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Abstract: Signal interpolation plays a critical role in various signal processing applications, including wireless

communications, image processing, and radar systems. Accurately reconstructing signals from decimated samples

is essential for maintaining data integrity and improving transmission efficiency. To this extent, this paper presents a

comparative study of five signal interpolation methods: convolution with three types of deterministic signals (triangular,

rectangular and sinc signal), statistical linear regression and support vector machine (SVM).All these methods were applied

on a sinusoidal signal corrupted by noise at different signal to noise ratio (SNR) values and on a QPSK (Quadrature Phase

Shift Keying) modulated signal with 25 different decimation factors. The comparison between the investigated methods

was made based on the inter-correlation coefficient, Euclidean distance and determinism for sinusoidal signal corrupted by

noise. Two additional parameters, namely Euclidean letter distance and Bit Error Rate (BER), were defined and used for

the QPSK modulated signal. Our findings suggest that for the sinusoidal signal corrupted by noise convolution with sinc

function outperforms the other methods in terms of Euclidian distance in at least 98.57% of the cases and at least 95.71%

of the cases in terms of inter-correlation coefficient. In the case of QPSK modulated signal it is the SVM method which

surpasses all the other methods in terms of intercorrelation coefficient and Euclidean distance, in 80% and 88% of the

cases respectively. If the Euclidean letter distance and the Bit Error Rate are considered for comparison, in the case of the

QPSK modulated signal, convolution with sinc function was found to outperform the other investigated methods for at

least 80% and 60% of the decimation factors respectively.
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1. Introduction

Interpolation is the process of estimating values within a range based on known data points. It involves filling in the

gaps or missing values between the given data points to create a continuous representation of the data [1]. Interpolation

methods are used in various fields involving different types of data from economic [2], financial [3], chemical, physical,

and environmental [4, 5] domains.

Interpolation methods can be classified into two categories: deterministic and stochastic methods, based on their

underlying principles and approaches [1]. Deterministic interpolation methods rely solely on the given data points and do
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not account for any uncertainty or variability [6]. The choice of interpolation method depends on the characteristics of the

data, the level of uncertainty, and the specific requirements of the application.

Interpolation finds extensive usage in digital signal processing applications [7], where its primary objective is to

approximate intermediate sample values based on a given set of existing samples. Interpolation enables the reconstruction

of continuous signals from discrete samples, facilitates data recovery in the presence of missing or lost information, and

improves the quality and accuracy of digital signals in various applications [8].

In wireless communication systems, interpolation is essential for digital signal processing, including sample rate

conversion for signal synchronization [9, 10]. With their recent development, software-defined-radio platforms represent

an agile system capable of conveniently implementing sample rate conversion, an important functionality to provide

synchronization between the analog to digital converter and baseband signal processor [9]. The sampling rate converter

finds utility in numerous communication and signal processing scenarios, enabling the interconnection of two signals or

systems with different sampling rates [10].

Interpolation can be applied to estimate sensor readings at non-sampled time instances, providing a continuous and

more accurate representation of the data [11]. The increase in the number of signal samples is essential for analyzing

signals accurately, especially when dealing with high-frequency components, fast-changing dynamics, or precise frequency

and time-domain analysis. Having more signal samples offers flexibility in signal processing operations such as filtering,

modulation, or demodulation.

Signal interpolation finds applications in various fields involving incomplete measurement data sets. In [12] authors

consider the problem of signal interpolation on graphs, by recovering one or multiple graph signal values from incomplete

measurements. Research is carried out for developing efficient interpolation methods for wireless communications and

signal processing applications [13, 14]. The method presented in [13] is based on cubic spline interpolation and improves the

frequency-domain properties significantly while maintaining low complexity. The authors of [14] propose an interpolation

method for wideband signal reconstruction, demonstrating its applicability for real-time blade damage diagnosis.

The authors of [8] propose a mixed signal interpolation method based on sinc and linear interpolation to improve the

accuracy of trigger resampling. Their proposed method achieves better interpolation results with less resource consumption.

