these tests is to assess

the model’s accuracy in its predictions and compare its prediction times to the computation times of the routing algorithm.

As a first test on the DNN model, a set of 750 random networks was generated under the same conditions as the

networks used to train the model, with the routing algorithm also being applied under the same assumptions. The total

computation time for the routing algorithm was 7 min and 10 s, while the prediction with the DNN took only 22 ms for the

entire set of 750 networks.

The mean relative errors for this test set, as given by (13), are: 6.17% for the network throughput (y1) and 2.84% for

the average channel capacity (y2) predictions. Figure 2 shows the scatter plot of the relative errors against the number of

nodes for both outputs. Each dot represents the relative error (RE) for each individual network in the set, given by

RE =
yi − ŷi

yi
(13)

with yi being the value determined from the routing solution and ŷi the prediction made with the DNN model.

As depicted in Figure 2a, most relative errors for the network throughput are under 10%, with 79.23% of the examples

having a relative error below this threshold, 90.81% of examples below 15% and an average relative error of 6.17%. The

average channel capacity, illustrated in Figure 2b, generally presents smaller relative errors: 83.36% of examples have a

relative error below 5%, 97.60% of the examples fall below 10% and an average relative error of 2.84%.

These results show that, despite providing good performance in both outputs, the model exhibits a superior performance

on the average channel capacity. The observed disparity in performance between the two outputs could be indicative of the

model’s ability to learn and generalize from the training data, suggesting that the features present in the training data could

be more predictive for the average channel capacity.
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(a) (b)

Figure 2. Relative error against number of nodes for both outputs: (a) Network throughput; (b) Average channel capacity

To test the model’s performance on larger networks, a test set with 1440 networks was generated in the same conditions

as the previous sets, but now with a number of nodes varying from 5 to 100. The runtime of the routing algorithm was 2 h

53 min, while the predictions with the DNN model took only 63 ms for the entire set. The scatter plot of the relative errors

versus the number of nodes for this set of networks is shown in Figure 3.

(a) (b)

Figure 3. Relative error versus the number of nodes for both outputs (N in [5,100]): (a) Network throughput; (b) Average channel capacity

From the plots in Figure 3, it is clear that the model’s performance in networks with a larger number of nodes is

significantly more irregular, becoming worse as the number of nodes increases. This behaviour is expected, as the model

has been trained on a specific range of data (networks with a number of nodes ranging from 5 to 55), and extrapolating

beyond this range is likely to result in less reliable predictions. The ability of a model to perform well on unseen data

(data it was not trained on), is known as out-of-distribution (OOD) generalization [31]. This presents a challenge for

conventional supervised learning methods, such as DNNs, which often struggle to handle this effectively, as these models

fundamentally assume that the training and test datasets come from the same distribution. Note also that, as the number of

nodes increases, parameters such as the number of links and even the outputs themselves will also tend to have values the

model was not trained with.

The inaccurate performance is particularly evident in the network throughput (Figure 3a). In this case the predictions

tend to stay inside the range of 20% relative error when the number of nodes is lower than 55, but for higher numbers

of nodes the relative errors start progressively becoming higher (in absolute value). However, in the case of the average

channel capacity (Figure 3b) this effect is much less pronounced, with the relative errors staying inside the 20% range even
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for larger number of node values. This may indicate that the prediction of this output may be more dependent on other

features that do not vary significantly outside their original distribution range or that the output itself does not vary as

much with OOD values as the total network throughput does. Nevertheless, it is important to note that, when dealing with

OOD generalization, the model’s behaviour can be very unpredictable and erratic, and so an evaluation on the model’s

performance poses a significant challenge [31]. Due to its critical role, OOD generalization remains an active and important

topic of research in the field of machine learning [31].

Table 2 shows the DNN model’s predictions, and the routing solution values for specific random networks with a

varying number of nodes. The time needed to determine the throughput and channel capacity values with the routing

algorithm (tR) is compared with the DNN model’s prediction time (tP).

Table 2. DNN predictions in random network. y1 : Network throughput; y2: Avg. channel capacity

N y1 (Tb/s) ŷ1 (Tb/s) RE y1y1y1(%) y2 (Gb/s) ŷ2ŷ2ŷ2 (Gb/s) RE y2y2y2(%) tR (ms) tP (ms)

10 48.0 48.67 1.40 533.33 547.08 2.58 190 51.67
20 303.2 303.75 0.18 797.89 801.63 0.47 200 60.32
30 708.0 663.32 6.31 813.79 787.77 3.19 380 24.70
40 292.67 268.64 8.21 333.33 332.92 0.12 430 10.02
50 627.98 530.97 15.45 376.49 342.26 9.09 1970 8.56
60 600.271 718.48 19.69 315.93 331.48 4.92 2490 22.86
70 1080.11 1141.53 5.69 412.26 386.95 6.14 5970 13.59
80 1293.15 1476.62 14.18 334.49 353.83 5.78 21,380 16.89
90 2204.88 1964.20 10.92 463.80 387.0 16.56 38,430 12.31
100 1641.51 1786.44 8.82 314.46 294.91 6.22 56,930 21.60

