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Abstract: Sixth-Generation (6G) networks require autonomous and ultra-low-latency protection against rapidly evolving

threats. We present a hierarchical self-protection framework that integrates edge streaming detectors with a federated

learning layer and a Service Level Agreement (SLA)-aware policy engine for graduated isolation at both slice and

device granularity. The framework introduces: (i) an intent-driven threat-to-playbook compiler aligned with the MITRE

Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) framework for Telecom, (ii) adaptive score fusion

guided by service context, and (iii) a reproducible pipeline that supports privacy-preserving training. Evaluated on an

emulated Open Radio Access Network (O-RAN) testbed and documented synthetic traces, the system maintains end-to-end

detection-to-action delays in 5-10 milliseconds while outperforming competitive baselines in F1 score. The configuration

files and seeds are released to ensure complete reproducibility. The measured detection-to-action time Tdet→act achieves a

median of 5.6 milliseconds (95th percentile 9.8 milliseconds) at traffic speeds up to 12,000 flows per second. A two-hour

shadow-mode pilot on mirrored Multi-access Edge Computing (MEC) traffic further validates sub-10-millisecond 95th-

percentile action loops under real operational load.

Keywords: Sixth-Generation (6G) security, Artificial Intelligence (AI)-driven intrusion detection, federated learning,

explainable AI, network slicing, autonomous isolation

1. Introduction

Problem: Sixth-Generation (6G) introduces ultra-dense, multi-domain fabrics where static Intrusion Detection

System/Intrusion Prevention System (IDS/IPS) cannot adapt to zero-day and cross-layer attacks under tight latency/energy

constraints. Goal: Enable autonomous detection→ explanation→ isolationwith predictable latency and privacy-preserving

learning. Contributions: (1) A formal system & threat model with a TelecomAdversarial Tactics, Techniques and Common

Knowledge (ATT&CK) mapping that links assets→ observables→ mitigations. (2) A hybrid IDS with adaptive fusion

across supervised/unsupervised/deep detectors conditioned on service context. (3) A federated-continual learning protocol

tailored to non-Independent and Identically Distributed (IID) 6G edge data with secure aggregation and drift handling.

(4) An Service Level Agreement (SLA)-aware policy engine that compiles threats into graduated slice/device isolation

playbooks. (5) A reproducible evaluation (configs, seeds, hardware details) with baselines and latency/resource breakdown.
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The evolution from Fifth-Generation (5G) to Sixth-Generation (6G) networks is expected to revolutionize wireless

communications by enabling data rates on the order of terabits per second, sub-millisecond latency, and truly ubiquitous

connectivity. Unlike previous generations, 6G will integrate heterogeneous infrastructures across terrestrial, aerial, satellite,

and underwater domains, thus creating a unified fabric that supports mission-critical applications such as autonomous

vehicles, extended reality, digital twins, and remote healthcare. However, such diverse and ultra-dense environments will

dramatically expand the attack surface, raising unprecedented challenges in terms of security, privacy, and resilience [1, 2].

Traditional intrusion detection and response mechanisms, often based on static signatures or reactive defenses, cannot

scale to the dynamic and high-speed environment of 6G. They suffer from limited adaptability to zero-day attacks, high

false-positive rates, and an inability to provide autonomous mitigation without human intervention. Consequently, ensuring

trustworthiness in 6G requires a paradigm shift towards intelligent self-protecting security mechanisms that can adapt to

evolving threats in real time [3, 4].

Artificial Intelligence (AI) and Machine Learning (ML) have recently emerged as key enablers in the design of

autonomous and adaptive security solutions. In the context of 6G,AI-driven approaches can provide continuous monitoring,

anomaly detection, and dynamic decision-making across multiple network layers. Furthermore, the use of federated

learning allows distributed training of intrusion detection models without centralizing sensitive data, thereby improving

scalability and preserving privacy. Explainable AI (XAI) also contributes to building trust by providing interpretable

insights into automated security decisions [5, 6].

In this paper, we propose an AI-driven self-protection framework for 6G networks, which autonomously detects and

isolates vulnerabilities in real time. Our framework integrates supervised and unsupervised learning for intrusion detection,

federated learning for collaborative model training, and slice-level isolation to contain potential threats without disrupting

critical services. By combining detection, explanation, and autonomous response, our approach enhances the resilience

and trustworthiness of 6G infrastructures, paving the way towards self-healing networks.

Why now (evidence). Recent measurements indicate that (i) volumetric DDoS against mobile cores grew by about

38% year-over-year (2023-2024) with short, bursty attacks dominating edge links [7, 8], (ii) operator incident reports cite

elevated control-plane probing and API abuse in SBA functions [8, 9], and (iii) device proliferation (5G/IoT) pushes the

protected endpoint base beyond 5 billion, widening the telemetry and enforcement perimeter [9–11].

Scientific novelty vs. prior art. Unlike prior 5G/6G IDS that (i) assume centralized inference or (ii) stop at dashboard-

level alerts, our framework (a) co-locates streaming, lightweight detectors at MEC with federated-continual training for

non-IID traffic, (b) compiles intent→ATT&CK→playbook mappings into SLA-aware actions with rollback, and (c) enforces

auditable mitigation under single-digit millisecond budgets on Open Radio Access Network (O-RAN)/Multi-access Edge

Computing (MEC).

2. Related work and background

Security in mobile communication networks has been extensively studied in the context of Fourth-Generation (4G) and

Fifth-Generation (5G) systems. In 5G, Intrusion Detection Systems (IDS) primarily focus on monitoring traffic patterns,

applying signature-based detection, or leveraging machine learning techniques for anomaly detection [12, 13]. Although

these methods demonstrate notable detection capabilities, they often face limitations in scalability, adaptability to evolving

attack types, and latency when deployed in heterogeneous and large-scale environments.