Comparative studies of interpolation methods are also available in public scientific literature. In [15], authors present

a comparative study of the least-squares, linear nearest neighbor method and piecewise cubic Hermite polynomials

interpolation methods applied on wideband, mm-wave communication signals. Their findings suggest that the choice

of the interpolation method plays a role in defining the accuracy of the interpolated signal only for large time stamps,

corresponding to a lower initial sampling frequency. In their study the least-square linear fit method applied on a 44

GHz wideband signal was found to achieve the best outcome in terms of error-vector magnitude minimization. In [16]

bicubic interpolation is used to enhance satellite image resolution. This approach has been shown to outperform existing

methods, providing superior resolution enhancement applicable to various types of images. Several studies investigating

the performances of different interpolation methods for obtaining rainfall/precipitation patterns [17, 18]. The authors of

[18] compare six interpolation methods in predicting the spatial distribution pattern of precipitation in a geographical area,

proving that the Kernel interpolation with barrier method has the highest accuracy.

From the published literature we observed that different interpolation methods work well with various types of signals.

The use of a customized interpolation technique tailored to different signal types offers significant advantages in signal

processing applications [19]. Signals can vary in their characteristics, such as frequency content, dynamics, and noise

characteristics. By selecting a specific interpolation technique, it becomes possible to exploit the unique properties of each

signal and enhance the accuracy of the interpolation process [20].

The objective of this study is to expand upon previously published research by conducting a comparative analysis of

five signal interpolation methods-convolution with three types of deterministic signals (triangular, rectangular, and sinc),

statistical linear regression, and SVM-applied to signals commonly encountered in wireless communication environments.

The analysis begins with a sinusoidal signal corrupted by noise and extends to a more complex case, a QPSK-modulated

signal. Using Python, the original signals are generated, decimated, and then reconstructed using the selected interpolation

methods. The study evaluates the performance of each method based on five key metrics: inter-correlation coefficient,

Euclidean distance, determinism (for the sinusoidal signal), Euclidean letter distance, and BER (for the QPSK-modulated

Computer Networks and Communications 124 | Remus Stanca, et al.



signal). By assessing the effectiveness of these interpolation techniques under different signal conditions, the study aims to

identify the most suitable method for preserving signal integrity in wireless communication applications.

The proposed study builds upon previous research by expanding the comparative evaluation of interpolation methods

to signals commonly found in wireless communication environments. While earlier studies have primarily focused on

interpolation techniques applied to wideband signals, satellite imagery, or precipitation patterns, this work extends the

analysis to both a sinusoidal signal corrupted by noise and a QPSK modulated signal. In completing prior research that

relies on conventional error metrics or frequency-domain properties, this study introduces original comparison indicators

based on the time-domain representation of the signal. These indicators are important in applications where time-domain

accuracy directly impacts system performance like network synchronization in 5G networks [21] or quantum control

systems [22]. The introduction of Euclidean letter distance and BER as evaluation criteria for the QPSK modulated

signal offers a novel perspective on how interpolation affects communication signal integrity. Moreover, the statistical

assessment of interpolation performance across different SNR levels enables a deeper understanding of each method’s

robustness in noisy environments. This work, therefore, not only reinforces existing findings on interpolation performance

but also provides new insights into method suitability for real-world applications, particularly in software-defined radio

and high-precision digital signal processing.

The remainder of this paper is organized as follows: The materials and methods section describing the experimental

framework for signal generation and processing (Section 2), the interpolation methods (Section 3) and the definition of

comparison indicators (Section 4). The results and discussion are presented in Section 5 for both sinusoidal and QPSK

modulated signals. The conclusions of the paper are synthetized in Section 6.

2. Experimental framework for signal generation and processing

The signal generation and processing (decimation and interpolation) were performed in Python, following the general

framework presented in Figure 1.

Two types of signals were considered: sinusoidal signal corrupted by noise and a QPSKmodulated signal. A sinusoidal

signal with amplitude 1, initial phase 0, 1 kHz frequency and an initial sample rate of fs1 = 48,000 Hz with N = 960 samples

was considered. The sinusoidal signal is corrupted with a noise signal with different amplitude to obtain 70 different values

for signal to noise ratio (SNR). The obtained SNR values ranged between 14 and 25 dB to cover typical transmission

conditions encountered in real-world scenarios. In practical wireless communication systems, signals often experience

varying levels of noise due to channel impairments such as multipath fading, interference, and thermal noise. An SNR of 14

dB represents relatively challenging conditions with noticeable noise, which can impact demodulation and signal recovery.

On the other hand, an SNR of 25 dB reflects a more favorable scenario where noise is lower, allowing for improved signal

clarity and accurate data transmission. By covering this range, the study ensured that the interpolation methods were

evaluated under conditions that realistically simulate different transmission environments, from moderate to good signal

quality. The resulting signal, named x1[n] was then decimated by a factor of 10 resulting in a new sample frequency fs2 =

4,800 Hz and N1 = 96 sample points.

