Computer Networks and Communications

http://ojs.wiserpub.com/index.php/CNC/ UNIVERSAL WISER
PUBLISHER

Research Article

Intelligent Orchestration of Distributed Large Foundation Model Inference
at the Edge

Fernando Koch!"", Aladin Djuhera?, Alecio Binotto®

'Department of Electrical Engineering and Computer Sciences, Florida Atlantic University, Boca Raton, FL, USA
2Chair of Theoretical Information Technology, Technical University Munich, Munich, Germany
3Zeiss Digital Partners, Carl Zeiss AG, Munich, Germany

E-mail: kochf@fau.edu
Received: 20 March 2025; Revised: 18 June 2025; Accepted: 27 June 2025

Abstract: Large Foundation Models (LFMs), including multi-modal and generative models, promise to unlock new
capabilities for next-generation Edge Al applications. However, performing inference with LFMs in resource-constrained
and heterogeneous edge environments, such as Multi-access Edge Computing (MEC), presents significant challenges
for workload orchestration due to time-varying network, compute, and storage conditions. In particular, current split
inference strategies, which partition LFM layers across nodes, are not designed to adapt to fluctuating workloads, dynamic
bandwidth conditions, or evolving privacy constraints in high-utilization MEC environments. In this work, we propose a
novel adaptive split inference orchestration framework that elevates both the placement and partitioning of LFM layers to
runtime-tunable variables. Specifically, our framework enables real-time, quality-of-service (QoS)-aware management
of inference workloads by extending conventional orchestrators with three key services: (1) Capacity-aware workload
distribution, which continuously profiles node resources and selects an optimal subset of MEC nodes; (2) Dynamic partition
migration, which transparently relocates pre-cut LFM segments in response to changes in utilization or network conditions;
(3) Real-time reconfiguration, which dynamically re-splits LFM layers to balance latency, throughput, and privacy. We
formalize the joint placement-partitioning problem, outline a reference architecture and algorithmic workflow, and discuss
applicability in representative smart city, V2X, and industrial edge scenarios.

Keywords: large language models, split inference, edge artificial intelligence, edge computing

1. Introduction

Inference, the real-time forward execution of a trained model, is typically less compute-intensive than model training
and may require substantial resources for layer activation, memory, and model storage [1]. This holds particularly for
Large Foundation Models (LFMs) such as transformer-based large language models (LLMs) [2], e.g., Llama [3] and Qwen
[4] models. Performing inference efficiently on the edge remains challenging, especially in Multi-Access Edge Computing
(MEC) environments with limited and heterogeneous compute resources [5].

Copyright ©2025 Fernando Koch, et al.

DOI: https://doi.org/10.37256/cnc.3220256807

This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 3 Issue 2[2025| 111 Computer Networks and Communications

http://ojs.wiserpub.com/index.php/CNC/
http://ojs.wiserpub.com/index.php/CNC/
https://www.wiserpub.com/
https://orcid.org/0000-0001-7136-3253
https://doi.org/10.37256/cnc.3220256807
https://creativecommons.org/licenses/by/4.0/

Distributed Split Inference (DSI) [6] has emerged as a promising approach to mitigate this problem. This strategy
aims to partition an LFM into multiple segments that are executed sequentially across different nodes.

DSI strategies have typically employed static splits of inference workloads, where some computation is executed
locally, while heavier computation tasks are outsourced, alleviating the computational burden on the client device. Such
splits are mostly predetermined before execution and therefore lack adaptability to dynamic and heterogeneous operational
conditions, such as fluctuating network reliability, changing node utilization, or intermittent connectivity. Consequently,
these approaches produce suboptimal performance, compromising latency, resource utilization, and quality of service (QoS)
guarantees, especially in mission-critical or latency-sensitive applications such as those found in financial services, industrial
manufacturing, retail operations, and logistics [7]. This problem becomes even more acute in resource-constrained and
heterogeneous edge environments, where multiple users rely on accessing shared edge compute resources, and where
data privacy regulations (e.g., GDPR [8]) often restrict offloading computations to the cloud. For instance, executing
a 7B parameter LLM may incur 25 ms on an NVIDIA RTX A6000 edge node but over 250 ms on an NVIDIA Jetson
accelerator. Meanwhile, backhaul latency can oscillate between sub-1 ms (mmWave) and 30 ms (congested Wi-Fi) [9, 10].
Such volatility renders any a priori static split untenable.

Contemporary orchestration frameworks such as Kubernetes, Ray Serve, InferLine, and KubeEdge excel at container
or micro-batch scheduling but treat Al models as black boxes, lacking mechanisms for runtime layer re-partitioning or
privacy-aware placement [11].

Further, recent works, e.g., on jamming resilience for Split Federated Learning with LLMs [12], Federated Split
Learning for satellite-terrestrial networks [13], and on Split Federated Mutual Learning (SFML) for traffic classification
[14], address training-time collaboration, yet still assume fixed split points. Consequently, the key problem of join,
model-aware partition and placement under dynamic edge conditions remains open.

In this work, we address this problem by introducing an adaptive split inference orchestration framework, extending
existing workload orchestration systems with domain-specific capabilities that are specifically tailored for LFMs, such as
(multi-modal) LLMs. We introduce the following capabilities by leveraging the modular architecture of these models:

1. Distribution of workloads to edge nodes that offer better performance or operational capacity than the original
source node.

2. Redistribution of split LFM partitions across connected edge nodes to dynamically optimize resources under
changing conditions.

3. Adaptive reconfiguration of model splitting (e.g., re-splitting) to further improve performance and resource
utilization when required.

Our framework operates on the computational graph of the LFM itself, allowing decisions at the granularity
of individual transformer blocks. This enables QoS-driven re-splitting that commodity orchestrators cannot express.
Furthermore, since our solution emphasizes split inference, privacy can be implemented as an additional feature at no cost if
sensitive LFM layers can be executed locally, which makes reverse engineering data from model weights significantly more
challenging for attackers [15]. Through this approach, we establish a foundation for privacy-preserving, real-time, and
QoS-aware Al inference in edge networks, aligning with key 6G objectives of seamless connectivity, low inference latency,
and intelligent edge resource management [16]. Importantly, our framework elevates privacy guarantees by localizing
sensitive computations, thereby reducing regulatory exposure and aligning with emerging compliance standards.

Our contributions to the Edge Al landscape are multifold:

+ Areference architecture for adaptive orchestration of distributed inference workloads;

* A method for dynamic redistribution of model segments to accommodate fluctuating compute resources and
connectivity, and;

+ Establish mechanisms for real-time, Service-Level Agreement (SLA)-compliant partitioning that align inference
execution with QoS targets.

Computer Networks and Communications 112 | Fernando Koch, et al.

2. Background and Related Work

2.1 Large Foundation Models at the Edge

Next-generation 6G-enabled services, for example in dense urban environments, will need to support a multitude of
Al-driven applications underpinned by LFMs [17, 18]. However, deploying such large models typically requires significant
computational resources and raises privacy concerns when handling sensitive data, making their adoption particularly
challenging for inference in edge environments [19, 20]. Further, as organizations strive to keep data on-premise (e.g., for
regulatory compliance such as GDPR [8]), optimizing distributed inference becomes a critical enabler of low-latency and
privacy-preserving Al services [1, 21].

For that, next-generation networks make use of MEC infrastructures [22], which embed computing resources directly
within the network. While this brings compute closer to end-users, a single MEC-enabled base station can quickly become
saturated by various inference workloads such as from smart city and crowd management, personalized user applications,
or industrial applications [23]. Looking ahead, 6G is envisaged to evolve beyond a mere network infrastructure upgrade
into a trustworthy [24] and intelligent workload orchestration system, enabling distributed, LFM-based Al services that
seamlessly shift computation across user devices, edge, and cloud as network and compute conditions change [25, 26].