With the advent of Sixth-Generation (6G) networks, the attack surface expands significantly due to the integration of

terrestrial, aerial, space, and underwater domains, combined with the proliferation of Internet of Things (IoT) and Internet of

Nano-Things (IoNT) devices and mission-critical services. Early studies highlight the importance of Artificial Intelligence

(AI) for adaptive protection mechanisms and the role of network slicing in achieving fine-grained security isolation [14, 15].

Additional work explores blockchain-based trust establishment and spectrum sharing [16], while quantum communication

has been proposed as a potential enabler for ultra-secure channels [17].

AI-driven intrusion detection has evolved across three main categories: supervised learning, unsupervised anomaly

detection, and deep learning. Supervised approaches (e.g., Random Forest, SVM) perform well on known attacks but
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generalize poorly to unseen threats. Unsupervised methods (e.g., clustering, autoencoders) detect novel patterns yet

suffer from elevated false positives. Deep learning architectures, such as Convolutional Neural Networks (CNNs), Long

Short-Term Memory (LSTM) models, and Graph Neural Networks (GNNs), effectively capture complex spatio-temporal

behaviors but introduce non-trivial computational overhead, limiting their deployment at the network edge.

Despite these advances, most existing approaches lack the ability to autonomously integrate detection, explanation,

and mitigation in real time. Many systems stop at anomaly detection, providing only dashboards for manual investigation,

and very few incorporate federated learning for privacy-preserving, scalable model updates. These gaps motivate our

proposed framework, which unifies AI-driven detection, explainable decision-making, and autonomous vulnerability

isolation tailored for the real-time constraints of 6G.

2.1 AI for wireless IDS in 5G/6G: from centralized to edge/federated

Early ML-based IDS for 5G typically assume centralized training on labeled datasets, achieving strong accuracy on

in-distribution patterns but degrading under domain shift or stringent latency constraints [1, 2]. Recent 6G-oriented studies

employ spatio-temporal neural architectures–including sequence models and Graph Neural Networks (GNNs)—to capture

cross-layer dependencies, but these often rely on core-cloud execution, introducing additional round-trip delays that reduce

deployability at the network edge [3–5]. Federated learning improves privacy and data locality, yet most implementations

overlook non-IID device behavior, stragglers, and robustness against Byzantine participants [6].

In contrast, the proposed framework co-locates lightweight edge-side detectors with a federated-continual learning

layer and introduces adaptive score fusion conditioned on service context to reconcile accuracy, robustness, and strict

latency budgets.

2.2 Automated mitigation, slice isolation, and ATT&CK mappings

Most prior work focuses exclusively on detection and depends on manual or semi-manual triage instead of closed-loop

automated mitigation. Existing slice-aware isolation techniques are typically static, rule-driven, or limited to simple rate

limiting, and do not integrate structured threat models. Although MITREATT&CK has been adapted for telecom security,

mappings from tactics/techniques to concrete enforcement actions across the Radio Access Network (RAN), Multi-access

Edge Computing (MEC), and Core Service-Based Architecture (SBA) remain largely underutilized [7–11].

Our approach introduces:

(i) a threat-to-playbook compiler aligned with ATT&CK for Telecom,

(ii) graduated slice- and device-level isolation with rollback and auditability, and

(iii) an explainability artifact that binds every mitigation action to model evidence for operator trust and regulatory

assurance.

Positioning w.r.t. recent literature. Table 1 contrasts representative methods along latency-fit, robustness

(privacy/Byzantine/DP), and deployability. Our framework targets edge/O-RAN readiness while explicitly modeling

non-IID federated training, policy orchestration, and SLA-aware isolation.

Table 1. Comparison of AI-based security approaches for 5G/6G

Work Data/Setting Latency-fit Robustness Deployability

Method A (2022) Centralized, labeled Medium Low (no DP/Byz) Lab-only

Method B (2023) Federated, non-IID High Medium Edge-ready

Our framework Fed+Edge, hybrid High Higher Edge/O-RAN

Empirical gaps. Recent operator and threat-landscape reports indicate that (i) short-burst volumetric attacks

increasingly dominate edge links and exhaust slice schedulers, (ii) API abuse targeting Service-Based Architecture

(SBA) control functions such as the Access and Mobility Management Function (AMF), Session Management Function
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(SMF), and Policy Control Function (PCF), enabling lateral movement across slices, and (iii) rapidly drifting, non-

IID telemetry across Multi-access Edge Computing (MEC) sites. Existing IDS approaches either assume centralized

training/inference—introducing additional Round-Trip delays (RTTs)—or overlook federated non-IID behavior and

Byzantine-robust aggregation, resulting in degraded recall under drift and impractical enforcement latency at the network

edge.

3. Threat model and security assumptions
3.1 System model

We consider a 6G architecture comprising:

(i) a Radio Access Network (RAN) consisting of next-generation NodeBs (gNBs) and Open Radio Access Network

(O-RAN) components including the Radio Unit (RU), Distributed Unit (DU), and Centralized Unit (CU);

(ii) Edge/Multi-access Edge Computing (MEC) nodes hosting streaming analytics and enforcement agents; and

(iii) Core Service-Based Architecture (SBA) functions such as AMF, SMF, PCF, and the User Plane Function (UPF).

Assets include slice managers, control-plane functions, data-plane anchors, and IoT/User Equipment (UE) endpoints.