The DNN model is significantly faster than the routing algorithm, taking only a few milliseconds compared to the

routing algorithm’s tens of seconds in larger networks. Furthermore, when it comes to the capacity, the same tendencies

identified before can be observed here as well: errors are generally smaller for y2 than for y1, and larger in networks with

a number of nodes in an OOD range. Specifically, in the scenario where N ∈ {10, 20, . . . ,50} , the training and testing
datasets belong to the same distribution, which is not the case for the scenario where N ∈ {60, 70, . . . ,100} . Consequently,
in the first scenario, the average relative errors for y1 and y2 are 6.31 and 3.09, respectively, values that are quite close to

those mentioned early. In contrast, in the second scenario, the corresponding average relative errors increase to 11.86 and

7.92, respectively, highlighting the model’s difficulties in generalizing to unseen data. Nevertheless, it is important to note

that there is inherent variability in the data that can lead to exceptions to the overall trends, as is the case with the network

with 100 nodes, which presents smaller relative errors than some of the networks with fewer nodes.

To assess the performance of the DNN model in real-world networks, four reference networks were considered:

COST239 (N = 11, K = 26, l = 462.6 km) [32], DTAG (N = 14, K = 23, l = 236.5 km) [8], NSFNET (N = 14, K =

21, l = 1211.3 km) [32], and UBN (N = 24, K = 43, l = 993.2 km) [32], with l representing the average link length.
These networks are frequently used in networks studies, with the first two typically used to describe medium-size networks

and the last two large-size networks. Table 3 compares the throughput and channel capacity values determined with the

routing algorithm with the DNN model’s predictions, as well as the respective computation times.

Table 3. DNN predictions in reference networks. y1: Network throughput; y2: Avg. channel capacity

Network name y1 (Tb/s) ŷ1 (Tb/s) RE y1y1y1 (%) y2 (Gb/s) ŷ2 (Gb/s) REy2y2y2(%) tR (ms) tP (ms)

COST239 81.2 80.05 1.42 738.18 730.69 1.02 224.98 10.01
DTAG 147.4 141.64 3.91 809.89 783.61 3.24 174.35 23.01
NSFNET 98.0 96.85 1.17 538.46 543.50 0.94 168.70 22.39
UBN 272.8 262.85 3.65 494.20 472.54 4.39 263.46 22.72
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The results show that the DNN model achieves low relative errors in predicting both outputs. This indicates that the

model can make accurate predictions in real-world optical backbone networks, further confirming that the topologies of

the random networks used in the training of the model describe well their real-world counterparts.

5. Conclusions

This paper has presented a machine learning-based approach to estimate the throughput of optical backbone networks

operating in the C-band. To generate the datasets required for training the model, we applied a heuristic based on a

constraint routing algorithm, using a full-mesh logical topology. The implemented model was a DNN with 12 inputs,

representing parameters related to the physical topology of optical networks, 2 outputs, and 2 hidden layers. The outputs

represent the network throughput and the average channel capacity.

The tests performed on the DNN model showed good performance on both artificially generated networks and

reference networks. On the set of random networks, the model was able to predict the network throughput with a mean

relative error of 6.17%, and the average channel capacity with a mean relative error of 2.84%. However, these results are

only valid when the training and testing datasets share the same distribution. If this condition does not hold, the relative

errors can increase due to limitations in out-of-distribution (OOD) generalization.

When it comes to the reference networks, a good performance was verified on the four networks tested, with low

relative errors verified for both outputs in all cases.

The DNN model also achieved significantly faster performance than the heuristic routing method, with predictions

consistently taking only a few tens of milliseconds, whereas the routing algorithm required up to tens of seconds to reach

results in larger networks.

Given the DNN model’s accurate performance and fast prediction, it could prove to be a valuable resource for

developing network planning tools to be used to design optical backbone networks.

Future work will explore approaches to overcome the OOD generalization problem to enhance the DNN capabilities

and enable their use across a wider range of applications.
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Appendix

This appendix describes the algorithm used to compute the matrix of established paths and the matrix of blocked

traffic demands, based on the heuristic approach provided in [12].
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Algorithm 1 Constraint Routing Strategy

1: Input: Weighted graph G(V,E), demand matrix D = [d(s,t)], maximum number of channels per link Nch.max.

2: Output: Matrix of established paths Π = [π(s,t)], matrix of blocked paths B = [b(s,t)].
3: for each pair of nodes (s, t) do
4: Compute the shortest path (π(s,t)) using Dijkstra’s algorithm, with the path length l(π(s,t)) as the metric;

5: end for

6: for each traffic demand d(s,t) do
7: Order the demand according to a certain sorting strategy (shortest-first, longest-first, largest-first);

8: end for

9: for each ordered traffic demand d(s,t) do
10: if there is enough residual capacity (difference between link capacity and load) in all the links of π(s,t) AND an

enough available number of channels then

11: Route the demand d(s,t) over the path π(s,t) and update the load (number of demands) on all the links traversed by

the path;

12: Assign a wavelength to the channel corresponding to the demand using the first-fit strategy;

13: else

14: Block the traffic demand d(s,t);
15: end if

16: Remove from G(V,E) all links with a residual capacity of zero;
17: for each pair of nodes (s, t) do
18: Search for new shortest paths using Dijkstra’s algorithm;

19: end for

20: Go to step 7;

21: end for

22: Return: Π and B.
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