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Abstract: Sensors are employed in the Internet of Things (IoT) to collect data and establish connections with the

internet. An instance of IoT can be seen in a tree-like topology constructed using wireless links. When a topology graph has

a path from its root node to any other leaf or child node, and this path is influenced by the quality of wireless connections,

it is known as a Destination Oriented Directed Acyclic Graph. The root node of the tree topology is responsible for

implementing source routing for downstream paths to the leaf nodes of the tree. If the longest path for any node in a tested

network graph, including the root, is determined by the maximum hop count, then the graph is considered to be connected.

The real world and its applications are impacted by issues related to network connectivity in IoT. Models are employed to

examine how changes in link probability and hop count affect the connectivity of the graph. In this research, the proposed

Deep Learning (DL) model is evaluated using the Keras regression model. The simulated dataset is generated using the

Cooja emulator. The link probability serves as a feature to predict the maximum hop count in the IoT. The predicted hop

count based on the link probability aligns accurately with the tested data.
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1. Introduction

The Internet of Things (IoT) deploys sensor nodes to collect and transmit data through the internet gateway, which

serves as the root of the IoT topology. IoT applications encompass various areas such as smart cities and homes, where

sensors utilize wireless networks to form a tree-like topology for data collection. However, before implementing an IoT

system, several challenges related to topology connection, channel and medium access, and radio coverage need to be

thoroughly studied [1]. When every neighbor in the IoT’s tree topology is connected through wireless links, it is referred to

as a connected topology, enabling the sensors to collaborate and construct a connected graph [2]. Ensuring the transmission

of sensed data to the root or internet gateway is a crucial concern for ensuring the quality of the IoT architecture. The

resources of deployed sensor nodes directly impact energy consumption during connectivity in an IoT environment. While

route delivery optimization and IoT topology connectivity have received attention, they still require careful consideration

and extensive research [3]. Based on the aforementioned studies and papers, multi-path routing has proven to be an

efficient technique for dynamic network architectures in the IoT. However, implementing multi-path routing in the IoT

often demands significant processing power, leading to increased overhead and the need for further research. Recently,

DL has emerged as a topic of interest in the IoT and other networking domains. DL techniques have been applied to
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routing methods as discussed in [4]. In [5], a DL algorithm was proposed, utilizing a deep Convolutional Neural Network

(CNN) to address large-scale network routing and topology issues. The IoT has gained significant attention due to its

broad applicability in domains such as smart cities, industrial automation, and healthcare. IoT networks often rely on

wireless sensors that communicate through hierarchical structures, such as tree topologies, to optimize data transmission

and network efficiency. Prior research has demonstrated the importance of structured sensor deployment in wireless

environments. For instance, the paper [6] explored radix partition based over the air aggregation to improve IoT data

transmission, while the paper [7] proposed a machine learning supported sensing framework for industrial IoT applications.

These studies highlight the critical role of tree based wireless sensor networks in optimizing network performance, further

motivating the need for predictive models to enhance IoT network reliability and scalability. In this research, we propose

a model that utilizes link probability to determine the maximum hop count for IoT applications. The model is based on

connection and path probabilities in relation to the hop count of a linear path. It considers the connectivity of IoT devices

based on link probability and incorporates a DL framework to estimate the path hop count as an IoT routing metric. This

prediction is based on connection and link connectivity, taking into account packet delivery and loss metrics. The structure

of the paper is as follows: Section 2 presents an overview of the research and published articles related to IoT connectivity.

Section 3 demonstrates the modeling and calculations of IoT path connectivity based on link probability. It also discusses

wireless link connectivity and the formulation of path hops. Section 4 introduces the simulation model used to generate the

dataset for the proposed DLmodel. The section also includes the radio model and connection quality used in the simulation

model. Section 5 showcases the created dataset and analyzes the gathered data using distribution and correlation functions.

The DL model for predicting the hop count of connected paths in the IoT is presented in Section 6. Finally, Section 7

summarizes the conclusion and suggests further areas for study.