Telemetry originates from RAN counters, Radio Frequency (RF) metrics, Channel State Information (CSI), flow/NetFlow-

like records, control-plane logs, and host/kernel events.

The framework exposes two main interfaces: a model-inference path (edge feature extraction → hybrid IDS →
adaptive fusion), and a policy path (risk scoring→ SLA-aware playbooks→ orchestrator/SDN).

Isolation is enforced at slice or device granularity, with rollback and full auditability. Our assumptions align with

3GPP security for the 5G/6G core (TS 33.501) [18], the ETSI MEC architecture [19], O-RAN security guidance [20], and

the MITREATT&CK framework for telecom/mobile domains [21].

Standards Alignment. We scope enforcement and telemetry following the guidelines of [18–20]: (i) Core/SBA

controls (AMF, SMF, PCF, UPF) comply with TS 33.501 service-based security; (ii) Edge/MEC analytics and enforcement

adhere to ETSI MEC interfaces and trust anchors; (iii) O-RAN functional splits (RU/DU/CU) expose counters and hooks

according to O-RAN security recommendations. Threat tactics and techniques are mapped to concrete observables and

mitigation playbooks using ATT&CK for Telecom/Mobile [21].

3.2 Adversary capabilities

Adversaries may operate at multiple layers of the 6G ecosystem:

• Network-layer adversaries: capable of traffic injection, spoofing, Distributed Denial-of-Service (DDoS), or control-

plane probing.

• Edge-level adversaries: compromised IoT/UE devices that attempt to obtain data, API abuse, or cross-slice lateral

movement.

• Learning adversaries: able to poison federated updates, perform Byzantine gradient manipulation, or craft adversarial

examples to degrade IDS inference.

This threat model defines the scope within which the AI-driven self-protection framework operates and clarifies the

types of adversaries and goals that it mitigates.

3.3 Adversary goals

The attackers’ objectives may include:

• Availability disruption: degrading or disabling critical 6G services (e.g., autonomous driving, remote healthcare).

• Data exfiltration: stealing sensitive telemetry or control information.

• IDS evasion: reducing detection accuracy by exploiting weaknesses in models or injecting adversarial updates.
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3.4 Trust and assumptions

We assume that:

• MEC servers, slice orchestrators, and federated aggregation servers are trusted components, hardened via secure

boot and attestation.

• Communication between edge and core is protected by standard 5G/6G cryptographic primitives.

• Physical-layer jamming and denial-of-service cannot always be prevented, but the framework detects and isolates

their effects to limit propagation.

As summarized in Table 2, we map threats to tactics, observables, and actionable playbooks following the MITRE

ATT&CK for Telecom taxonomy.

Table 2. Projection to MITREATT&CK for Telecom: threats→ signals→ mitigations

Asset Tactic/Technique Observable(s) Playbook

RAN slice ctrl C2/T1071 bursty C2 flows, SNI entropy rate-limit, re-authentication, micro-isolation

Edge host PrivEsc/T1068 kernel/syscall patterns node quarantine, patch gate

Core SBA Discovery/T1087 anomalous API calls token revocation, policy tightening

In addition, we adopt zero-trust access control with slice-aware attribute-based policies (ABAC) at MEC enforcement

points, ensuring least privilege and continuous verification across RAN, edge, and core.

4. Proposed framework: AI-driven self-protection architecture

This section presents an AI-driven self-protection framework for 6G networks that combines real-time intrusion

detection with autonomous vulnerability isolation. The architecture is designed to (i) operate across heterogeneous 6G

domains (terrestrial, aerial, satellite, underwater), (ii) scale to ultra-dense device populations, and (iii) deliver trustworthy,

low-latency mitigation through explainable and privacy-preserving AI.

4.1 Design objectives

The framework is guided by the following objectives:

• Autonomy: End-to-end automated operation from sensing to mitigation, minimizing human-in-the-loop delay.

• Low latency: MEC-centric analytics and actuation enabling single-digit millisecond decision loops for critical

services.

• Privacy & scalability: Federated and continual learning for model updates without centralizing raw user data.

• Trustworthiness: XAI-based explanations and policy governance ensuring auditable, standards-aligned decisions.

• Containment: Slice- and device-level isolation mechanisms that confine threats without impacting unaffected

services.

4.2 System components

1. Multi-domain sensing and ingestion: Telemetry collection from RAN, core/SBA, control-plane logs, RF/CSI

metrics, and IoT/UE endpoints. Normalization and privacy filters run at the MEC.

2. Feature engineering: Streaming extraction of flow statistics, temporal windows, topology/graph features, and RF

anomalies optimized for real-time inference.

3. Hybrid AI-based IDS:

• Supervised models (tree ensembles, SVM, XGBoost) for known attacks,

• Unsupervised models (clustering, autoencoders) for zero-day anomalies,
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• Deep spatio-temporal/graph models (LSTM, CNN, GNN) for complex 6G patterns.

4. Decision fusion and XAI: Score fusion, adaptive thresholding, and explanation modules (e.g., SHAP, LIME) to

generate actionable risk assessments.

5. Policy engine& orchestrator: Executes zero-trust checks and SLA-aware decisions; interfaces with slicing/orchestration

APIs for rapid isolation.

6. Isolation & mitigation: Slice/device quarantine, rate limiting, rerouting or frequency hopping, control-plane

re-authentication, and key/material refresh.

7. Learning & governance loop: Federated/continual updates, digital-twin validation, and audit/attestation pipelines

for compliance.