For the QPSK signal, the modulating signal i[n] was set as a binary signal composed of the ASCII code representation
of a text string composed of 100 characters of “1”. The QPSK carrier was a sinusoidal signal with frequency fc = 1,000 Hz,
amplitude 1 and a sample frequency fs1 = 750,000 Hz. The resulting QPSK signal was decimated by using 25 different

values for the decimation factor representing the first 25 divisors for 750,000 Hz (1, 5, 10, 15, 20, 25, …, 100). All

interpolation methods investigated were applied for each of the 25 signals which resulted after decimation.

The choice of decimation factors was made to systematically analyze the effects of signal down sampling on the

interpolation performance of QPSK signals. Initially, experiments were conducted using a sinusoidal signal to establish

a foundational framework for interpolation techniques before applying them to the more complex QPSK signal. This

approach ensured that the interpolation methods were first tested in a controlled setting with a predictable signal structure.

The decimation factors represent the degree of signal down sampling, where a factor of 1 implies no decimation, while

increasing values (5, 10, 15, etc.) progressively reduce the number of available samples. Higher decimation factors
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introduce greater information loss, increasing the challenge for interpolation methods to accurately reconstruct the original

signal. By varying the decimation factor, the study aimed to examine how different levels of down sampling impact the

interpolation quality and performance, particularly for QPSK signals, which have distinct phase transitions that make

accurate reconstruction crucial for signal integrity.

Figure 1. Experimental framework

Let x[n] be the initial digital signal with sample frequency fs1 = 4,800/750,000 Hz, x1[n] the signal which results
after decimating the initial signal with a factor of 10/d and y[n] the signal which results after interpolating x1[n] back to the
initial sample frequency.

3. Interpolation methods

In this paper we have compared five different interpolation methods: convolution with triangular, rectangular and

sinc signal, statistical linear regression and SVM. Each method is mathematically described in the following subsection

3.1 Convolution method

Convolution method implies finding a general mathematical formula x(t) for the signal by computing convolution
between the digital signal and the time domain transfer characteristic for a low pass interpolation filter which can have a

deterministic shape. Instead of the continuous variable t it can be written nTs value, where Ts is the sampling period which

will be considered to have a smaller value to induce an increased sample frequency.

Let x[n] be a digital signal which comes from an analog signal xa(t) by using a sample frequency fs1:

x[n] = xa (n ·Ts1) = xa

(
n
fs1

)
(1)

After decimating x[n] by a decimation factor d, the sampling frequency will become fs2 =
fs1

d
, and the sampling

period will have the value Ts2 =
d

f s1
which implies that the new decimated signal can be written in the following form:

x1[n] = xa

(
nd
fs1

)
= x[nd] (2)
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The signal x[n] will be deduced by performing convolution between the decimated signal x1[n] and the time domain
transfer characteristic hLP(t) for a low pass interpolation filter [5]:

xa(t) =
∞

∑
n=−∞

x1[n] ·hLP( fs2 (t −nTs2)) (3)

Instead of the continuous variable t will be used the value nTs1, to obtain back the initial digital signal x[n]:

x[n]∼=
∞

∑
n=−∞

x1[n] ·hLP( fs2 (nTs1 −nTs2)) (4)

Because there is a finite number of sample points for the signal, equation (10) will be limited to a number of N sample

points [23]:

x[n]∼=
N−1

∑
n=0

x1[n] ·hLP( fs2 (nTs1 −nTs2)) (5)

where hLP(t) is a deterministic signal which can have different time domain waveforms. In this article the following types
of deterministic signals were used:

• Triangular signal defined as:

tri(t) = (1−|t|) · (u0(t +1)−u0(t −1)) (6)

where u0(t) is the unit-step function
• Sinc function:

sinc(t) =
sin(πt)

πt
(7)

• Rectangular signal:

rect(t −0.5) = u0(t)−u0(t −1) (8)

3.2 Linear regression method

Linear regression is based on finding a linear law which gives minimum values for differences between the actual

values of the signal and the approximated values.

We consider a linear law f (t) = at +b which approximates the relationship between the time values and the values of
the signal samples. To obtain linear regression the following objective function must be minimized [24]:
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F(a,b) =
M−1

∑
i=0

(ati +b− yi)
2

(9)

where yi are the values for the signal samples, ti is the time moment for which the signal has the value yi and M is the

number of samples on which it is made the linear approximation.

Let x[n] be the initial signal which has a sample frequency fs1 and after decimation with a factor of d the signal

becomes y[n] with a new sample frequency fs2 =
fs1

d
.