2.2 Challenges in AI Workload Orchestration

The current industry norm has been to integrate general-purpose orchestration platforms (e.g., Kubernetes or proprietary
MEC orchestrators), which facilitate application deployment and scaling but were not designed for challenges in inference
scaling of modern LFM architectures, including fine-grained model partitioning and real-time, potentially hardware-
accelerated inference optimization [27]. Existing solutions thus primarily target stateless services or relatively simple
microservices, neglecting the unique requirements of edge-based Al pipelines, particularly for dynamic model splitting,
QoS-driven scheduling, and adaptive resource reallocation [28].

In particular, in Edge Al scenarios involving LFMs, traditional workload orchestration platforms fall short of meeting
Edge Al-centric inference demands as they lack mechanisms to dynamically redistribute or reconfigure large model
partitions based on real-time changes in network conditions, node utilization, or connectivity [29]. While model-serving
stacks such as Triton, InferLine, Ray Serve, and MLC-Serve introduce batching or replica autoscaling, they still treat
neural networks as opaque binaries and cannot re-partition a model graph at runtime. Edge extensions like KubeEdge
and OpenYurt inherit the same pod-level abstraction, leaving the joint problem of runtime layer splitting and placement,
especially under privacy and QoS constraints, unaddressed (see Table 1).

Table 1. Comparison of capability coverage across mainstream workload orchestrators / serving stacks and our proposed Adaptive Split Orchestrator. /
indicates native support, X indicates the capability is absent, and entries in parentheses denote the mechanism (e.g., pods, replicas). Our framework
simultaneously (i) reasons over the layer graph, (ii) adapts split points and placements at runtime, (iii) schedules under explicit QoS/SLA targets, and (iv)
enforces privacy-aware layer placement.

Orcesraor LA Ramime Placmant o8 [y

Kubernetes X X (p(‘)/ds) X X
KubeEdge X X (edge/pods) X X
Ray Serve X X (rep‘l/icas) (laten;;/ tiers) X
NVIDIA Triton X X (inst. g’oups) (batch‘//queue) x
InferLine X X (rep‘l/icas) (tail-la/tency) X

EdgeShard [30] (0 el X X N/A
Ours v v v Y v

(runtime) (runtime) (SLA-aware) (layer scope)

Volume 3 Issue 2|2025| 113 Computer Networks and Communications

As a result:
+ Latency spikes occur when critical links become congested, delaying real-time applications.
+ Straggler problems arise when tasks are bottlenecked on overloaded or slower nodes, degrading overall QoS.

* Resource utilization becomes imbalanced, either overloading certain nodes or leaving others underutilized, leading
to missed SLAs.

* Privacy risks escalate when large volumes of sensitive data must be offloaded to remote servers due to inadequate
local processing.

While current research predominantly focuses on efficient Al model fraining (e.g., hardware-efficient training [31],
quantization [32], and federated learning [33]), the practical challenges of inference scaling and efficiency at the edge
remain relatively overlooked [1]. Yet, these inference-related challenges are increasingly critical for the widespread
adoption of LFMs in industrial and commercial scenarios, particularly in future A7 as a Service (AlaaS)-driven 6G networks
[17].

2.3 Distributed and Adaptive Split Inference

To alleviate computational demands, distributed split inference (DSI) [34] has emerged as an approach within Edge
Al, which partitions a model across different compute locations (e.g., client device, MEC node, cloud) to balance local
processing with remote offloading. Here, early, lightweight, or privacy-sensitive model layers are often chosen to be
executed locally on-device or on trusted MEC nodes, extracting compact feature maps to reduce data transmission overhead.
Subsequent layers are then offloaded to remote cloud environments and processed by more powerful servers [34, 35].

There are different techniques to distribute workloads on heterogeneous computing environments. For example,
the authors of [36, 37] proposed heuristics to distribute workloads among CPUs and GPUs (or any computing units),
monitoring their execution and dynamically adapting the overall scheduling giving changing conditions to, e.g., maximize
performance or minimize energy consumption.

Although DSI enables larger AI models to operate closer to data sources, current implementations predominantly
employ static splits defined a priori based on expected conditions, without runtime adaptation. While some studies, such
as EdgeShard [30], explore collaborative inference setups where a model is shared across edge nodes, these approaches
continue to lack dynamic orchestration of model splits and thus cannot effectively respond to real-world changes in edge
environments, such as fluctuating node workloads, intermittent connectivity, variable network reliability, or dynamically
changing service demands. As a result, traditional solutions frequently lead to suboptimal latency, inefficient resource
utilization, degraded service quality, and decreased compliance with QoS guarantees and SLAs [38]. Consequently, recent
research highlights the benefits of adaptive split inference, wherein partition points or even partition strategies (e.g., layer
reordering) can be reconfigured at runtime to maintain QoS under shifting conditions [28]. This approach, combined with
optimal orchestration policies, has the potential to cater to the increasingly demanding Al inference workloads in future
AlaaS 6G-enabled networks and edge environments.

In addition to inference, recent split learning approaches illustrate the state of today’s limitations from the model
training point of view. R-SFLLM [12] freezes an LLM split immediately after the embedding layer of a transformer so
that raw tokens never leave the device, and then analyses jamming resilience for that single layout. FedSL-LSTM [13]
for satellite-terrestrial anomaly detection pre-divides each LSTM into client- and server-side subnetworks before training
begins. The interface remains unchanged to keep gateway compute low and ground timing predictable. SFML [14] adopts
a fixed three-segment CNN in which only lightweight “head+tail” layers stay on edge routers while the compute-heavy
core runs in the cloud, simplifying privacy guarantees but eliminating runtime flexibility. Across all three studies, split
points are determined a priori and never migrated, leaving questions of dynamic re-splitting, QoS-driven placement, and
privacy-aware adaptation unanswered, precisely the gaps our adaptive orchestrator addresses. Table 2 summarizes these
representative frameworks, highlighting their fixed partitioning schemes and the lack of adaptive capabilities.

Computer Networks and Communications 114 | Fernando Koch, et al.

Thus, in standard implementations, orchestrators cannot dynamically decide to offload additional LFM layers to another
edge node or re-split the network, leaving significant performance and reliability gains unrealized. Note that this problem
does not originate from within the network itself as current 5G and future 6G architectures natively implement adaptive
resource management strategies for various services and network slices [39]. In current deployments, effectiveness thus
remains limited by the absence of real-time dynamic orchestration policies tailored explicitly to modern Al workloads and
complex LFM deployment scenarios. This is especially problematic for heterogeneous compute nodes, which complicates
uniform deployment strategies. Thus, a one-size-fits-all static partitioning rarely works, as local workloads, performance
constraints, and available resources differ from one site to another [19].

Table 2. Comparison of representative split learning frameworks with respect to their application context, model partitioning strategies, and (lack of)
adaptivity. While each approach adopts fixed split points to simplify deployment or privacy guarantees, none supports dynamic re-partitioning or runtime
migration, highlighting the need for adaptive orchestration in real-world, QoS-sensitive Edge Al scenarios.