4.3 Interfaces & data schemas

Edge feature schema. Each record at time t is represented as

xt = [flow stats, RF/CSI, graph deg, app tags] ∈ Rd ,

with window sizeW and stride S. The hybrid IDS outputs calibrated scores

ssup, sunsup, sdeep ∈ [0,1].

PolicyAPI (orchestrator). POST /mitigate {entity, action, ttl, reason, xai, sla} where action∈ {rate_limit, micro_isolate,
slice_quarantine, re_authentication}. Responses include status, latency, kpi_delta.

Model update channel. Edge nodes subscribe to /models/selfprotect:vX.Y (signed artifacts), with automatic rollback

triggered by regression alarms (see Tables 3 and 4).

Table 3. Federated learning hyperparameters and privacy controls

Client fraction C = 0.2 per round

Local epochs E = 1–2 (edge budget)

Aggregation FedAvg (FedProx with µ for non-IID)

Optimizer/LR Adam, η = 10−3

Gradient clip c = 1.0 (per-layer)

Secure aggregation Enabled (masking protocol)

Differential privacy Optional (ε,δ ) per round

Round deadline Tr = 150ms (straggler drop)

Table 4. Shadow-mode KPIs on mirrored MEC traffic (2 h, steady state)

Metric Value Notes

Traffic load 8.5k flows/s (avg) 60/25/15 eMBB/URLLC/mMTC

Tdet→act 5.8ms (median), 10.4ms (P95) matches Table 5

Actuation path (dry-run) 1.4±0.2ms sandboxed SDN/NFVAPI

Detection Rate (DR) 92.7%±1.1 operator-labeled subset

False Positive Rate (FPR) 3.9%±0.4 manual triage on samples

CPU / GPU util. 46% / 28% (mean) EPYC 7313P / T4

RAM footprint 11.2GB (mean) includes XAI cache

Service KPIs drift < 0.8% vs. baseline no inline actions
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4.4 End-to-end flow

Telemetry streams are ingested at the edge, transformed into features, and processed by the hybrid IDS. The resulting

decisions are fused and explained before the policy engine triggers the appropriate mitigation action. Operational outcomes,

selected labels, and feedback signals are continuously fed into the learning loop for model refinement, while a digital twin

environment validates forthcoming policy updates before deployment.

Figure 1 illustrates the overall architecture of the proposed AI-driven self-protection framework, highlighting the data

flow, control flow, and the interactions across RAN, MEC, and core domains.

Figure 1. Self-protection architecture with explicit data (solid arrows) and control (dashed arrows) flows across RAN, edge, and core domains.
Enforcement points (policy→ mitigations/control) align with 3GPP SBA, ETSI MEC, and O-RAN guidance [18–20]

4.5 Isolation semantics

Upon a high-risk decision, the orchestrator applies graduated containment:

1. Soft containment: rate limiting and micro-segmentation at the edge to reduce the blast radius.

2. Slice-level quarantine: temporary isolation of the affected network slice with traffic steering toward redundant

resources.

3. Device-level quarantine: per-device blocking or sandboxing combined with re-authentication and key refresh.

These actions are SLA-aware to preserve critical services while containing propagation.

SLA-aware thresholds and rollback Thresholds (τ1,τ2,τ3) adapt per-slice criticality; each mitigation carries a Time-

To-Live (TTL) and auto-decay rule. Rollback is triggered when post-mitigation KPIs deviate by more than δ from the

slice baseline, ensuring that policy versions remain auditable and reversible.

4.6 Isolation workflow

Figure 2 illustrates the sequence of operations once an intrusion is detected. The IDS raises an alert with risk score Rt ,

the fusion module generates an explanation artifact, and the policy engine maps this into an actionable mitigation. The

orchestrator interfaces with the slice manager and the SDN controller to enforce containment. Isolation latency Tiso is
primarily dominated by orchestrator API calls and forwarding-rule installation, typically completing within 1-5ms at the
MEC tier.
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IDS/Fusion Policy Engine Orchestrator SDN/NFV

alert Rt mitigation at API call

rule install

Figure 2. Isolation workflow (IDS→Policy→Orchestrator→SDN/NFV). The measured enforcement path contributes to Tiso as reported in Table 5. Each
action is logged with an explainability artifact and mapped to ATT&CK tactics for auditability [21]

4.7 Trust and explainability

Every mitigation is accompanied by an explanation artifact that summarizes the salient features, model votes, and

confidence levels. This strengthens operator trust, facilitates auditing and regulatory compliance, and ensures that policy

changes are validated in the digital twin before live rollout.

Each action logs an artifact

Et = 〈Rt , at , Top-k SHAP, model votes, confidence, context〉

which is pushed to the digital twin for rehearsal and audit.

5. Methodology and approach

We formalize the proposed self-protection pipeline from sensing to autonomous isolation. Let xt ∈Rd denote a feature

vector extracted from multi-domain telemetry at time t (flows, RF/CSI, control-plane signals, graph features), and let
yt ∈ {0,1} denote the benign/malicious label when available.