The signal y[n] is split into sequences of 3 samples. On each sequence of three samples, an approximation in made by

using a linear law f (t), so thatM = 3. The total number of obtained sequences is

[
N
3

]
+C , where N is the total number of

samples for the signal y[n].

C =

{
0, for N mod 3 = 0
1, for N mod 3 6= 0

(10)

In N mod 3 = 1 then 2 values of “0” are added at the end of the signal and if N mod 3 = 2 then a single value of “0”
is added to the end of the signal.

Let Si = {y[3i],y[3i+1],y[3i+2]} be the sequence number “i” with a number of 3 samples and let Ti = {t3i, t3i+1, t3i+2}
be the time moments for which the signal takes values from the Si sequence. For each Si sequence a linear law f (t) = at+b
is found and this implies equating the first order partial derivatives of F(a,b) with 0:

{
∂F
∂a = 0
∂F
∂b = 0

(11)

{
a∑

2
j=0 t3i+ j

2 +b∑
2
j=0 t3i+ j = ∑

2
j=0 y[3i+ j]t3i+ j

a∑
2
j=0 t3i+ j +3b = ∑

2
j=0 y[3i+ j]

(12)

let α =
2

∑
j=0

t3i+ j
2 and β =

2

∑
j=0

t3i+ j.

By using the notations presented above, the equations system from (12) becomes:

{
aα +bβ = ∑

2
j=0 y[3i+ j]t3i+ j

aβ +3b = ∑
2
j=0 y[3i+ j]

(13)

By solving the system from (13) it can be found that:

a =
3∑

2
j=0 y[3i+ j]t3i+ j −β ∑

2
j=0 y[3i+ j]

3α −β 2 and b =
α ∑

2
j=0 y[3i+ j]−β ∑

2
j=0 y[3i+ j]t3i+ j

3α −β 2 (14)
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In this way the sequence Si = {y[3i],y[3i+ 1],y[3i+ 2]} which has values that corresponds to the time moments
Ti = {t3i, t3i+1, t3i+2} can be approximated with f (t) = at +b by using the determined a and b values.

To determine the missing samples, the continuous time variable “t” is substituted by the value
n
fs1

and in this way the

signal can be brought back to its initial sample frequency fs1.

3.3 SVM method

SVM method consists in finding a law f (t) which gives the minimum values between the approximated samples and

the actual samples of the signal. f (t) can be a non-linear law that uses a function Φ(t) which maps the one-dimensional
vectors t into vectors with greater dimensions. To compute the dot product between the two vectors Φ(x) and Φ(y) from
the new vector space, a “Kernel” function K(x,y) =< Φ(x) , Φ(y)>[25] can be used.

Starting with the MATLAB script presented in [26], the following mathematical algorithm was deduced:

The initial digital signal is denoted by x[n],n = 0,N −1, where N is the number of samples for this signal and let fs1

be the sample frequency of this signal. Let tn be the time moments for which the signal has the values x[n].

This signal is decimated by a factor of d with the sample frequency becoming fs2 =
fs1

d
and the obtained signal is

denoted by x1[n],n = 0,N1 −1 , where N1 is the number of samples obtained after decimation.

The following Kernel function K(x,y) = e−γ(x−y)2
is defined.

Let A ∈ M0≤i, j≤N1−1[R] be a matrix with the following elements:

ai j =


0, for i = j = 0

1, for i j = 0 and i 6= j

e−γ(t1i−1−t1 j−1)
2
+ z,otherwise

(15)

where

z =

{
1
C , for i = j,but i 6= 0 and j 6= 0

0,otherwise
(16)

In this article C is 100 and thus z can be written as:

z =

{
1

100 , for i = j,but i 6= 0 and j 6= 0
0,otherwise

(17)

The matrix c is defined as c = (0,x1[0], . . . .,x1 [N1 −2]) and is used to find b = A−1cT .

Using the elements from the matrix b it can be deduced an approximated form for the analog signal from which comes

the digital signal x[n]:

x(t) =
N1−1

∑
j=1

b[ j][0] · e−γ
(
t−t1 j−1

)2
+b[0][0] (18)

The continuous time domain variable t is replaced by the discrete values with the form
n
fs1

to obtain back the signal

x[n] with the sample frequency fs1:

Volume 3 Issue 1|2025| 129 Computer Networks and Communications



x[n]∼=
N1−1

∑
j=1

[ j][0] · e−γ

(
n

fs1
−t1 j−1

)2

b+b[0][0],n = 0,N −1. (19)

The SVM method was applied for each SNR value using a range of values for the parameter γ of the Kernel function

(γ varied in the range 30,000,000-39,000,000 with a step of 80). The γ value that yielded the highest inter-correlation

coefficient and the γ value that resulted in the lowest Euclidean distance were determined for each SNR value. Finally, the

average of these two γ values was computed. Subsequently, each γ value obtained for every SNR value using this method

was exported to an “.xlsx” document and further processed using the designed Python application.