2. Related work

Numerous research papers have examined and analyzed the topology graph from various perspectives. For instance,

in one paper [8], the authors investigate the topology of an N-hop network with different packet loss probabilities in

wireless links. Another paper [9] proposes a method to discover the relationship between path hop count and network

topology connectivity. However, these studies mainly focus on theoretical analysis and lack predictive models for hop

count estimation in real IoT deployments. Our approach fills this gap by leveraging deep learning to predict the hop

count based on link probability, thus providing a practical tool for IoT topology optimization. In a different paper [10], a

technique is presented for predicting the hop count in a connected topology, which is validated through simulation scenarios.

Additionally, In a different paper [11], a technique is presented for predicting the hop count in a connected topology,

which is validated through simulation scenarios. Additionally, another study [10] demonstrates that the probability of

network connectivity is influenced by increasing radio range and discusses the impact on distribution parameters and

resilience performance. In one investigation [12], two RPL objective functions are examined by arranging sky motes

in different topological forms. Moreover, a mathematical model is proposed in another paper [13] that combines two

important factors, namely the number of clusters and cluster size. Furthermore, a study [14] explores the relationship

between message dissemination and node contact. Another paper [15] provides an introduction and comprehensive review

of modern artificial intelligence developments in the context of IoT, covering architectures, techniques, and hardware

platforms. Additionally, one study [16] investigates the deployment of deep learning with routing technology to improve

delivery ratio when network topology changes occur. Another paper [17] proposes the distance vector hop to address

node issues in specific networks. Furthermore, a paper [18] suggests a prediction routing strategy based on Markov

Chains and a deep learning algorithm to predict future node locations. Finally, in a paper [19], link reliability prediction

is explored to enhance the efficiency of routing protocols in IoT deployments. Unlike our work, these studies do not

explore machine learning-based approaches for hop count prediction, which can enhance accuracy and adaptability in

dynamic IoT environments. Our method, by utilizing a deep learning regression model, significantly improves predictive

performance over traditional heuristic-based approaches. Furthermore, [20] investigates the deployment of deep learning

with routing technology to improve delivery ratio when network topology changes occur. A novel routing technique based
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on reinforcement learning (MCTAR-SIoT) is also proposed in [21]. While these approaches integrate AI techniques into

IoT routing, they primarily focus on optimizing routing paths rather than predicting hop count based on link probability.

Our study introduces a data-driven prediction model that aids in understanding network connectivity trends, which can

be integrated into routing decisions for enhanced efficiency. To clarify the advantages and limitations of our approach,

Table 1 provides a comparative overview of existing methods and their focus areas.

Table 1. Comparison of related work and our approach

Study Focus Limitation Our advantage

[8] N-hop network topology analysis
with packet loss

Lacks predictive modeling for hop
count estimation

Introduces deep learning for hop count
prediction

[9] Relationship between hop count
and network topology

No ML-based approach for
adaptive prediction

Applies regression-based DL model for
better accuracy

[10] Hop count prediction through
simulation

Lacks real-world IoT deployment
validation

Uses a deep learning model trained on
simulated dataset

[11] Connectivity analysis using
increasing radio range

Does not consider ML-based
optimization

Incorporates link probability and hop count
estimation

[12] Evaluation of RPL objective
functions on sky motes

Limited to predefined topologies Applies DL to dynamically learn topology
patterns

[13] Mathematical model for clustering
in WSN

Focuses on clustering rather than
path prediction

Predicts optimal path hop count based on
link probability

[14] Message dissemination and node
contact analysis

Does not consider path length
prediction

Provides a predictive framework for IoT
path estimation

[15] AI review for IoT architectures and
techniques

Does not propose a specific
implementation

Implements a DL-based IoT topology
predictor

[16] Deep learning for routing
adaptation in IoT

Focuses on routing improvements,
not path estimation

Predicts hop count instead of optimizing
routing directly

[17] Distance vector hop method for
node localization

Does not consider probabilistic path
estimation

Uses link probability for predictive modeling

[18] Markov Chain and DL for future
node location prediction

Not designed for hop count
estimation

Applies DL for accurate hop count
prediction in IoT

[19] Link reliability prediction for
routing enhancement

Focuses on reliability, not hop
count estimation

Combines DL with probabilistic link
estimation for IoT

[20] Deep learning for routing
optimization in changing topology

Focuses on adaptive routing rather
than topology prediction

Predicts hop count trends for improved
network planning

[21] Reinforcement learning-based
routing (MCTAR-SIoT)