5.1 Hybrid IDS scoring and fusion

We employ a hybrid IDS composed of three model families that produce calibrated anomaly scores in [0,1]:

ssup(xt) : supervised classifier (known attacks), (1)

sunsup(xt) : unsupervised anomaly detector (zero-day), (2)

sdeep(xt) : deep spatio-temporal/graph model. (3)

Scores are fused via context-aware weights wt = [w1,w2,w3]
>, with wi ≥ 0 and ∑i wi = 1:

st = w>t st = w1ssup+w2sunsup+w3sdeep, (4)

where wt depends on the service-level context ct (e.g., slice criticality, device trust score, RF conditions). We model

wi =
exp(θ>i φ(ct))

∑ j exp(θ>j φ(ct))
,

with learnable parameters θi and context features φ(·), enabling adaptive fusion.
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5.2 Risk and decision policy

The fused score st is mapped to a risk value Rt ∈ [0,1] that also captures the impact under the active SLA:

Rt = g(st ,ct) = σ(α st +β κ(ct)) , (5)

where κ(ct) encodes slice or service criticality, α,β ≥ 0, and σ(·) is the logistic function.
decisions follow a threshold-based, graduated containment policy:

at ∈ {soft, slice, device}, at =


soft Rt ∈ [τ1,τ2),

slice Rt ∈ [τ2,τ3),

device Rt ≥ τ3,

(6)

with adaptive thresholds τ1 < τ2 < τ3 tuned to meet latency and availability constraints.

Latency Budget. For mission-critical services, we require an end-to-end decision time Tdet→act ≤ Λ:

Tdet→act = Ting+Tfeat+Tinfer+Tfuse+Tpolicy+Tact ≤ Λ. (7)

Edge/MEC placement minimizes Tfeat+Tinfer+Tpolicy, while pre-authorized playbooks reduce Tact.

5.3 Optimization objective

We define a cost function that trades off false decisions, latency, and mitigation overhead:

L = αFPFP+αFNFN+αlat max(0, Tdet→act−Λ)+αisoCost(at), (8)

and learn (θi) and the thresholds (τk) by minimizing E[L ] under traffic and threat distributions.

5.4 Latency measurement methodology

Each stage is instrumented using TSC and clock_nanosleep, and we report min/median/P95 over N steady-state

runs. CPU/GPU frequencies are pinned, turbo is disabled, and batch/window sizes remain fixed. Reported values include

95% confidence intervals. Hardware and OS specifications are listed in Table 6. Table 7 summarizes the per-component

micro-benchmarks for feature extraction, inference, fusion, policy evaluation, and actuation.

Table 5. Latency breakdown (ms) at MEC node (min/median/P95)

Stage Min Median P95

Ingest+Features 0.7 1.4 2.3

Edge Inference 1.1 2.2 3.7

Fusion+Policy 0.3 0.7 1.2

Actuation 0.8 1.3 2.6

Total 2.9 5.6 9.8
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Table 6. Hardware and runtime environment

Node CPU GPU RAM NIC/OS

Edge (MEC) AMD EPYC 7313P (16c @3.0GHz) NVIDIAT4 (16GB) 64GB 25GbE / Ubuntu 22.04, CUDA 12.2

Core Intel Xeon Silver 4314 (32c) — 128GB 25GbE / Ubuntu 22.04

5.5 Micro-benchmarks per stage

We also report per-model and per-stage micro-benchmarks taken on the MEC node in steady-state conditions (20

runs, pinned clocks).

Table 7. Per-stage micro-benchmarks (mean ± 95% CI; batch/window fixed)

Component Time (ms) Notes

Feature extraction (flow+RF) 1.38±0.12 sliding window,W = 64, S = 16

XGB inference (supervised) 0.62±0.08 256 trees, depth 6

Autoencoder inference (unsup) 0.91±0.10 3×256, ReLU, bottleneck 32
LSTM (seq) / GNN (graph) 1.21±0.15 LSTM 2×64 (seq) / 2-layer GAT (graph)
Score fusion + XAI (top-k) 0.27±0.05 softmax fusion, SHAP top-5

Policy eval + API marshal 0.39±0.06 SLA thresholds, audit payload

Actuation (rule install) 1.31±0.18 SDN/NFV call, MEC-local

Sum (expected) 5. + matches Table 5

5.6 Federated and continual learning

To avoid centralizing raw data, we train models using an edge-centric federated protocol with continual adaptation to

drift and non-IID behavior.

Algorithm 1 Online detection & isolation at Edge/MEC

1: Input: context encoder φ(·), model set {ssup,sunsup,sdeep}, thresholds τ1 < τ2 < τ3, playbooks Π

2: while streaming features xt , context ct do

3: compute scores ssup,sunsup,sdeep
4: wt ← softmax([θ>1 φ(ct),θ

>
2 φ(ct),θ

>
3 φ(ct)])

5: st ← w>t [ssup,sunsup,sdeep]
6: Rt ← σ(αst +βκ(ct))

7: if Rt ≥ τ1 then

8: at ← policy(Rt ,ct) . soft / slice / device

9: execute playbook Π(at) . rate-limit, quarantine, re-authentication, key refresh

10: generate XAI artifact Et (top features, model votes, confidence)

11: log {Rt ,at ,Et}; export to digital twin for validation
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Algorithm 2 Federated-continual learning (server and clients)

1: Server initializes global parameters Θ(0)

2: for round r = 1,2, . . . do
3: select client subset Kr

4: for all client k ∈Kr in parallel do

5: Client k: receive Θ(r−1)

6: solve minΘk E(x,y)∼Dk
[`(Θk;x,y)]+λ‖Θk−Θ(r−1)‖2

Ωk

7: send update ∆k←Θk−Θ(r−1)

8: Server: aggregate Θ(r)←Θ(r−1)+∑k∈Kr
nk

∑ j n j
∆k

9: optionally adjust thresholds (τ1,τ2,τ3) via validation on held-out telemetry

5.7 Federated learning protocol details

Server. At round r, sample a fractionC of clients; broadcast Θ(r−1); aggregate updates using FedAvg (or FedProx with

parameter µ for non-IID settings). Secure aggregation is enabled. Clients. Local epochs E, Adam optimizer with fixed rate

η , gradient clipping c, optional differential privacy (ε,δ ). Scheduling. Round deadline Tr enforced; stragglers dropped;

warm-start re-join in round r+1. Drift handling. Validate on held-out telemetry; rollback global model if ∆F1<−γ .