In the case of the QPSKmodulated signal the inter-correlation coefficient was computed between the SVM interpolated

signal and the original digital signal. The method was applied considering for γ parameter values ranging from 900,000 to

900,000,000,000 in a geometric progression with a common ratio of 10. For each decimation factor, the γ value which

provides the greatest inter-correlation coefficient was determined and this value was exported to an “.xlsx” document and

further processed using the designed Python application.

The computational complexity of signal interpolation methods varies significantly based on their mathematical

foundations and implementation. Each method presents a trade-off between computational efficiency and accuracy, with

simple convolution being faster and more complex methods like sinc interpolation and SVM providing greater precision

but at a higher computational cost.

4. Definition of comparison indicators

Let x[n] be the initial signal and x1[n] be the signal which comes from the initial one by decimation. After applying

a certain interpolation method for x1[n] an approximated signal denoted by y[n] will be obtained. In this paper the inter-
correlation coefficient, Euclidian distance and determinism will be computed between x[n] and y[n] by using the following
formulas:

• Inter-correlation coefficient in point t = 0:

ρxy(0) =
∑

n−1
i=0 x[i]y[i]√

(∑n−1
i=0 x[i]2)(∑n−1

i=0 y[i]2)
(20)

• Euclidian distance between the two signals:

d(x,y) =

√
n−1

∑
i=0

(x[i]− y[i])2
(21)

• Determinism computed for the recurrence matrix obtained between the two signals.

Considering the two signals x[i] and y[i] with i = 0,n−1 then the recurrence matrix for x and y is defined as

A = (ai, j)0≤i≤ j≤n−1 with ai, j defined by [27] as:

ai, j =

{
1, i f

√
(x[i]− y[ j])2 +(x[i+1]− y[ j+1])2 +(x[i+2]− y[ j+2])2 < ε

0, otherwise
(22)
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The determinism has the following formula [28]:

determinism=
∑

n
i=2 l(i) · i

N
(23)

where l(i) is the number of diagonal structures which consists only of “1” values and have length i and N represents the

total number of “1” values from the recurrence matrix.

Two additional parameters were used for the QPSK modulated signal:

• Bit error rate (BER)

BER=
number_ of_ error_ bits

total_ number_ of_ bits
(24)

Considering i1 to be the binary sequence which results after demodulating x[n] and i2 the binary sequence which
results after demodulating y[n]. Then number_ of_ error_bits represents the total number of bits which differ between the
two binary sequences and total_ number_ of_ bits represents the length of the two sequences.

• Euclidian letter distance:
By using the ASCII representation (on 7 bits), the binary sequences i1 and i2 introduced above can be transformed

into two texts text1 and text2. Each symbol is assigned with its ASCII decimal value, obtaining two sequences: ASCII1

and ASCII2 .

The Euclidian letter distance is defined as follows:

d(x,y)letter =

√
N−1

∑
i=0

(ASCII1[i]−ASCII2[i])
2

(25)

To compare among the applied methods we have calculated the percentage for which a method is better than another

one and the average value by which it manages to outperform that specific method by a specific procedure defined in the

following section.

For the sinusoidal signal the following metrics apply:

Let two methods of interpolation meth1 and meth2 and let CORRi j and EUCi j be the inter-correlation coefficient and

Euclidian distance respectively, computed for meth j with NR= SNRi, i = 1,70, j = 1,2.
Let diffCORR = CORRi1 −CORRi2. If diffCORR > 0 then meth1 is better than meth2 for SNR = SNRi in terms of

correlation coefficient.

Let diffEUC = EUCi1−EUCi2. If diffEUC < 0 then meth1 is better than meth2 for SNR= SNRi in terms of Euclidian

distance.

If diffCORRi > 0 for i = 1,m then meth1 is better than meth2 in
m
70

·100% = pCORR% of the cases. If pCORR > 50 then

it can be said that meth1 is better than meth2 in pCORR% of the cases with an average value of CORRavg =
∑

m
i=1 diffCORRi

m
.