R-SFLLM FedSL-LSTM SFML

Application Jamming-resilient FL with LLMs over LSTM anomaly detection in Encrypted-traffic classification on edge
6G wireless links satellite-terrestrial integrated networks routers + cloud

Split Layer After the embedding block; attention First LSTM layers on gateways; Lightweight head + tail on router; CNN
layers off-device remainder on ground server core in cloud

Adaptivity Static (single two-cut split, never moved Static (single two-cut split, never moved Static (single three-cut split, never moved
during training) during training) during training)

2.4 Key Design Goals for Adaptive LFM Split Inference

Despite evidence that splitting models can significantly improve efficiency and privacy, practical deployments remain
constrained by static or coarse-grained orchestration mechanisms [7, 40]. Today’s solutions thus seldom adapt to shifting
network or compute conditions in real time, leading to latency spikes, resource imbalances, and potential SLA and QoS
violations [41]. Meanwhile, next-generation 6G network architectures will further exacerbate the complexity of distributing
large-scale inference workloads across heterogencous edge topologies to support various commercial and operational
AlaaS applications [18].

Hence, an adaptive split inference framework will be required that:

1. Dynamically reconfigures the partition of LFM layers among edge and cloud compute nodes,
2. Exploits real-time profiling of resource availability and network conditions,

3. Preserves data privacy by keeping sensitive computations locally, and

4. Ensures consistent, QoS-compliant performance under fluctuating workloads.

In the next section, we propose a novel orchestration method that closes this gap by intelligently managing LFM
inference across edge compute infrastructures.

3. Proposal

Recall the dense urban environment scenario from earlier where multiple users split their inference workloads between
their local devices and an edge node (e.g., 5G-MEC). To this end, the LFMs must be partitioned accordingly, resulting in
several different split configurations depending on local compute capacity, privacy requirements, and edge node capacity.
In this scenario, we need to address the following three problems:

1. How to ensure that split inference can indeed take place on the assigned edge node given QoS and/or SLA
requirements?

Volume 3 Issue 2|2025| 115 Computer Networks and Communications

2. How to redistribute the split inference request to other candidate nodes in a connected region in case inference on
the originally assigned node is not possible?

3. How to dynamically revise suboptimal LFM splits to obtain the best possible configuration given the local- and
wide-area edge compute capacity?

To address these challenges, we propose an adaptive split inference orchestration framework that dynamically manages
LFM partitions across heterogeneous edge nodes. Figure 1 depicts a possible realization of this framework in a 5G/6G-MEC
deployment, including key components for monitoring, decision-making, model partitioning, and reconfiguration. We
outline a detailed reference architecture as follows.

L)

S1 (input) S2 (main)

Split Large AI-Model

S3 (output)
()0

s2
holds sub-split models
2

s3() Elastic
s16) Cloudservices DD 1nfia

workload-1
-al
, ()
X
] |
Sensors 56 = Workload Computing-
= : and Operating
Node 1 VEC 3 Orchestration Environment
) 4

Collect Data about

workload-2 Computing- Cp(t) and orch i Ontimizati
§ H» Operational Environment T P 10N Characteristics and
holds sub-split models o0 Op(t) from All / Sub-Set of Engine Distribution of Existing split

and sub-split models on 5G-
MEC region

Nodes l
S1(a) s3)

& ((é‘)
XX
tee]

Sensors =

56 T
Node 2 MEC

holds split model

S1 S3

virtualization

o

Classify: what are the
relevant features of
Workload-X?

v

Inference: what is the best <
Node-Y to distributed

Split Orchestrator (SO)
A method to orchestrate a

» workload distribution based on
the placement of split models
across MEC nodes

Split Revision (SR)
A method to invoke a model
w Splitrevision process (MSRP) to

Workload-X considering C(t)

li

Execute: Place Workload-X
to Node-Y

v

Execute: Place App-A or
Config-B to Node-Y

re-split and redistribute a sub-
optimal model splitting across
MEC nodes

Reconfiguration Broadcast
(RB)

> A method to broadcast the

redistributed split and sub-split
models across MEC nodes

«

PR

ik

i

Capacity Profiling (CP)
Amethod to evaluate the
capacity of a Node-X to
execute some split model
partition S_X* given the
current context

Model Re-Splitting (MR)
A method to re-split
models given specific
parameters

Model Deployment (MD)
Amethod to deploy a
(revised) split model S*
into a Node-X

Figure 1. Reference architecture of the proposed adaptive split inference orchestration. Sub-split models (S1, S2, S3) are deployed across edge/cloud
nodes, while a central orchestrator, guided by real-time capacity profiling, re-splits and reconfigures workloads on demand to meet QoS and privacy
constraints. A corresponding workflow diagram of our proposed Algorithm 1 is given in Figure 2.

3.1 Reference Architecture

Our framework orchestrates on-demand allocation and reallocation of LFM partitions under evolving operational
conditions via the following core modules:

1. Monitoring & Capacity Profiling (CP): Collects real-time metrics from edge nodes and the network environment,
such as CPU/GPU utilization, memory usage, bandwidth, and latency. These metrics guide the orchestrator in
partition placement and potential re-splitting decisions.

2. Adaptive Orchestrator (AO): Acts as the decision-making engine by evaluating whether to:

* Keep the current split (no changes).

Computer Networks and Communications 116 | Fernando Koch, et al.

* Redistribute sub-splits across underutilized or more capable nodes.

* Fully re-split the model to find an updated partition configuration.
These decisions are informed by constraints like node capacity, privacy requirements, and expected QoS.

3. Split Revision (SR): Implements the logic to re-partition the LFM at different layer boundaries or blocks. This
module may use heuristic, rule-based, or learning-based strategies to identify improved splits, respecting constraints
such as local privacy boundaries.

4. Reconfiguration Broadcast (RB): Propagates new model partitions or sub-partitions to the selected nodes and
updates local or remote orchestrators, ensuring future inference requests follow the revised configuration.

Our approach dynamically adapts split inference to fluctuating conditions while maintaining strict QoS and privacy
requirements by combining these modules. Although Kubernetes already offers node-level telemetry, a pod scheduler,
and ReplicaSet roll-outs, it treats the Al model as an opaque container. Instead, our Monitoring & CP module augments
the standard metrics stream with layer-granular latency, activation size, and privacy tags. The Adaptive Orchestrator
then optimizes both placement and split boundaries, whereas Kubernetes can only relocate whole pods. Finally, the
Reconfiguration Broadcast disseminates on-the-fly-generated weight shards and graph rewiring commands—operations
that cannot be expressed through a deployment update or Conf igMap patch. Collectively, these extensions lift orchestration
from container granularity to LFM-graph granularity, which is essential for runtime re-splitting under QoS and privacy
constraints.

The next subsections formalize the system model, define constraints, and describe the orchestration workflow for
LFMs in detail.

3.2 Notation and System Model

We define key terminologies and orchestration concepts that underlie our adaptive split inference framework as
follows.

Edge Nodes and Cloud. Let 4" = {1,2,...,n} denote the set of n edge nodes, and let ¢ refer to a (potential) cloud
node (more capacity but increased latency). Each node j € .4 U{c} has resource capacities for inference at time #, captured
via capacity profiling (CP) as:

CP(nj,t) = {CPU,(r), GPU,(r),Mem;(r), NetCap, (1) }, €))

which vary with concurrent workloads, hardware, and network conditions.
Model Partitioning. Consider an LFM .# segmented into k partitions or layers (e.g., from Transformer or neural
networks architectures):

S = {S17827"'aSk}' (2)

Typically, S| handles raw (potentially private) data, and S; generates the final outputs. Intermediate segments
S»,...,Sr—1 often encompass the bulk of computation (e.g., multi-head self-attention in Transformers). A three-split
example (S7,S52,53) might place S;,S3 on a local edge node (for privacy where user data is translated into/from vector
embeddings) and offload the compute-intensive S, to a more capable edge or cloud node. Depending on the specific
LFM architecture, splits may either be configured as self-contained building blocks (e.g., embeddings, self-attentions) or
individual layers (e.g., from deep or convolutional neural networks) [7, 12].