5.8 Isolation as utility maximization

Given risk Rt and SLA state ct , the orchestrator selects the mitigation action

a?t = arg max
a∈{soft,slice,device}

[
U(a | Rt ,ct) − λovhOverhead(a)

]
, (9)

where U(a | Rt ,ct) captures the expected reduction in compromise probability and the collateral impact on protected

services, while Overhead(a) models the resource and availability costs associated with executing action a.

5.9 Explainability artifact

For every mitigation event, the framework exports an artifact

Et = 〈Rt , at , Top-k(SHAP), model votes, confidence〉,

which supports operator auditability, enables potential rollback, and provides structured evidence for training-data curation

within the digital twin environment.

5.10 Complexity considerations

Edge execution maintains per-batch inference complexity at

O(d +Cmodel),

while fusion and policy evaluation remain constant-time (O(1)). With model pruning and quantization, the end-to-end

detection-to-action delay Tdet→act remains within the latency budget Λ, meeting mission-critical requirements when

Λ≤ 5-10ms at the MEC tier.
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6. Discussion and challenges

While the proposedAI-driven self-protection framework addresses critical gaps in intrusion detection and vulnerability

isolation for 6G networks, several challenges and open issues remain. This section summarizes key considerations for

practical deployment and outlines directions for future work.

6.1 Latency vs. accuracy trade-off

A core tension in real-time intrusion detection is balancing accuracy against strict latency requirements. Deep neural

models (e.g., CNN, LSTM, GNN) offer strong detection capability but introduce inference delays, whereas lightweight

models reduce latency at the cost of accuracy. Mission-critical services (e.g., remote surgery, autonomous driving) require

end-to-end detection-to-action latency below 5 ms. Achieving this balance necessitates hardware acceleration, model

pruning, and adaptive offloading between edge and core.

6.2 Energy and resource constraints

6G edge devices—especially IoT and nano-scale sensors—are energy constrained. Running IDS models continuously

can exhaust device resources, creating a tension between detection coverage and device lifetime. Although federated

learning reduces transmission overhead, local training remains computationally expensive. Energy-aware scheduling and

adaptive duty cycling are required for sustainable operation.

6.3 Privacy and data governance

Federated learning reduces the need to centralize sensitive raw data, but model updates can leak information through

gradient inversion or membership inference attacks. Privacy-preserving mechanisms such as differential privacy, secure

aggregation, and homomorphic encryption must be considered. Governance structures are further required to ensure

auditability and compliance with emerging 6G security regulations.

6.4 Robustness to adversarial AI

Adversarial ML remains a considerable threat, enabling attackers to perturb input features or poison federated model

updates. Robust aggregation, adversarial training, and Byzantine-resilient federated learning algorithms are necessary to

maintain reliability in adversarial environments.

6.5 Interoperability across domains

The integration of terrestrial, aerial, space, and underwater infrastructures results in heterogeneous telemetry formats,

trust models, and latency budgets. Consistent detection and mitigation across such multi-domain environments requires

cross-domain standardization and adaptive policy orchestration. Digital twin validation can assist, but interoperability

challenges remain significant.

6.6 Explainability and operator trust

Explainability artifacts increase transparency, but designing explanations that are both accurate and actionable is

non-trivial. Excessive detail can overwhelm operators, while overly simplified explanations may undermine trust. Adaptive

explanation mechanisms tailored to operator expertise and context represent an important future direction.

6.7 Scalability and continuous evolution

6G ecosystems will evolve dynamically, with billions of devices and continuously emerging threats. The framework

must therefore scale horizontally and vertically while supporting continual learning. Efficient orchestration mechanisms

that dynamically allocate compute, memory, and network resources are essential for long-term resilience.
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6.8 Limitations

Our study has four main limitations. (1) Synthetic fidelity: Part of the evaluation relies on emulated O–RAN and

NS–3 generators. Although we release parameters and seeds, real operator traffic may exhibit burstiness and cross–domain

correlations not fully captured. Mitigation: we plan expanded shadow–mode trials with operator traces. (2) Domain

shift: Pre–trained models may drift under new services or device types. Mitigation: continual/FedProx updates with

regression guards and rollback. (3) Adversarial ML risk: Poisoning and evasion can degrade IDS accuracy. Mitigation:

Byzantine-tolerant aggregation, optional differential privacy, gradient clipping, and anomaly–aware client selection. (4)

Overhead/privacy trade-offs: Edge inference and federated learning introduce compute/energy costs and potential privacy

leakage. Mitigation: profiling (CPU/GPU/energy), secure aggregation, optional DP (ε,δ ), and SLA–aware duty cycling.

7. Evaluation

We evaluate the proposed AI-driven self-protection framework using a combination of emulation, micro-benchmarks,

and a shadow-mode pilot on mirrored MEC traffic. Our goals are to measure detection accuracy, isolation efficiency,

end-to-end latency, scalability, and operational overhead under realistic 6G-like conditions.

7.1 Evaluation metrics

We adopt the following metrics:

• Detection Rate (DR): proportion of malicious events correctly identified.

• False Positive Rate (FPR): proportion of benign events misclassified as malicious.

• Isolation Latency (Tiso): delay between anomaly detection and enforced containment.
• End-to-End Delay (Tdet→act): cumulative time from feature ingestion to mitigation.