If diffEUCi < 0 for i = 1,m then meth1 is better than meth2 in
m
70

·100% = pEUC of the cases. If pEUC > 50 then it

can be said that meth1 is better than meth2 in pEUC% of the cases with an average value of EUCavg =
∑

m
i=1 diffEUCi

m
.

For the QPSK signal the calculated metrics are defined as:

Let two methods of interpolation meth1 and meth2 and let letter_ distancei j and BERi j be the letter distance and BER

respectively, computed for meth j with ECIM= DECIMi, i = 1,25, j = 1,2.
Let diffletter_ distance = letter_ distancei1 − letter_ distnacei2. If diffletter_ distance < 0 then meth1 is better than meth2 for

DECIM= DECIMi in terms of letter distance.
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Let diffBER = BERi1 −BERi2. If diffBER < 0 then meth1 is better than meth2 for DECIM = DECIMi in terms of

BER.

If diffletter_ distance < 0 for i = 1,m then meth1 is better than meth2 in
m
25

· 100% = pletter% of the cases. If

pletter > 50 then it can be said that meth1 is better than meth2 in pletter% of the cases with an average value of

letteravg =
∑

m
i=1 diffletter_ distancei

m
.

If diffBERi < 0 for i = 1,m then meth1 is better than meth2 in
m
25

·100% = pBER of the cases. If pBER > 50 then it

can be said that meth1 is better than meth2 in pBER% of the cases with an average value of BERavg =
∑

m
i=1 diffBERi

m
.

5. Results and discussion

5.1 Comparison between interpolation methods for sinusoidal signal corrupted by noise

The inter-correlation coefficient and Euclidean distance parameters were computed between the signal resulting from

the interpolation method and the original signal, for each SNR value in the case of the sinusoidal signal corrupted by noise.

The dependence between the Euclidean distance values obtained between the original signal, x[n], and the interpolated
signal, y[n], for each interpolation method across 70 distinct SNR values is presented in Figure 2a and the corresponding

boxplots are presented in Figure 3b. As theoretically expected, we observe that the Euclidean distance decreases with SNR

increase. A small Euclidean distance translates to a better signal approximation, and all interpolation methods perform

better for higher SNR conditions. By analyzing the distribution of the Euclidean distance values, we can deduce that

convolution with sinc signal demonstrates superior performance compared to other interpolation methods. This is evident

as it consistently produces the lowest values for this indicator, regardless of the SNR value. From Figure 2b, it can be

seen that the convolution method with sinc signal provides the lowest median value for Euclidian distance compared to all

the other methods. It is also clear that this interpolation method yields a very similar distribution with the SVM method.

However, one can observe that for lower SNR values the SVM interpolation method can yield to better results than the

sinc interpolation method.

The graph in Figure 4a presents the inter-correlation coefficient values obtained between the original signal, x[n], and
the interpolated signal, y[n], for each interpolation method across 70 distinct SNR values and the corresponding boxplot

values (b)

Figure 2. The dependence between Euclidian distance and SNR (dB) (a) and corresponding boxplots (b) for sinusoidal signal corrupted by noise
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Figure 3. Boxplot graph for Euclidian distance (a) and inter-correlation coefficient (b) distribution in the case of the QPSK modulated signal

Figure 4. The dependence between the inter-correlation coefficient and SNR (dB) (a) and the corresponding boxplots (b) for sinusoidal signal corrupted
by noise

From Figure 4 and Table 1 (right) it is clear the fact that sinc convolution method provides the best performances

compared to all the other 4 methods in terms of inter-correlation coefficient, demonstrating outstanding performances in

terms of this indicator. It can also be seen that it has quite similar distribution like triangular convolution method and SVM

interpolation method. Table 1 presents the calculated pEUC (left) and pCORR (right) percentages.
From analyzing the two indicators presented in Table 1 we can observe that for the Euclidian distance convolution

with sinc outperforms all other convolution methods (with triangular and rectangular signal) as well as the linear regression

model for all SNR values (100). The same observation is valid when analyzing the pCORR values when convolution with
sinc is also ranked first followed by convolution with the triangular signal.