Inference Requests. Inference tasks arrive as requests {ry,r2,... }, each with an associated workload #;. At a high
level, each request utilizes the same model partitions {Sj, ..., Sy}, but may require separate scheduling decisions depending
on QoS constraints or real-time node capacities. We can treat each request as an instance of the partition assignment
problem or, if simultaneous requests must be handled, sum over their respective costs when formulating a corresponding
objective function.

Volume 3 Issue 2|2025| 117 Computer Networks and Communications

Decision Variables. For computational convenience, we define a binary placement matrix x = [x; ;|, where x; i=1
indicates partition S is assigned to node n;, and x. ; = 1 indicates assignment to the cloud node c. Each column corresponds
to a partition, and each row to a node in .4 U {c}. When multiple requests are considered, either the same x can be reused
if the system enforces a single partition layout, or a time/index extension can be introduced (e.g., X, for each request r).

With these concepts and terminologies in place, we may define an appropriate optimization objective as follows.

Objective Function. We aim to minimize the high-level cost:

D(x,€(1) = a L (x,C1))+ BU (x,€(t))+ v P (x,€(1)), 3)

where:
* £ measures inference latency, including data transfer.
* captures resource usage imbalance or node overload.
+ & penalizes privacy violations (e.g., placing sensitive partitions on untrusted nodes).
* a,f,7 > 0 weight the relative importance of latency, resource usage, and privacy, respectively.

Here, %' () encapsulates the system state at time #, including node capacities, network bandwidths, and any QoS or
SLA requirements. In scenarios with multiple concurrent requests, @ can be extended to represent the sum or average cost
across all active requests. In addition, to ensure valid assignments, we impose the following constraints:

1. Unique Assignment. Each partition S; must be placed on exactly one node:

Y xij+xej=1, Vjie{l,. .. k} 4)
ieN

2. Capacity Limits. For each node n; € .4/, the sum of resource loads from its assigned partitions cannot exceed that
node’ s capacity:

k
Y load(S;)x;; < capacity(n;,z).)
p=i

An analogous constraint applies to the cloud node c if cloud resources are finite.

3. Privacy Constraints. Partitions handling sensitive data (e.g., S|) must remain on trusted nodes:

x,j =0, ifn; ¢ trustedSet A (S; is privacy-critical). (6)

Further, if LFM layer boundaries can be modified (e.g., subdividing S, into {S24, 525}, as for example in neural
network layers, Tranformer embeddings and attentions, etc.), we may treat the set of partitions S itself as part of the
optimization. Herewith, we define the split revision as follows.

Split Revision. Let Q denote the set of all valid splitting schemes. The orchestrator aims to solve:

min D(x,S,€ (1)), (7

SeQ, x

to find an optimal split S* and assignment x* that minimize the overall cost subject to the constraints above. This allows
partitions and assignments to adapt dynamically to shifts in resource availability, privacy requirements, or workload
demands, initiated and managed by the adaptive orchestrator.

Computer Networks and Communications 118 | Fernando Koch, et al.

3.3 Orchestration Workflow

Algorithm 1 outlines the main orchestration steps. The workflow begins by deploying a baseline partitioning (e.g.,
(51,52,53)) among a set of nodes. The system then continuously monitors resource usage and performance metrics to
trigger dynamic adjustments.

1. Inmitial Deployment. Perform a static partitioning of the model based on coarse performance estimates (e.g., place
S1,83 locally for privacy, and put S, on a more powerful node or cloud instance c).

2. Continuous Monitoring. The Monitoring & CP module collects real-time metrics CP(n;,¢) and calculates an
environment state E(t) that captures fluctuations in node utilization, network throughput, or latency.

Algorithm 1: Adaptive Split Orchestration Workflow
Input: (i) Initial partitioning {S;,...,Sp}, (ii) baseline mapping dy, (iii) monitoring intervals Ar, (iv)
trigger-threshold vector ® = {Lmax, Umax, Bmin; Teool }
Initialize: Deploy baseline split (S1,...,Sp) across nodes as per dj.
Set f1ut ¢ —0

for each monitoring cycle t < 0,At,2At,... do
Collect environment metrics E(r) via Monitoring & CP.

reconf < ShouldReconfigure(E(?),0).
if (trigger condition is met, e.g., high latency, node overload, etc.) and reconf then
Evaluate feasible mappings {d’} given current partitions.

Optionally call Model Re-Splitting to produce new partitions {S; }.

Determine best mapping d = argmin, C(d").
ifd # dy and t — tias > Topor then

Broadcast reconfiguration to all affected nodes via RB.
L Hast < 15 diyar dA

| Resume inference under current assignment d;y .

3. Adaptive Decisions. Based on the updated system states & '(¢), E(z), the adaptive orchestrator continuously evaluates
whether to keep the current split (if performance remains within SLA targets), redistribute sub-splits (reassigning
some partitions S; from node n; to ny by adjusting x without altering the partition boundaries), or perform full
re-splitting (to obtain a better partition set S* via the SR module if incremental changes are insufficient or new
privacy constraints arise). More formally,

— The adaptive orchestrator evaluates whether the current partition mapping d; remains optimal under E(¢). For

each request r, the orchestrator checks:

?
€(d;) < €(d") VY feasibled'. (8)

If a lower-cost (or higher-utility) mapping d’ is found, a reconfiguration is triggered.

— If needed, the SR module modifies the set of partitions {Sj,...,Sp} (e.g., subdividing a large block S, into
new split configurations {S»,, 525 }), i.e.

d = argmin %(d), 9)
d € P (new splits)

subject to constraints (e.g., compute, network, privacy).

Volume 3 Issue 2[2025| 119 Computer Networks and Communications

4. Reconfiguration Broadcast (RB). Once a decision is made, the RB module disseminates the updated assignment x*
or partition set S* to relevant nodes, ensuring the new configuration is deployed consistently.

5. Execution. Inference resumes with the updated partition assignment d. The orchestrator continues to monitor
performance, forming a feedback loop, allowing the system to adapt further as conditions evolve.

Additional Trigger Conditions and Decision Logic. Table 3 summarizes the runtime metrics that feed the function
ShouldReconfigure(E(t),®) in Algorithm 1. The orchestrator invokes a reconfiguration if any of the following holds for
a monitoring window of length At:

1. Latency threshold. The exponentially weighted moving average (EWMA) of end-to-end inference latency L(z, At)
exceeds Limax, i.6. L(t,At) > Liax.

2. Utilisation threshold. The maximum GPU or CPU utilization across all nodes exceeds Upay, i.€., max,e_y U, (1) >
Umax'

3. Bandwidth drop. The minimum available bandwidth across any active edge link drops below By, i.e.,
min(iﬁj)eip Bi.f(t) < Bmin-

4. Privacy policy violation. A new inference request is tagged with the identifier privacy=high, but the current
partitioning would route raw features through an untrusted node.

Table 3. Monitored metrics and default trigger thresholds.

Metric Symbol Default value
EWMA latency Liax 150 ms
GPU/CPU utilisation Umax 0.85
Available link bandwidth (edge — edge) Bin 50 Mbps
Time-to-reconfigure cool-down Teool 30s

If multiple triggers fire simultaneously, the system first attempts placement migration. If that cannot meet all
constraints, the split-revision module is invoked. Reconfigurations are rate-limited by T, to prevent thrashing. The
full control loop of our adaptive orchestration algorithm is illustrated in Figure 2, detailing its monitoring, decision, and
reconfiguration stages.