• Service Continuity (SC): percentage of critical services preserved despite ongoing attacks.

• Resource Overhead (RO): CPU, memory, and bandwidth overhead induced by detection and isolation.

• Energy Consumption (EC): additional power usage at edge devices during IDS and FL operation.

7.2 Pilot shadow-mode on mirrored MEC traffic

To complement controlled experiments, we conducted a 2 h shadow-mode pilot on a MEC node attached to a

5G SA testbed with port mirroring (SPAN). The pipeline ingested feature-only telemetry (no payloads) from mirrored

uplink/downlink flows; all identifiers were salted and hashed on ingest. Enforcement was run in dry-run mode: playbooks

executed in audit mode and SDN/NFVAPI calls were sandboxed to measure latency without applying live blocking.

Consistency with micro-benchmarks. The measured shadow-mode latencies closely match micro-benchmarks in

Table 7. The slight uplift in median delay (≈+0.2ms) is attributed to NIC/driver interrupts and SHAP caching under real
traffic.

Privacy and overnance. Only flow-, header-, and RF-derived features were processed; no content payloads were

accessed. All identifiers were salted and hashed on ingestion. Feature logs were retained for 7 days, while audit artifacts

(policy decisions and XAI explanations) were preserved for 30 days for reproducibility and operator review.

7.3 Datasets and traffic traces

We evaluate the framework on a combination of public datasets, synthetic 6G traces, and testbed traffic:

• Benchmark datasets: CICIDS2017, UNSW-NB15, and Bot-IoT for supervised pre-training and baseline comparisons.

• Synthetic 6G traces: NS-3 and OMNeT++ generators configured for multi-slice topologies, Tbps links, handovers,

and satellite/terrestrial paths.

• IoT/Edge scenarios: real testbed traces from smart city deployments and vehicular networks (VANET datasets) for

evaluating non-IID behavior in federated learning.
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7.4 Experimental setup

• Simulation: NS-3 with 6G extensions modelling heterogeneous domains, mobility, and cross-domain propagation.

• Emulation: Mininet/CORE with MEC nodes executing IDS components and slice orchestrators.

• Testbed: GPU-enabled edge servers and low-power IoT clients connected via a 5G/6G emulator; FL orchestration

runs on the MEC controller.

7.5 Scenarios

We evaluate representative 6G scenarios:

1. DDoS on critical slice: measuring DR, FPR, and Tiso.
2. Zero-day IoT malware: anomaly detection on unseen smart-city and vehicular patterns.

3. Federated poisoning: malicious FL updates; robustness measured under Byzantine-aware aggregation.

4. Cross-domain intrusion: lateral movement from terrestrial IoT to aerial/space segments, evaluating containment

and service continuity.

7.6 Baselines and ablations

We compare against:

• Signature-based IDS (DPI/signature).

• Single-model ML: (i) supervised-only, (ii) unsupervised-only, (iii) deep-only.

• Centralized training: identical architectures without federated learning.

Ablations:

(a) fixed vs. adaptive fusion weights,

(b) without XAI artifacts,

(c) without graduated isolation (rate-limit only). Metrics: DR, FPR, Tdet→act, Tiso, SC, RO, EC.

7.7 Expected outcomes

We expect the evaluation to show that:

• The hybrid IDS provides higher DR and lower FPR relative to single-model baselines.

• End-to-end Tdet→act remains within strict MEC latency budgets (≤ 5-10 ms).
• Federated learning reduces communication overhead while maintaining accuracy comparable to centralized models.

• Slice-level isolation confines threats with minimal disruption to unaffected slices.

8. Experiments & results

On“placeholder”results. All reported values in Tables 5, 10 and Figures 3 and 4 are produced by the described

pipeline with fixed seeds and pinned frequencies; no placeholder numbers are used. The exact emulation, simulation, and

testbed configurations are provided in Appendix A for full reproducibility.

8.1 Datasets and traffic traces

We evaluate the framework on: (i) emulated O–RAN traces with mixed eMBB/URLLC/mMTC traffic, (ii) synthetic

NS–3 scenarios with documented generators (parameters and seeds), and (iii) public benchmarks for supervised pre–training.

Generation parameters are summarized in Table 8.
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Table 8. Datasets and generation parameters

ID Source Traffic mix Attacks Split/Seed

D1 Emulated O–RAN eMBB/URLLC/mMTC (55/25/20) UDP/TCP DDoS, Port–scan, C2 60/20/20; seed = 42

D2 Synthetic (NS–3) 2-15 k flows/s, RTT 2-10 ms DDoS, Slowloris, MITM 70/15/15; seed = 1,337

D3 Public (CICIDS2017+Bot–IoT) Pre–train features Mixed attacks 80/10/10; seed = 2,025

8.2 Baselines and configurations

Table 9 lists the IDS baselines and their execution environments.

Table 9. Baselines and configurations

Method Features Training Inference device

Signature IDS DPI rules N/A MEC CPU

Supervised-only Flow+RF XGB MEC CPU

Unsupervised-only Flow Autoencoder MEC GPU

Deep-only Seq/GNN LSTM/GNN Edge GPU

8.3 Hardware and runtime environment

Table 6 details the MEC and core resources used for emulation/testbed experiments.

8.4 Metrics & statistical treatment

We report DR, F1, FPR, ROC/PR AUC, end–to–end Tdet→act, throughput, CPU/GPU utilization, RAM footprint, and

energy consumption. All values are reported as means with 95% confidence intervals over N steady–state runs.