Table 1. pEUC elements (left) and pCORR (right) for sinusoidal signal corrupted by noise

pEUC (%) pCORR(%)

Tri_conv Sinc_conv Rect_conv Lin_reg SVM Tri_conv Sinc_conv Rect_conv Lin_reg SVM
Tri_conv 0 0 100 100 0 Tri_conv 0 4.28 100 100 60
Sinc_conv 100 0 100 100 98.57 Sinc_conv 95.71 0 100 100 100
Rect_conv 0 0 0 0 0 Rect_conv 0 0 0 0 0
Lin_reg 0 0 100 0 0 Lin_reg 0 0 100 0 0
SVM 100 1.42 100 100 0 SVM 40 0 100 100 0

The values of the determinism indicator were computed for the lowest SNR (13.01 dB) and the highest SNR (25.62

dB) values, considering all five interpolation methods used in the article. The results are presented in Table 2.
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Table 2. Determinism values for two SNR values (13.01 dB and 25.62 dB) computed for each of the interpolation methods for ε = 0.2

Method used SNR = 13.01 dB SNR = 25.62 dB

tri_conv 0.06183 0.90779
sinc_conv 0 0.95091
rect_conv 0.03636 0.80316
lin_reg 0.01943 0.83656
SVM 0 0.94802

From Table 2 it can be inferred that for SNR = 13.01 dB the method which implies performing convolution between

the sampled signal and a triangular signal provides the greatest value for determinism. This observation suggests that there

are more sequences inside the approximated signal using triangular convolution which are similar to certain sequences

from the sinusoidal signal corrupted by noise. Thus, for noisy signals/communication channels triangular convolution

outperforms the other studied methods in terms of determinism.

For SNR = 25.62 dB the method for interpolation which consists in performing convolution between the sampled

signal and sinc signal provides greatest value for determinism compared to all the other 4 methods. This sugests that sinc

convolution outperforms all the other methods in terms of determinism for large values of SNR/good signal conditions.

5.2 Comparison between interpolation methods for QPSK modulated signal

In Figure 3we present boxplot graphs for Euclidian distance and inter-correlation coefficient to highlight the distribution

of this values for all the five interpolation methods.

From Figure 3a it can be deduced that SVM interpolation method has the best performances in terms of Euclidian

distance compared to all the other methods as it yields a median value which is smaller than all the median values which

corresponds to the other 4 methods. It can also be said that the range which corresponds for the values which are lower

than the median value is wider and extends to even lower possible values for Euclidian distance compared to all the other

methods.

Table 3. pEUC elements (left) and pCORR (right) for QPSK modulated signal

pEUC (%) pCORR(%)

Tri_conv Sinc_conv Rect_conv Lin_reg SVM Tri_conv Sinc_conv Rect_conv Lin_reg SVM

Tri_conv 0 96 100 88 12 Tri_conv 0 68 100 80 16
Sinc_conv 4 0 88 64 12 Sinc_conv 32 0 100 64 20
Rect_conv 0 12 0 12 4 Rect_conv 0 0 0 4 0
Lin_reg 12 36 88 0 4 Lin_reg 20 36 96 0 8
SVM 88 88 100 96 0 SVM 84 80 100 92 0

The superiority of the SVM method is also supported by the values of the inter-corellation coefficient presented in

Figure 5b, where one can observe that the that SVM methods provides the best performances for the QPSK modulated

signal. In Table 3, we present the results for the computed pEUC (left) and pCORR (right) percentages.
From analyzing the two indicators presented in Table 3 we can observe that for the QPSK modulated signal, in terms

of Euclidean distance, SVM outperforms all other convolution methods (with triangular, sinc and rectangular signal) for at

least 88% of the decimation factors. The SVM also outperforms the linear regression model for 96% of the decimation

factors. The same observation is valid when analyzing the pCORR values when SVM method is also ranked first followed

by convolution with the triangular signal.

In Figure 5 we present boxplot graphs for Euclidian letter distance and BER variations for the QPSK modulated

signal.
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Figure 5. Boxplot graph for letter Euclidian distance (a) and BER (b) distribution in the case of the QPSK modulated signal

By analyzing Figure 5 it can be stated that sinc convolution method has lower median values and wider ranges for

values which are lower than the median value for Euclidian letter distance and BER indicators compared to the other

methods implying that it has the best performances when these two indicators are used. In Table 4, we present the results

for the computed pletter (left) and pBER (right) percentages.