Optimizes routing but lacks
topology estimation

Provides a predictive model that can enhance
routing strategies

OurWork Deep learning-based hop count
prediction

Predicts path length based on link
probability

Provides a machine-learning framework
for IoT topology planning

3. Connectivity and probability of wireless link in IoT

IoT topology connectivity refers to the way sensors communicate with each other. The connectivity of the network

topology is determined by how the sensors are connected to the root, which is typically connected to the internet. Routing

plays a crucial role in IoT, and protocols like RPL (Routing Protocol for Low-Power and Lossy Networks) are used to

discover the shortest path with the minimum number of hops. This is important for establishing an efficient end-to-end

delivery between the source and the root, and the routing protocol metric, often based on hop count, determines this path.

The connectivity of an IoT network is determined by the sensors’ ability to find the optimal path to reach the root node. If

there is no path from a sensor to the root, the data collected by that sensor cannot be processed. Path Probability (PathPro)

is commonly used to estimate the likelihood of a path in the IoT network, and it can be calculated using the following

Equation (1):

PP = PathPro =
N

∑
i=0

LPi (1)

PP represents the probability of connectivity between connected sensors or sensors connected through multiple

hops, such as sensor S and sensor D. LP, on the other hand, denotes the Link Probability. If two distributed sensors can

communicate with each other, they are considered directly or indirectly connected, implying the existence of a single or
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multi-hop path between the source (S) and destination (D) sensors. Different sensor applications require a certain threshold

of connectivity probability to meet their quality of service (QoS) requirements. This threshold connectivity can be achieved

either by attaining a full probability of connectivity (PP = 1) or by considering the connectivity based on the number of

path hops, denoted as Pathhops. The threshold of connectivity (Connth) is determined by the following Equation (2):

Connth =

{
0 < PP ≤ 1 HCmin < Pathhops ≤ HCmax

0 otherwise
(2)

HCmin represents the minimum hop count (HC) in the connected IoT topology, with a minimum value of two. On the

other hand, HCmax corresponds to the maximum hop count of the path (HC), which is influenced by the Link Probability

(0 ≤ LP ≤ 1). The IoT topology is established using a Destination Oriented Directed Acyclic Graph (DODAG) tree

structure. The sensors involved in constructing the topology within the sensing area may experience failures, resulting in

varying connectivity probabilities. These failures are often related to energy issues and can be modeled using a sensor’s

behavior model. The connectivity of the network is represented as a probability function of the connected path. In this

paper, it is evident from the collected dataset that the number of sensors (N) and the transmission radius (r) have an impact

on the network connectivity probability (PP) in terms of path hops (Pathhops). Increasing the number of sensors (N),

increasing the transmission radius (r), or both, can be done to achieve a desired level of PP. The number of deployed sensors

plays a vital role in enhancing the probability (PP) of network connectivity. Finally, the network connectivity probability

can be simplified by assuming that the parameters r and N remain constant for a linear path. As a result, the reliable path

hops (Pathhops) between the source (S) and destination (D) sensors in a connected topology can be described as following

Equation (3).