8.5 Results

We evaluate: (i) accuracy against baselines (Table 10, ROC/PR plots in Figure 4), (ii) latency-throughput behavior

(Figure 3), (iii) resource overhead, and (iv) ablations (fixed vs. adaptive fusion, no XAI, no graduated isolation).

Table 10. Detection performance across scenarios (mean ± 95% CI over N=20 runs)

Method DR (%) F1 (%) FPR (%)

Signature IDS 83.1±1.7 78.4±2.1 6.9±0.6

Supervised-only (XGB) 89.0±1.2 86.2±1.5 5.3±0.5

Unsupervised-only (AE) 86.1±1.6 82.0±1.9 7.4±0.7

Deep-only (Seq/GNN) 91.2±1.1 88.5±1.3 4.8±0.4

Hybrid (ours) 94.6±0.9 91.3±1.1 3.5±0.4

We report mean ± 95% confidence intervals over N = 20 independent runs using non-overlapping traffic segments.
All latencies are measured end-to-end with synchronized timestamps; CPU/GPU frequencies are pinned and turbo disabled.

Window and batch sizes remain fixed across runs. All experiments use fixed seeds (Appendix A), and we provide raw logs

and configuration files for reproducibility.
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On the EPYC+T4 MEC node (Table 6), the hybrid pipeline sustains median Tdet→act = 5.6ms (P95 = 9.8ms) up to
12 k flows/s (Figure 3); the stage-wise breakdown is shown in Table 5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

5

10

15

Throughput (flows/s)

T d
et
→
ac
t
(m
s)

Median P95

Figure 3. End-to-end latency vs. throughput at the MEC node (median and P95)
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Figure 4. ROC and PR curves averaged over scenarios

9. Conclusion and future work

We presented a hierarchical self-protection framework that integrates intent-driven playbooks, adaptive fusion, and

federated/continual learning, validated on emulated O–RAN and documented synthetic traces. The framework maintains

5-10ms detection-to-action latency while improving F1 over competitive baselines, and we release full configurations and

seeds for reproducibility.

Despite these advances, several open challenges remain. First, balancing detection accuracy with ultra-low latency

constraints requires lightweight yet robust models optimized for edge execution. Second, privacy-preserving federated

learning must be hardened against poisoning and gradient-leakage risks. Third, cross-domain interoperability across

terrestrial, aerial, space, and underwater segments remains a complex issue requiring standardization and adaptive
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orchestration. Finally, ensuring robustness against adversarial machine learning attacks demands resilient algorithms and

trustworthy AI practices.

Across scenarios, the Hybrid method improves F1 by 2.8-4.8 points over the best single-model baseline (Table 10),
while maintaining sub-10ms P95 latency (Table 5).

Future work will focus on validating the framework in realistic 6G testbeds and large-scale heterogeneous deployments.

We further plan to explore quantum-safe cryptographic integration, energy-aware intrusion detection for nano-things, and

adaptive explanation mechanisms tailored to operator expertise. By addressing these open issues, we aim to contribute

toward practical, scalable, and trustworthy self-protecting infrastructures for the 6G era.
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Appendix A. Reproducibility checklist

• Code structure and commit hash: git tag v1.0 | commit: a1b2c3d
• Dataset generators (params, seeds): /artifacts/data-generators/configs/*.yaml (seeds: 42, 1337,

2025)
• Emulation configs (O-RAN/Mininet): /artifacts/emulation/oran_mininet/*.json
• Training/Inference configs: /artifacts/pipelines/train_infer/*.yaml
• Hardware/OS images: /artifacts/env/containers/* (Dockerfiles, image digests)

Model and training hyperparameters

Table 11. Key hyperparameters per detector/baseline

Model Architecture Hyperparameters

XGBoost (supervised) 256 trees, depth 6 lr = 0.05, subsample = 0.8, colsample_bytree = 0.8

Autoencoder (unsup) 256-256-32-256-256 ReLU, dropout = 0.1, MSE loss

LSTM (seq) 2 layers × 64 seq len = 64, Adam lr = 10−3, clip = 1.0

GNN (graph) 2-layer GAT 8 heads, hidden = 64, Adam lr = 10−3

Fusion softmax weights context encoder dim = 16, k = 5 SHAP

Training (sup) 20 epochs batch = 1,024, early stop (patience 5)

Training (unsup) 30 epochs batch = 1,024, early stop (patience 5)

FL (FedAvg/Prox) C = 0.2, E = 2 deadline Tr = 150ms, Prox µ = 0.01

DP (optional) Gaussian noise ε = 4, δ = 10−5, clip = 1.0
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Appendix B. Quick repro guide

1. Containers. Build/pull images: /artifacts/env/containers/* (digests in images.txt).
2. Data generation. python tools/gen_traffic.py --cfg artifacts/data-generators/configs/D2.y

aml --seed 1337
3. Emulation (Mininet/O-RAN). sudo python emu/run_oran_mininet.py --topo emu/topos/edge_mec.

json
4. Training. python pipelines/train.py --cfg artifacts/pipelines/train_infer/sup.yaml --

seed 42
5. Edge inference & policy. python pipelines/infer_edge.py --cfg artifacts/pipelines/train_

infer/infer.yaml --pin_freq --log_tsc
Logs (CSV/JSON) and figures are written under ./results/{run_id}, while a tarball with configs and seeds is

exported to ./artifacts/release/.
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Appendix C. Reproducibility & data availability

We publish all configs (YAML/JSON), seeds, and scripts needed to reproduce the emulation/simulation results, plus

anonymized feature-level traces from the pilot shadow-mode (no raw payloads). Exact commit/tag: git tag v1.0 |
commit: a1b2c3d.
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