Table 4. pletter elements (left) and pBER (right) for QPSK modulated signal

pletter (%) pBER(%)

Tri_conv Sinc_conv Rect_conv Lin_reg SVM Tri_conv Sinc_conv Rect_conv Lin_reg SVM

Tri_conv 0 16 80 88 60 Tri_conv 0 12 72 68 60
Sinc_conv 84 0 88 100 84 Sinc_conv 88 0 88 88 60
Rect_conv 20 12 0 28 20 Rect_conv 28 12 0 44 24
Lin_reg 12 0 72 0 24 Lin_reg 32 12 56 0 32
SVM 40 16 80 76 0 SVM 40 40 76 68 0

However, from analyzing the two indicators presented in Table 4 we can observe that for the QPSK modulated signal,

in terms pletter, convolution with sinc outperforms all other convolution methods (with triangular and rectangular signal)
for at least 84% of the decimation factors. The convolution with sinc also outperforms the linear regression model for

100% of the decimation factors. The same observation is valid when analyzing the pBER values when convolution with
sinc method is also ranked first followed by convolution with the triangular signal.

The values of the determinism indicator were computed for the lowest decimation factor (2) and the highest decimation

factor (200) values, considering all five interpolation methods used in the article:

From Table 5, it can be inferred that for d = 2 and d = 200, the SVM method, when applied to the sampled signal,

provides the greatest values for determinism. This implies that the SVM interpolation method exhibits more sequences

within the approximated signal that resemble certain sequences from the QPSK modulated signal, indicating that the SVM

method outperforms all other methods for both decimation factor values.

Table 5. Determinism values for d = 2/200 computed for each of the interpolation methods for ε = 0.5

Method used d = 2 d = 200

tri_conv 0.42729 0.23813
sinc_conv 0.50271 0.26237
rect_conv 0.39582 0.00776
lin_reg 0.49991 0
SVM 0.50958 0.47709

The computational complexity of the investigated interpolation methods significantly impacts their practical usability

in real-world applications, particularly in wireless communication systems where real-time processing is essential. The
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five interpolation methods analyzed in this study each exhibit different trade-offs between computational efficiency and

interpolation accuracy.

The rectangular and triangular convolution methods are computationally efficient, typically operating in time domain,

as they involve straightforward averaging or linear weight application to neighboring samples. The sinc convolution

method, while offering superior frequency domain performance, has a higher complexity due to its need for longer kernel

support and truncation, making it less practical for real-time applications with large datasets.

The SVM-based interpolation method, while yielding good accuracy in Euclidean distance and inter-correlation

metrics, is computationally expensive. SVM interpolation is suitable for offline processing but might pose problems for

real-time applications without sufficient computational resources.

In real-world applications, the choice of interpolation method depends on the trade-off between computational

resources and accuracy requirements. While SVM-based interpolation provides the highest fidelity, its computational cost

may be prohibitive for real-time embedded systems or battery-powered devices. In contrast, sinc convolution offers a

practical balance, especially in applications where real-time performance is critical, such as in adaptive equalization and

signal restoration in communication networks.

6. Conclusions

This article presents a comparative study on the efficiency of five interpolation methods applied for two types of

signals: sinusoidal signal corrupted by noise (Section 5.1) and QPSK modulated signal (Section 5.2). The comparative

study is performed with statistics enabled for a wide range of SNR values for the sinusoidal signal and decimation factors

for the QPSK modulated signal.

The comparative study was performed based on five indicators, namely: Euclidean distance, inter-correlation

coefficient, Euclidean letter distance, BER and determinism. To compare between the interpolation methods for the whole

SNR or decimation factors we have proposed the use of pindicator parameter to quantify the percentage of cases one method
outperforms another one.

The main findings of the study can be summarized as follows:

• For the sinusoidal signal corrupted by noise the method which outperforms the other methods in terms of Euclidian
distance and inter-correlation coefficient is convolution with sinc (Section 5.1).

• For the QPSK modulated signal it is the SVMmethod which outperforms all the other methods in terms of Euclidean

distance and inter-correlation coefficient (Section 5.2).

• If Euclidean letter distance and BER indicators are considered, in the case of QPSK modulated signal, we have

observed that convolution with sinc signal outperformes all other investigated methods (Section 5.2).

By conducting this study, we contribute to the improvement of research methods that investigate the usability of

different interpolation methods for QPSK signals, a modulation type commonly present in the radiofrequency environment.

Moreover, we present an original and proven-to-be reliable research methodology that can be used to compare the efficiency

of different interpolation methods on the applied signal types (Section 2).

Building upon the findings of this paper and previous research, we emphasize the importance of tailoring interpolation

methods to specific signal types and applications. The results highlight that there is no universally optimal interpolation

method; rather, the best choice depends on the characteristics of the signal and the intended application. Future work

should explore adaptive and hybrid interpolation strategies, optimizing performance based on real-time signal conditions

and requirements.
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