Pathhops =
HCmax

2
Ln(LP)+HCmax (3)

4. Proposed simulation model

The dataset used to analyze the connectivity of the IoT topology relies on link and path probabilities (LP, PP). To

conduct this investigation, a simulation model is employed. The simulation model requires an IoT emulator capable of

emulating a tree-based IoT topology that resembles real-world conditions. The emulator that fits these requirements is the

Contiki/Cooja simulator [22]. The Cooja emulator not only simulates the IoT environment but also the Wireless Sensor

Network (WSN) environment. It can effectively simulate both dense and sparse sensor network topologies. Contiki, a

platform within the Cooja emulator, facilitates precise and detailed examination of IoT scenarios. It also enables direct

emulation of sensor behavior at the physical layer. The Cooja emulator offers various radio models, including the Unit Disk

Graph Medium (UDGM) with distance-loss, which is considered in this paper. Additionally, the Cooja emulator provides

more realistic radio models for simulation purposes. In the case of a closed-loop IoT network where transmitters also act

as receivers, the network structure may become cyclic. To accommodate this scenario, the definition of connectivity can be

extended by incorporating bidirectional link probabilities, ensuring that data transmission accounts for cyclic dependencies.

The proposed model can be generalized by modifying the adjacency matrix to allow for cyclic paths and adjusting the deep

learning framework to learn from cyclic patterns, enabling accurate node prediction in such structures. The objective of this

study is to develop a simulation methodology that creates a realistic and functional IoT network platform, with a specific

focus on IoT networks. All the scenarios tested and deployed in this study as presented in Table 2 utilize the built-in Cooja

radio models, particularly the Unit Disk Graph Model (UDGM). The Cooja simulator employs the UDGM radio model with

distance-loss radio propagation to simulate wireless channels. This radio model assesses the quality of the communication

channel based on the distance between wireless nodes. The distance is measured between directly connected nodes. The

UDGM model consists of two circular disks: the transmission area and the interference area surrounding the center of

the current wireless node. Within or at the interference disk, the transmitted packets from the current node can interfere
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with the packets sent by neighboring nodes. Successful packet delivery to the intended node occurs only when there is

no interference during the transmission process. The Cooja simulator utilizes the UDGM radio model to simulate IoT

networks. The UDGM considers the radio transmission range as a circular area that encompasses both interference and

transmission. The range of this radio model expands with an increase in the radio output power.

Table 2. Cooja simulator settings

No Settings Details

1 Cooja Version 2.7
2 Radio Models UDGM Radio Model
3 Sensor Type Sky Mote
4 Simulation Time 5 min
5 Routing Protocol RPL Protocol
6 Interface type Wi-Fi 802.11
7 Performance Metric Link Quality
8 Radio Coverage Fixed 50 m
9 Link Quality Based on Transmission Succeed Ratio
10 Topology Linear Topology
11 Path Hop Count 1 ≤ HCmax ≤ 10

5. Implemented deep learning model

The simulation configuration and settings for different wireless IoT scenarios are presented in Table 2 . The table

includes details about the network setup and parameters. It is worth noting that we have previously discussed the stability

parameters of the network topology, specifically the LP and PP parameters. The analysis of path hop count (Pathhops) will

be based on the LP. In the simulation, it is assumed that there is a linear path with a size of HCmax within the given tree

topology consisting of N sensors. The collected simulation results also demonstrate the relationship between hop count

and link probability in IoT, considering it as a multi-hop network. The generated data will be processed using Cooja to

simulate the IoT as a network graph. The proposed DL model is implemented using the Keras framework with TensorFlow

as the backend. It is designed to predict the hop count (HC) based on link probability (LP) and path probability (PP) in an

IoT network. The model consists of a fully connected neural network with an input layer of two neurons representing LP

and PP, followed by four hidden layers: the first with 64 neurons, the second with 128 neurons, the third with 64 neurons,

and the fourth with 32 neurons, all using ReLU activation. The output layer consists of a single neuron with a linear

activation function to predict the HC. The training process involves splitting the dataset into 70% for training and 30% for

validation/testing, using the Adam optimizer with an initial learning rate of 0.001, which is reduced every four consecutive

epochs if the validation error does not improve. The loss function used is Mean Squared Error (MSE), with a final reported

validation/test MSE of 1.14×10−5, indicating high prediction accuracy. The trained model is evaluated by comparing

predicted and actual values using Matplotlib, demonstrating its effectiveness in accurately estimating hop count based on

the simulated IoT network.