Above outlined system model and orchestration workflow provide possible entry points for optimizations in real-world
deployments. In practice, such an orchestration loop can be integrated into existing container platforms (e.g., extending
Kubernetes with a custom controller that triggers model re-splitting when monitoring thresholds are exceeded). Partitioning
decisions may rely on traditional heuristics (e.g., rule-based or greedy approaches) or adopt learning-based schemes (e.g.,
reinforcement learning) to continuously refine splitting strategies [42—44]. Alternatively, Python-based pipelines could
invoke layer-partitioning heuristics based on state-of-the-art open-source frameworks, such as Huggingface, and broadcast
updates via RESTful APIs. These approaches enable straightforward adoption of adaptive split inference within both
on-premise and cloud-based edge deployments.

Computer Networks and Communications 120 | Fernando Koch, ef al.

Initialize:

deploy
baseline split
do, tase = —o°

1

EPSIRTIUVE
Collect

metrics <

E()

B

No

Resume Eval
under d; 5 feasible d’

maybe ReSplit

d
argmin ¢ (d'

Resume Broadcast
under d;as din —d

Nast <1

Resume
under d;;a;

[Wait &r
Tttt
Figure 2. Control-flow diagram of the adaptive split orchestration loop described in Algorithm 1. The orchestrator periodically monitors environment

metrics and triggers reconfiguration decisions when QoS thresholds or privacy constraints are violated. Feasible placements are evaluated, and, if no
cool-down limit is active, a new mapping is broadcast to all nodes.

3.4 Privacy and Security Considerations

A core feature behind split inference is the preservation of data privacy by ensuring critical or sensitive operations
remain on a trusted device or node. Thus, our framework permits:

1. Selective Local Execution: Some LFM blocks, especially those close to the input layer, may handle raw personal or
private data. By design, these partitions can be configured to remain on the user’s device or a trusted edge node (e.g.,
for compliance with GDPR). Formally, if S; handles privacy-critical data, we require that

dt(i> € mrusted Vta (10)

where Austed € A U {c} is the set of trusted nodes. Corresponding LFM splits can be obtained according to the
model architecture, compute resources and privacy requirements (e.g., measured as layer depth) [42].

2. Secure Communication Channels: Intermediate activations (e.g., outputs from S that serve as inputs to S») can be
additionally encrypted and transmitted securely to the next node in the chain. This ensures that eavesdropping or
tampering with partial model data (e.g., due to jamming wireless transmissions [12]) is substantially harder. Further,

Volume 3 Issue 2|2025| 121 Computer Networks and Communications

the RB component may include additional cryptographic signatures so that only valid reconfiguration commands
from the orchestrator are honored.

3. Partition Metadata Obfuscation: To further reduce risk, the orchestrator can store only references to partial model
weights or encrypted partitions in a registry accessible to each node, such that no single node (other than the one
hosting a given partition) stores the raw weights.

Our orchestration framework thus extends standard orchestration platforms but adds specialized components for
real-time capacity profiling, model splitting, and reconfiguration in response to varying network and compute conditions.
By leveraging partial splits of LFM layers, the framework also inherently supports privacy-preserving inference at the
edge, ensuring that sensitive data never leaves a trusted domain.

4. Use Cases

4.1 Emergency Coordination in Smart Cities

In a highly connected smart city environment, where autonomous Al agents are responsible for managing infrastructure,
monitoring public safety, and responding to critical incidents [17], large-scale Al inference is crucial for maintaining
operational efficiency. During emergency scenarios, such as regional blackouts, cyber-attacks on urban infrastructure, or
natural disasters, adaptive split inference ensures real-time decision-making despite fluctuating resource availability.

Consider a scenario where a massive earthquake disrupts transportation networks, damages critical infrastructure, and
impairs traditional cloud connectivity. Smart city Al agents deployed across distributed MEC nodes can play a pivotal
role in orchestrating emergency response through Al Agents for Autonomous Coordination, i.e. specialized Al agents
trained for disaster response. This can be part of infrastructure monitoring bots, autonomous drones, and emergency
service assistants, which rely on continuous, high-throughput Al inference. For instance, these agents need to process
high-dimensional multi-modal data, including real-time video, LiDAR scans, and sensor data from loT devices to provide
continuous responses.

In this environment, Adaptive Model Deployments are initially instantiated as foundation model partitions, which are
distributed across MEC nodes based on predefined computational capabilities and expected workloads. As infrastructure
degradation leads to unstable connectivity and hardware failures, the system dynamically adjusts model partitions across
available MEC nodes. For instance, if an Al agent controlling autonomous emergency drones detects a surge in demand
for real-time object detection (e.g., identifying survivors in debris), the system triggers split revision SR to redistribute
workloads efficiently. Consequently, when an MEC node reaches its computational threshold due to a high influx of
emergency data streams, the Reconfiguration Broadcast RB mechanism ensures that Al agents can offload inference tasks to
alternative nodes with idle capacity. The system dynamically revises the model split S = (S1,52,53) into a more optimized
configuration §* = (S7,53,53), continuously adapting to the dynamic conditions to maintain operational efficiency and
robust performance.

4.2 Industry 4.0 Manufacturing Lines

Modern manufacturing floors increasingly integrate edge Al for tasks like predictive maintenance, anomaly detection,
and quality control, often under tight latency requirements. In such environments, multiple MEC nodes (e.g., private 5G/6G-
MEC base stations) may handle continuous data streams from high-speed sensors and robotic arms. When production ramps
up unexpectedly, compute workloads spike and nodes near their capacity limits. The orchestrator then responds accordingly
by reassigning or re-splitting the inference model across less-loaded nodes, preventing bottlenecks. Privacy-constrained
segments, such as those inspecting proprietary designs, remain on trusted hardware, while more generic modules can be
offloaded seamlessly to boost throughput.

Computer Networks and Communications 122 | Fernando Koch, ef al.

4.3 Autonomous Vehicles and Intelligent Transport Systems

Vehicle-to-infrastructure (V2I) services increasingly rely on advanced Al models for collision avoidance, route
planning, and traffic flow optimization. Edge nodes at roadside units (RSUs) offer local compute to complement on-board
vehicle processors, reducing latency while offloading computationally heavy layers. In busy urban corridors, traffic
sensors and autonomous cars generate significant inference workloads. If congestion surges or a particular RSU becomes
overloaded, the orchestrator redistributes model partitions among neighboring edge nodes, ensuring split inference scales
effectively. Such real-time adaptivity allows vehicles to maintain continuous, low-latency awareness, meeting strict safety
and efficiency standards that are critical in next-generation transport systems.

5. Expected Results and Quantitative Benefits

Table 4. Quantitative comparison of static and adaptive split inference across key performance dimensions in edge environments. Results are sourced
from prior studies and testbed evaluations of LLM deployments over 5G-MEC infrastructures [28, 43, 45-49]

Performance Dimension

Static Split Inference

Adaptive Split Inference

Latency (End-to-End)

Throughput

Resource Utilization

QoS Compliance (SLA HitRate)

Reliability & Failover

Privacy Adherence

High variance; ~ 500-1000 ms typical in 5G-MEC
scenarios. Cannot guarantee low latency under
network fluctuation (may spike beyond 1 s).

Limited by weakest link (device or network); lower
overall. < 1req/s on a baseline edge device alone.

~ 50-60% of available edge / cloud resources used.