5.1 Dataset generation and analyzing

The path probability is determined by Equations (2) and (3), where the link quality between neighboring nodes must

be sufficient to successfully transmit packets to the final destination. The hop count also affects the path probability. The

dataset used in this study is generated by the Cooja simulator. It consists of features or inputs such as LP and PP, along

with a label representing the HC. The dataset comprises 80 instances, each with two features (LP, PP) and one label (HC).

The raw data and their relationship can be observed in Figure 1, which illustrates the relationship between LP and HC. The

hop count of the linear path ranges from 1 to 10 hops, while LP varies from 0.2 to 1. Additionally, Figure 2 depicts the

deployment of sky mote sensors along a linear path consisting of 10 hops. Recent research has focused on investigating the

relationship between the hop count of a path and the network connectivity probability in IoT networks. This relationship is

visualized in Figure 2 specifically for the UDGM radio model. It is influenced by factors such as the wireless coverage
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radius and the density of sensors, which directly impact the network connectivity. In order to isolate the effect of these

parameters, the model assumes a circular coverage area with a fixed radius of 50 m. The model analyzes the impact of

link probability on the hop count of a path, deviating from the conventional definition of network topology connectivity.

Instead, it measures the connectivity by considering the link probability of the existence of a linear N-hop route in an IoT

network. As the path hop count increases, the summation of link probabilities for the existence of an N-hop route decreases.

This implies that two sensor nodes with a higher N-hop path distance have a lower network connectivity probability. Given

a threshold link probability, the model identifies a path between source and destination sensors that has a maximum hop

count of HCmax. To determine the value of HCmax, the model assumes a fixed wireless communication radius and applies

the UDGM channel model.
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Figure 1. Link probability versus hop count of UDMG radio model

Figure 2. UDMG radio model topology for generating dataset
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Furthermore, the model assumes that the IoT network is homogeneous, with a fixed radius and a defined density per

unit of area. In this study, sensor nodes are considered connected if the distance between the center of their circular radio

coverage is less than a specified radius, denoted as “r”. As the link probability increases, the hop count also increases

until it reaches the maximum hop count, denoted as HCmax. The value of HCmax depends on the radio model used in the

scenario, specifically 10 hops for the UDGM model. This relationship can be observed in Figures 1 and 2. Hence, there

is a positive correlation between the maximum hop count HCmax and the link probability LP. When the link probability

exceeds 0.7 for the UDGM radio model, the path length reaches the maximum hop count HCmax.

5.2 Dataset exploring and visualization

This section introduces the initial step of implementing a DLmodel for predicting the path hop count Pathhops based

on the link probability, as depicted in Figure 3. The Keras framework [23] was utilized, with Mean Squared Error (MSE)

serving as the chosen loss function. The deployed Keras sequential model employed a Rectified Linear Unit (ReLU)

activation function. The DLmodel made use of Numpy [24], Panda [25], and the plot library [24]. The simulation results

were collected as a dataset from the UDGM radio model for a linear path with a maximum of ten hops, based on the link

connectivity probability. This dataset was generated using the Cooja simulator, with different link probabilities as inputs (LP

and PP) and the corresponding path hop counts (HC) as the outputs. The inputs were varied in steps of 0.01, ranging from 0

to 1. The dataset was loaded into the DL model as a Comma Separated Values (CSV) file, utilizing import libraries such as

Panda and Numpy. The dataset consists of 80 inputs of LP and PP, along with output labels representing the number of hops

ranging from 1 to 10, as illustrated in Figure 3. Additionally, the dataset file was divided into training and test/validation

files, with a ratio of approximately 70% and 30% respectively. The Keras model libraries and functions were employed for

this purpose. Furthermore, the dataset parameters, both features and labels, were visualized using distribution functions. For

example, Figure 4 displays the distribution of LP, indicating that it varies between 0.2 and 1. The wireless channel success

ratio determines the likelihood of successfully transmitting data packets across a wireless channel without errors or loss.