Static partition leads to idle resources on one side and
potential overload on the other.

Often poor under variability. QoS deadlines met in
~ 60-70% of cases; frequent SLA violations when
conditions deviate from design point.

Rigid deployment; single-point bottlenecks. ~ 5-10
inference failures or timeouts per hour observed under
load/network issues.

Moderate. Fixed layer offload may send sensitive
features off device. No ability to alter behavior for

sensitive data—potential compliance issues.

Low and stable; ~ 100-300 ms under same conditions.
Dynamically maintains latency below target (often
50%-+ faster than static).

Higher via parallelism and load balancing; utilizes
multiple nodes. Achieved > Sreq/s in adaptive multi-
node setup (> 5x higher).

~ 80-95% resource utilization. Orchestrator keeps
both edge and cloud busy, scaling across nodes; more
efficient use of CPU, GPU, and bandwidth.

Near-guaranteed QoS even as conditions change. ~
95-99% of requests meet latency/SLA targets due to
real-time adaptation (much fewer deadline misses).

Resilient, with dynamic re-routing and re-partitioning.
Downtime incidents reduced to ~ 0-2 per hour.
Maintains service continuity by avoiding overloads.

High. Can execute sensitive layers locally and limit
data exposure. Adaptive policy balances performance
with data confidentiality (privacy preserved without
sacrificing QoS).

Table 4 presents a comparative analysis derived from prior studies, experimental testbeds, and empirical estimates for
a representative 5G-MEC-enabled edge environment serving text-generation LLMs ranging from 7B to 13B parameters.
For further technical depth and context, we refer to the comprehensive evaluations in [28, 43, 45-49].

In particular, it becomes evident that adaptive split inference offers significant improvements across multiple
operational dimensions. First, it consistently achieves lower and more stable end-to-end latency, typically maintaining
inference response times within 100-300 ms, even under fluctuating SG-MEC conditions, whereas static configurations
frequently exceed 500ms with high variance. This translates to a latency reduction of over 50% in representative scenarios.
Second, throughput is substantially improved: adaptive orchestration enables parallel execution across distributed nodes,
reaching over 5 req/s compared to sub-1 req/s throughput observed in static, single-device deployments.

Resource utilization also benefits considerably. Static splits often lead to underutilized compute on one end (e.g.,
idle cloud GPUs) and overloading on the other, capping effective usage at 50-60%. In contrast, adaptive orchestration
dynamically balances workloads, yielding sustained utilization rates of 80-95% across edge and cloud components. This
directly contributes to higher QoS adherence: while static inference often fails to meet SLA constraints during network or

Volume 3 Issue 2|2025| 123 Computer Networks and Communications

load fluctuations, achieving target latency in only 60—70% of cases, adaptive inference maintains compliance for 95-99%
of requests through real-time partition and placement adjustments.

Further, reliability under stress is markedly improved. Static deployments are prone to bottlenecks and failure
cascades, with up to 10 inference errors or timeouts per hour observed under load. Adaptive strategies mitigate this
via failover-aware routing and reconfiguration, reducing service interruptions to near-zero levels. In addition, privacy
adherence is strengthened. While static splits may expose sensitive intermediate representations to untrusted infrastructure
which can be targeted by malicious attackers, the adaptive approach can selectively retain privacy-critical layers on-device,
enabling compliance with confidentiality requirements without degrading system performance.

Table 5 summarizes the discussed median figures reported across four public SG-MEC studies [30, 43, 49, 50] and
corresponding latency distributions are visualized in Figure 3 (static vs. adaptive CDF). The adaptive curve reaches the
95 % completion mark below 300 ms, while the static curve stretches beyond 1s, highlighting the practical QoS benefit of
adaptive orchestration at runtime.

Table 5. Static vs. adaptive split inference for text-generation LLMs in typical 5G-MEC deployments (median values across the studies in [30, 43, 49, 50]).

Metric Static Split Adaptive Split
End-to-end latency 500-1000 ms 100-300 ms
Throughput (requests s~ 1) ~1 ~5
GPU/CPU utilisation 50-60 % 80-95%
SLA hit-rate (400 ms budget) 60-70% 95-99 %
Downtime incidents (per h) 5-10 0-2
Privacy compliance Moderate High

Across all evaluative dimensions (latency, throughput, utilisation, QoS robustness, and privacy), adaptive split
inference consistently outperforms any static configuration. The small overhead of monitoring (<10 ms per cycle) and
graph rewiring is amortised by hundreds of ms saved per request, yielding a net performance gain an order of magnitude
larger than the orchestration cost. Consequently, adaptive split inference emerges as the decisive design choice for LLM
deployment in heterogeneous, bandwidth-variable 5G/6G edge networks.

Inference Latency Distribution: Static vs Adaptive Split

- 1.0} e e e T e
9] 1
ko] /
a I
€ 0.8 /
o 1
) /
7)) !
Soe6f /
c I
o /
kS /
£ 04r /
kS /
c 1
202t !
% /' Static Split
C / ——=- Adaptive Split
0 O II 1 1 1 1 1
0 200 400 600 800 1000

Inference Latency (ms)

Figure 3. CDF of end-to-end inference latency for static (solid) vs. adaptive (dashed) split inference in a SG-MEC scenario. 95 % of adaptive requests
finish within 300 ms, while static requests may take up to 1s [30, 43, 49, 50].

Computer Networks and Communications 124 | Fernando Koch, ef al.

6. Conclusions

This study has introduced an adaptive split inference orchestration framework designed to dynamically manage LFM
partitions across heterogeneous edge nodes, addressing the inefficiencies inherent in static split inference methodologies.
Our framework establishes a foundation for real-time, QoS-aware, and privacy-preserving Al inference in edge computing
environments, which is particularly crucial for latency-sensitive and resource-constrained applications. The proposed
approach optimizes performance, enhances resource efficiency, and fortifies privacy preservation by leveraging real-time
monitoring, workload redistribution, and dynamic reconfiguration. In contrast to existing orchestration frameworks, we
do not treat Al models as opaque containers, but instead support runtime model re-partitioning and privacy-aware layer
placement, capabilities essential for deploying LFMs in dynamic edge environments. Our proposed orchestration model
thus aligns with emerging objectives in the development of 6G networks by enabling intelligent, distributed Al processing
at the edge. Its modular architecture facilitates integration with existing edge orchestrators while maintaining extensibility
for future Al-driven optimizations.

To validate the practical relevance of our framework, we provided a comparative analysis grounded in prior studies,
testbed results, and empirical evaluations. These results demonstrate consistent gains across latency, throughput, resource
utilization, reliability, and privacy adherence, reinforcing the value of adaptive orchestration for real-world edge inference
given the complexity of future foundation model deployments.

Nevertheless, several research directions emerge to further advance adaptive inference orchestration. Proposed and
necessary items for a research agenda on future work include:

1. Investigating the deeper integration of Al-driven decision-making mechanisms, including reinforcement learning-
based optimizations, to enhance inference orchestration.

2. Developing advanced privacy-preserving techniques, such as secure multi-party computation and homomorphic
encryption, to ensure robust data security in distributed inference environments.

3. Designing adaptive network-aware partitioning strategies that dynamically adjust inference workload distribution
based on real-time network conditions to optimize resource utilization and latency minimization.

4. Establishing standardized benchmarks and datasets for evaluating the performance of split inference frameworks in
edge computing environments.

Beyond technical extensions, domain-specific deployments in autonomous systems, healthcare, and industrial
automation present high-impact opportunities. For instance, we are working on an extension of our technology around
augment reality in field operations [51] to improve local reasoning through distributed inference. We are also revising our
previous idea about mesh-computing (grid computing) in management of telecommunication networks [52], applying this
technology in distributed management for MEC environments. Likewise, examining the role of edge-driven inference in
reducing energy consumption and enabling sustainable Al operations across smart cities and [oT ecosystems opens new
interdisciplinary research avenues. Addressing these challenges will be essential to realizing scalable, trustworthy, and
privacy-preserving AlaaS architectures in the forthcoming 6G edge landscape.

Acknowledgment

This paper provides a scholarly description of the published Patent U520250071069A1 [53], along with references
to published Patent US18/449811 [54], which have been conceived and authored while the authors were employed at
International Business Machines (IBM). IBM is the current assignee of both patent applications. Mr. Djuhera was supported
by the German Federal Ministry of Research, Technology and Space (BMFTR) under Grant 16KISK002, as part of the
6G — life research hub for the preparation of this manuscript and the supplementary experiments being presented.

Volume 3 Issue 2|2025| 125 Computer Networks and Communications

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

[1] Zhou Z, Ning X, Hong K, Fu T, Xu J, Li S, et al. A survey on efficient inference for large language models. 2024.
Available from: https://arxiv.org/abs/2404.14294. [Accessed 8 Mar 2025].

[2] Vaswani A, Shazeer N, Parmar J, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in Neural
Information Processing Systems. 2017; 30: 5998-6008.

[3] Grattafiori A, Dubey A, Jauhri A, Pandey A, Kadian A, Al-Dahle A, et al. The Llama 3 herd of models. 2024. Available
from: https://arxiv.org/abs/2407.21783. [Accessed 8 Mar 2025].

[4] Yang A, Li A, Yang B, Zhang B, Hui B, Zheng B, et al. Qwen3 technical report. 2025. Available from: https:
//arxiv.org/abs/2505.09388.

[5] Zhang X, Nie J, Huang Y, Xie G, Xiong Z, Liu J, et al. Beyond the cloud: edge inference for generative large language
models in wireless networks. IEEE Transactions on Wireless Communications. 2024; 23(8): 7894-7908.

[6] Karjee J, Naik SP, Anand K, Bhargav VN. Split computing: DNN inference partition with load balancing in loT-edge
platform for beyond 5G. Measurement: Sensors.2022; 23: 100409.

[71 Karjee J, Anand K, Bhargav VN, Naik PS, Dabbiru RBYV, Srinidhi N. Split computing: dynamic partitioning and
reliable communications in loT-edge for 6G vision. In: 2021 8th International Conference on Future Internet of
Things and Cloud (FiCloud); 2021 Aug 23-25; Virtual Conference. IEEE; 2021. p. 233-240.

[8] European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and
of the Council. Available from: https://data.curopa.eu/eli/reg/2016/679/0j. [Accessed 8 Mar 2025].

[9] Struye J, Lemic F, Famaey J. Towards ultra-low-latency mmWave Wi-Fi for multi-user interactive virtual reality. In:
GLOBECOM 2020 IEEE Global Communications Conference; 2020 Dec 7-11; Taipei, Taiwan. IEEE; 2020. p. 1-6.

[10] Lau I, Ekpo S, Zafar M, Ijaz M, Gibson A. Hybrid mmWave-LiFi 5G architecture for reconfigurable variable latency
and data rate communications. /[EEE Access. 2023; 11: 42850-42861.

[11] Vasireddy I, Ramya G, Kandi P. Kubernetes and Docker load balancing: state-of-the-art techniques and challenges.
International Journal of Innovative Research in Engineering and Management. 2023; 10(6): 49-54.

[12] Djuhera A, Andrei VC, Li X, Monich UJ, Boche H, Saad W. R-SFLLM: jamming resilient framework for split
federated learning with large language models. 2024. Available from: https://arxiv.org/abs/2407.11654. [Accessed 8
Mar 2025].

[13] Jiang W, Han H, Zhang Y, Mu J. Federated split learning for sequential data in satellite-terrestrial integrated networks.
Information Fusion. 2024; 103: 102141.

[14] Xia J, Wu M, Li P. SFML: a personalized, efficient, and privacy-preserving collaborative traffic classification
architecture based on split learning and mutual learning. Future Generation Computer Systems. 2025; 162: 107487.

[15] XuR, Baracaldo N, Joshi J. Privacy-preserving machine learning: methods, challenges and directions. 2021. Available
from: https://arxiv.org/abs/2108.04417. [Accessed 8 Mar 2025].

[16] Letaief KB, ShiY, Lu J, Lu J. Edge artificial intelligence for 6G: vision, enabling technologies, and applications.
IEEE Journal on Selected Areas in Communications. 2021; 40(1): 5-36.

[17] Saad W, Hashash O, Thomas CK, Chaccour C, Debbah M, Mandayam N, et al. Artificial general intelligence
(AGI)-native wireless systems: a journey beyond 6G. 2024. Available from: https://arxiv.org/abs/2405.02336.

[18] Zhou H, Hu C, Yuan Y, Cui Y, Jin Y, Chen C, et al. Large language model (LLM) for telecommunications: a
comprehensive survey on principles, key techniques, and opportunities. IEEE Communications Surveys & Tutorials.
2024; 26(3): 1568-1602.

[19] LiB, Jiang Y, Gadepally V, Tiwari D. LLM inference serving: survey of recent advances and opportunities. 2024.
Available from: https://arxiv.org/abs/2407.12391. [Accessed 8 Mar 2025].

[20] Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y. A survey on large language model (LLM) security and privacy: the
good, the bad, and the ugly. High-Confidence Computing. 2024; 4: 100211.

[21] LiE, Zeng L, Zhou Z, Chen X. Edge Al: on-demand accelerating deep neural network inference via edge computing.
IEEE Transactions on Wireless Communications. 2019; 19(1): 447-457.

Computer Networks and Communications 126 | Fernando Koch, ef al.

https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://data.europa.eu/eli/reg/2016/679/oj
https://arxiv.org/abs/2407.11654
https://arxiv.org/abs/2108.04417
https://arxiv.org/abs/2405.02336
https://arxiv.org/abs/2407.12391

[22] Filali A, Abouaomar A, Cherkaoui S, Kobbane A, Guizani M. Multi-access edge computing: a survey. [EEE Access.
2020; 8: 197017-197046.

[23] Lin Z, Qu G, Chen Q, Chen X, Chen Z, Huang K. Pushing large language models to the 6G edge: vision, challenges,
and opportunities. 2023. Available from: https://arxiv.org/abs/2309.16739. [Accessed 8 Mar 2025].

[24] Fettweis GP, Boche H. On 6G and trustworthiness. Communications of the ACM. 2022; 65(4): 48-49.

[25] Camelo M, Cominardi L, Gramaglia M, Fiore M, Garcia-Saavedra A, Fuentes L, et al. Requirements and specifications
for the orchestration of network intelligence in 6G. In: 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC); 2022 Jan 8-11; Las Vegas, NV, USA. IEEE; 2022. p. 1-9.

[26] Zeb S, Rathore MA, Hassan SA, Raza S, Dev K, Fortino G. Toward Al-enabled NextG networks with edge intelligence-
assisted microservice orchestration. IEEE Wireless Communications. 2023; 30(3): 148-156.

[27] Chen W, Zhu Y, Liu J, Chen Y. Enhancing mobile edge computing with efficient load balancing using load estimation
in ultra-dense network. Sensors. 2021; 21(9): 3135.