When considering a linear or bus path with a variable path length ranging from 2 to 10 hops, the wireless channel success

ratio within the range of 0.2 to 1 can be analyzed based on many factors. A channel success ratio closer to 1 indicates a

higher probability of successful transmission between the source and destination nodes. Conversely, a ratio closer to 0.2

suggests a lower probability of direct transmission between the connected source and destination. The wireless channel

success ratio is influenced by factors such as noise and interference. The channel success ratio between 0.2 and 1 is impacted

by the path length between 2 and 10 hops in a linear path. It is important to note that in a linear path, the channel success

ratio for each hop is independent of the others. Thus, the overall channel success ratio for the entire path is determined by

the individual success ratios of each hop along the path. As the path length increases, the cumulative effects of link quality

degradation, signal attenuation, interference, and noise can reduce the channel success ratio. Consequently, the probability

of successfully transmitting a packet across the entire path may decrease with longer paths.

Figure 3. Dataset statistical information
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Figure 4. Link probability (LP) density of dataset

The specific channel success ratio within the range of 0.2 to 1 can vary based on factors such as signal strength,

interference, noise, modulation schemes, coding techniques, and the overall quality of the wireless channel. Higher channel

success ratios (close to 1) within this range signify a more reliable wireless channel and a greater likelihood of successful

packet transmission. Conversely, lower channel success ratios (close to 0.2) within the specified range indicate a less

reliable wireless channel, increasing the likelihood of errors or packet loss during transmission. The link probability and the

semantic wireless channel are interconnected, where the characteristics of the wireless channel influence the link probability.

Considering this relationship is crucial for designing and optimizing wireless networks specially to ensure reliable and

efficient communication. Figure 5 shows the distribution of PP, which ranges from 0.2 to 0.4. The figure illustrates the

relationship between path probability density and path length. It demonstrates that as the path length increases from 2 to

10 hops, the path probability density decreases. This phenomenon occurs because the path probability is influenced by the

individual link probability or channel success ratio, which ranges from 0.2 to 1. When considering a path in a wireless

network, the path probability density refers to the likelihood of successfully transmitting data packets across the entire path.

It takes into account the cumulative effects of link probabilities or channel success ratios for each hop along the path. As

the path length increases, the probability density decreases due to the many reasons. Such as individual link probability or

channel success ratio. This factor of path probability is determined by the individual link probabilities or channel success

ratios for each hop along the path. If the link probabilities or channel success ratios are lower, the overall path probability

decreases. The other factor is cumulative effects where longer paths have a higher number of hops, and the cumulative

effects of link degradation, signal attenuation, interference, and noise can negatively impact the link probabilities or channel

success ratios. The cumulative degradation leads to a decrease in the overall path probability density.

Furthermore, the reliability which is indicates the packet transmission. the path probability density indicates a more

reliable path, while a lower density suggests a less reliable path with a higher likelihood of errors or packet loss. Finally,

the distribution of the HC label is demonstrated in Figure 6, revealing variations from 1 to 10 hops. The path hop count

density refers to the distribution or probability density function of the number of hops required to traverse a path in a

network. In this case, we are considering a liner path of 10 hops for the path length. Additionally, the success of channel

transmission between 0.2 and 1 is related to this path length. The path hop count density represents the likelihood or

distribution of the number of hops required to traverse a path in a network. It provides insights into the probability of

encountering paths with different hop counts within a specific range. In this case, we are focusing on paths with lengths
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between 1 and 10 hops. The success of channel transmission refers to the probability of transmitting data across a wireless

channel without errors or loss. In this context, we consider a channel transmission success probability between 0.2 and 1.

A higher value indicates a higher likelihood of successful transmission, while a lower value suggests a higher chance of

errors or packet loss during transmission.

Figure 5. Path probability (PP) density of dataset

Figure 6. Hop count (HC) density of dataset
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5.3 Dataset features correlation

The correlation between features and labels in the dataset measures the linear relationship between two features or

between one feature and one label. By utilizing the correlation function provided by the seaborn library of the Keras model,

it becomes possible to predict a desired label based on the test features. The rationale behind using the correlation function

for feature selection in the DL model is to identify the most relevant variables as the best features. These selected features

should exhibit a high correlation with the target or desired label, while being uncorrelated with each other as input to the

model. If two features are correlated, the DL model can predict a label using only one of the highly correlated features.

Therefore, the correlation function is employed to ensure that no two features are highly correlated with each other. The

DL model only requires one highly correlated feature, as the other highly correlated features do not provide additional

information to the model. In this case, Pearson correlation is used. A threshold value is set, such as 0.5, as an absolute

value for selecting the variables. If multiple features are correlated, the model should discard the feature with a lower

correlation value compared to the target or desired label. Based on Figure 7, which illustrates the correlation function

between features LP and PP, along with the label HC, there are some correlations observed. For instance, LP and PP

have a correlation coefficient of 0.53, while both LP and PP correlate with the label HC at coefficients of 0.91 and 0.22

respectively. Therefore, the DL model utilizes LP and PP as features, with HC as the desired output label.

Figure 7. Features and labels correlation

6. Hop count prediction using deep learning

The DL model is implemented using the Keras framework, consisting of input and output layers, as well as hidden

layers. Specifically, a Convolutional Neural Network (CNN) with four dense hidden layers is constructed. This sequential

model is compiled with Mean Squared Error (MSE) as the loss function and ReLU as the activation function. Numpy,

seaborn, and Panda are utilized for visualizing and exploring the dataset, while the plot library is used for plotting

correlations and density. Additionally, the plot library is employed to visualize the predicted values of HC based on the

tested values of LP, as shown in Figure 8. The training process is conducted using Keras as the backend API of Tensorflow

[26]. The Adam optimizer is chosen to enhance the prediction performance. The datasets are transformed into data frames

using Pandas and Numpy. The data is split into training data (70%) for features and labels, and the remaining 30% is

used for validation or testing purposes. The learning rate is carefully selected and reduced by a factor of two every four

consecutive epochs if the validation error does not decrease significantly. The reported mean squared error (MSE) on the

validation or test data is 1.14 × 10−5. After training the model, future predictions are made and evaluated. The trained

Keras model is used to pass the training, testing, and validation data through the CNN in order to obtain predictions for the
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desired outputs. The Matplotlib library is employed to generate a plot illustrating the test and predicted values for the hop

count (HC), as depicted in Figure 8. This plot demonstrates that the constructed sequential CNN Keras model successfully

predicts the path hop count values compared to the simulated graph shown in Figure 1.

Figure 8. Hop count prediction using deep learning

7. Conclusions and future work

This paper introduces a regression deep learning (DL) model built using the Keras framework to explore the impact of

network connectivity on the Internet of Things (IoT). The raw data is obtained by simulating the UDGM radio model using

the Cooja simulator. The investigation focuses on path hops, utilizing link probability and path probability as features

to predict the linear path of the IoT and determine the maximum hop count. The main contribution of this work lies

in the integration of deep learning techniques, specifically a Convolutional Neural Network (CNN), to model network

connectivity in IoT environments. This provides a novel approach for optimizing path predictions and improving the

efficiency of network design.

The proposed DL model, a CNN deep learning model, is implemented using the Keras framework as a nonlinear

regression model. The evaluation of the model demonstrates a close alignment between the predicted values and the

trained values, with a mean squared error (MSE) of 1.14 × 10−5. This performance suggests the potential of deep learning

for network connectivity prediction in IoT, with implications for enhancing routing protocols and optimizing resource

allocation.

In future research, it is suggested to expand the radio models to incorporate more realistic Cooja radio models, such

as the MRM model. This expansion would provide a more accurate representation of real-world IoT environments, where

wireless propagation may vary due to factors like interference, mobility, and environmental conditions. Additionally,

further studies could focus on extending the model to include a broader range of IoT scenarios, including diverse node

densities, varying transmission ranges, and more complex mobility patterns. This would allow for a deeper understanding

of the dynamic nature of network connectivity and its impact on IoT performance.
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