[28] ChenY, Li R, Yu X, Zhao Z, Zhang H. Adaptive layer splitting for wireless LLM inference in edge computing: a
model-based reinforcement learning approach. 2024. Available from: https://arxiv.org/abs/2406.02616. [Accessed 8
Mar 2025].

[29] Carrion C. Kubernetes scheduling: taxonomy, ongoing issues and challenges. ACM Computing Surveys. 2022; 55(7):
1-37.

[30] Zhang M, Shen X, Cao J, Cui Z, Jiang S. EdgeShard: efficient LLM inference via collaborative edge computing.
IEEE Internet of Things Journal. 2024; 11(5): 7894-7908.

[31] Duan J, Zhang S, Wang Z, Jiang L, Qu W, Hu Q, et al. Efficient training of large language models on distributed
infrastructures: a survey. 2024. Available from: https://arxiv.org/abs/2407.20018.

[32] Lang J, Guo Z, Huang S. A comprehensive study on quantization techniques for large language models. In: 2024
4th International Conference on Artificial Intelligence, Robotics, and Communication (ICAIRC); 2024 Jun 15-17;
Singapore. IEEE; 2024. p. 224-231.

[33] YaoY, Zhang J, Wu J, Huang C, XiaY, Yu T, et al. Federated large language models: current progress and future
directions. 2024. Available from: https://arxiv.org/abs/2409.15723. [Accessed 8 Mar 2025].

[34] Mohammed T, Joe-Wong C, Babbar R, Francesco MD. Distributed inference acceleration with adaptive DNN
partitioning and offloading. In: /JEEE INFOCOM 2020 IEEE Conference on Computer Communications; 2020 Jul
6-9; Virtual Conference. IEEE; 2020. p. 854-863.

[35] Timor N, Mamou J, Korat D, Berchansky M, Pereg O, Wasserblat M, et al. Distributed speculative inference
(DSI): speculation parallelism for provably faster lossless language model inference. 2025. Available from: https:
//arxiv.org/abs/2405.14105. [Accessed 8 Mar 2025].

[36] Binotto APD, Pereira CE, Kuijper, A, Stork A, Fellner DL. An Effective Dynamic Scheduling Runtime and Tuning
System for Heterogeneous Multi and Many-Core Desktop Platforms. In: /EEE International Conference on High
Performance Computing and Communications. 2011. p. 78-85.

[37] Binotto APD, Wehrmeister MA, Kuijper A, Pereira CE. Sm@rtConfig: A Context-Aware Runtime and Tuning System
using an Aspect-Oriented Approach for Data Intensive Engineering Applications. Control Engineering Practice.
2013; 21(2). 204-217.

[38] Hudson N, Khamfroush H, Baughman M, Lucani DE, Chard K, Foster I. QoS-aware edge Al placement and scheduling
with multiple implementations in FaaS-based edge computing. Future Generation Computer Systems. 2024; 157:
250-263.

[39] Thantharate A, Beard C. ADAPTIVEG6G: adaptive resource management for network slicing architectures in current
5G and future 6G systems. Journal of Network and Systems Management. 2023; 31(1): 9.

[40] Zhou L, Wen H, Teodorescu R, Du DH. Distributing deep neural networks with containerized partitions at the edge. In:
2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19); 2019 Jul 11; Renton, WA, USA. USENIX;
2019.

[41] LiY, Wang X, Gan X, Jin H, Fu L, Wang X. Learning-aided computation offloading for trusted collaborative mobile
edge computing. /EEE Transactions on Mobile Computing. 2019; 19(12): 2833-2849.

[42] Li X, Bi S. Optimal Al model splitting and resource allocation for device-edge co-inference in multi-user wireless
sensing systems. /EEE Transactions on Wireless Communications. 2024; 23(9): 11094-11108.

[43] Tuli S, Casale G, Jennings N R. SplitPlace: Al augmented splitting and placement of large-scale neural networks in
mobile edge environments. 2022. Available from: https://arxiv.org/abs/2205.10635.

Volume 3 Issue 2|2025| 127 Computer Networks and Communications

https://arxiv.org/abs/2309.16739
https://arxiv.org/abs/2406.02616
https://arxiv.org/abs/2407.20018
https://arxiv.org/abs/2409.15723
https://arxiv.org/abs/2405.14105
https://arxiv.org/abs/2405.14105
https://arxiv.org/abs/2205.10635

[44] Lien S-Y, Yeh C-H, Deng D-J. Optimum splitting computing for DNN training through next generation smart networks:
a multi-tier deep reinforcement learning approach. Wireless Networks. 2024; 30(3): 1737-1751.

[45] International Telecommunication Union (ITU). IMT-2020 (5G) standard: minimum requirements related to technical
performance for IMT-2020 radio interface(s). International Telecommunication Union; 2020. Available from: https:
/Iwww.itu.int/pub/R-REP-M.2410-2020. [Accessed 8 Mar 2025].

[46] Sarah A, Nencioni G, Khan MMI. Resource allocation in multi-access edge computing for 5G-and-beyond networks.
Computer Networks. 2023; 227: 109720.

[47] XuY, Gui G, Gacanin H, Adachi F. A survey on resource allocation for 5G heterogeneous networks: current research,
future trends, and challenges. I[EEE Communications Surveys & Tutorials. 2021; 23(2): 668-695.

[48] Karjee J, Naik SP, Srinidhi N. Energy profiling based load-balancing approach in loT-edge for split computing. In:
2021 IEEE 18th India Council International Conference (INDICON); 2021 Dec 19-21; Guwahati, India. IEEE; 2021.
p. 1-6.

[49] Zhang G, Guo W, Tan Z, Jiang H. AMP4EC: adaptive model partitioning framework for efficient deep learning
inference in edge computing environments. 2025. Available from: https://arxiv.org/abs/2504.00407. [Accessed 8 Mar
2025].

[50] Mudvari A, Vainio A, Ofeidis I, Tarkoma S, Tassiulas L. Adaptive compression-aware split learning and inference for
enhanced network efficiency. 2024. Available from: https://arxiv.org/abs/2311.05739. [Accessed 8 Mar 2025].

[51] Beloglazov A, Koch FL, Richter J, Steer K. Augmented reality recommendations in emergency situations. US Patent
14976512. 2017 Jun 22.

[52] Assuncao MD, Koch FL, Westphall CB. Grids of agents for computer and telecommunication network management.
Concurrency and Computation: Practice and Experience. 2004; 16(5). 413-424.

[53] Djuhere A, Binotto APD, Koch FL, High R. Orchestration of workloads involving an AI model. US Patent
20250071069A1. 2025 Feb 27.

[54] Djuhera A, Binotto APD, Koch FL, Angel NB. Distributed execution of an artificial intelligence model. US Patent
18449811. 2024 Dec 19.

Computer Networks and Communications 128 | Fernando Koch, ef al.

https://www.itu.int/pub/R-REP-M.2410-2020
https://www.itu.int/pub/R-REP-M.2410-2020
https://arxiv.org/abs/2504.00407
https://arxiv.org/abs/2311.05739

	Introduction
	Background and Related Work
	Large Foundation Models at the Edge
	Challenges in AI Workload Orchestration
	Distributed and Adaptive Split Inference
	Key Design Goals for Adaptive LFM Split Inference

	Proposal
	Reference Architecture
	Notation and System Model
	Orchestration Workflow
	Privacy and Security Considerations

	Use Cases
	Emergency Coordination in Smart Cities
	Industry 4.0 Manufacturing Lines
	Autonomous Vehicles and Intelligent Transport Systems

	Expected Results and Quantitative Benefits
	Conclusions

