Computer Networks and Communications

http://ojs.wiserpub.com/index.php/CNC/ UNIVERSAL WISER
PUBLISHER

Research Article

Al-Driven Self-Protection in 6G Networks: Autonomous Intrusion
Detection and Vulnerability Isolation

Apostolos Tsiakalos!”, Anastasios Tsiakalos>

' Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
E-mail: atsiakalos@csd.auth.gr

Received: 2 September 2025; Revised: 27 October 2025; Accepted: 5 November 2025

Abstract: Sixth-Generation (6G) networks require autonomous and ultra-low-latency protection against rapidly evolving
threats. We present a hierarchical self-protection framework that integrates edge streaming detectors with a federated
learning layer and a Service Level Agreement (SLA)-aware policy engine for graduated isolation at both slice and
device granularity. The framework introduces: (i) an intent-driven threat-to-playbook compiler aligned with the MITRE
Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) framework for Telecom, (ii) adaptive score fusion
guided by service context, and (iii) a reproducible pipeline that supports privacy-preserving training. Evaluated on an
emulated Open Radio Access Network (O-RAN) testbed and documented synthetic traces, the system maintains end-to-end
detection-to-action delays in 5-10 milliseconds while outperforming competitive baselines in F1 score. The configuration
files and seeds are released to ensure complete reproducibility. The measured detection-to-action time Tyet_qct achieves a
median of 5.6 milliseconds (95th percentile 9.8 milliseconds) at traffic speeds up to 12,000 flows per second. A two-hour
shadow-mode pilot on mirrored Multi-access Edge Computing (MEC) traffic further validates sub-10-millisecond 95th-
percentile action loops under real operational load.

Keywords: Sixth-Generation (6G) security, Artificial Intelligence (Al)-driven intrusion detection, federated learning,
explainable Al network slicing, autonomous isolation

1. Introduction

Problem: Sixth-Generation (6G) introduces ultra-dense, multi-domain fabrics where static Intrusion Detection
System/Intrusion Prevention System (IDS/IPS) cannot adapt to zero-day and cross-layer attacks under tight latency/energy
constraints. Goal: Enable autonomous detection — explanation — isolation with predictable latency and privacy-preserving
learning. Contributions: (1) A formal system & threat model with a Telecom Adversarial Tactics, Techniques and Common
Knowledge (ATT&CK) mapping that links assets — observables — mitigations. (2) A hybrid IDS with adaptive fusion
across supervised/unsupervised/deep detectors conditioned on service context. (3) A federated-continual learning protocol
tailored to non-Independent and Identically Distributed (IID) 6G edge data with secure aggregation and drift handling.
(4) An Service Level Agreement (SLA)-aware policy engine that compiles threats into graduated slice/device isolation
playbooks. (5) A reproducible evaluation (configs, seeds, hardware details) with baselines and latency/resource breakdown.
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The evolution from Fifth-Generation (5G) to Sixth-Generation (6G) networks is expected to revolutionize wireless
communications by enabling data rates on the order of terabits per second, sub-millisecond latency, and truly ubiquitous
connectivity. Unlike previous generations, 6G will integrate heterogeneous infrastructures across terrestrial, aerial, satellite,
and underwater domains, thus creating a unified fabric that supports mission-critical applications such as autonomous
vehicles, extended reality, digital twins, and remote healthcare. However, such diverse and ultra-dense environments will
dramatically expand the attack surface, raising unprecedented challenges in terms of security, privacy, and resilience [1, 2].

Traditional intrusion detection and response mechanisms, often based on static signatures or reactive defenses, cannot
scale to the dynamic and high-speed environment of 6G. They suffer from limited adaptability to zero-day attacks, high
false-positive rates, and an inability to provide autonomous mitigation without human intervention. Consequently, ensuring
trustworthiness in 6G requires a paradigm shift towards intelligent self-protecting security mechanisms that can adapt to
evolving threats in real time [3, 4].

Artificial Intelligence (AI) and Machine Learning (ML) have recently emerged as key enablers in the design of
autonomous and adaptive security solutions. In the context of 6G, Al-driven approaches can provide continuous monitoring,
anomaly detection, and dynamic decision-making across multiple network layers. Furthermore, the use of federated
learning allows distributed training of intrusion detection models without centralizing sensitive data, thereby improving
scalability and preserving privacy. Explainable Al (XAI) also contributes to building trust by providing interpretable
insights into automated security decisions [5, 6].

In this paper, we propose an Al-driven self-protection framework for 6G networks, which autonomously detects and
isolates vulnerabilities in real time. Our framework integrates supervised and unsupervised learning for intrusion detection,
federated learning for collaborative model training, and slice-level isolation to contain potential threats without disrupting
critical services. By combining detection, explanation, and autonomous response, our approach enhances the resilience
and trustworthiness of 6G infrastructures, paving the way towards self-healing networks.

Why now (evidence). Recent measurements indicate that (i) volumetric DDoS against mobile cores grew by about
38% year-over-year (2023-2024) with short, bursty attacks dominating edge links [7, 8], (ii) operator incident reports cite
elevated control-plane probing and API abuse in SBA functions [8, 9], and (iii) device proliferation (5G/IoT) pushes the
protected endpoint base beyond 5 billion, widening the telemetry and enforcement perimeter [9—11].

Scientific novelty vs. prior art. Unlike prior 5G/6G IDS that (i) assume centralized inference or (ii) stop at dashboard-
level alerts, our framework (a) co-locates streaming, lightweight detectors at MEC with federated-continual training for
non-IID traffic, (b) compiles intent—ATT& CK— playbook mappings into SLA-aware actions with rollback, and (c) enforces
auditable mitigation under single-digit millisecond budgets on Open Radio Access Network (O-RAN)/Multi-access Edge
Computing (MEC).

2. Related work and background

Security in mobile communication networks has been extensively studied in the context of Fourth-Generation (4G) and
Fifth-Generation (5G) systems. In 5G, Intrusion Detection Systems (IDS) primarily focus on monitoring traffic patterns,
applying signature-based detection, or leveraging machine learning techniques for anomaly detection [12, 13]. Although
these methods demonstrate notable detection capabilities, they often face limitations in scalability, adaptability to evolving
attack types, and latency when deployed in heterogeneous and large-scale environments.

With the advent of Sixth-Generation (6G) networks, the attack surface expands significantly due to the integration of
terrestrial, aerial, space, and underwater domains, combined with the proliferation of Internet of Things (IoT) and Internet of
Nano-Things (IoNT) devices and mission-critical services. Early studies highlight the importance of Artificial Intelligence
(AI) for adaptive protection mechanisms and the role of network slicing in achieving fine-grained security isolation [14, 15].
Additional work explores blockchain-based trust establishment and spectrum sharing [16], while quantum communication
has been proposed as a potential enabler for ultra-secure channels [17].

Al-driven intrusion detection has evolved across three main categories: supervised learning, unsupervised anomaly
detection, and deep learning. Supervised approaches (e.g., Random Forest, SVM) perform well on known attacks but
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generalize poorly to unseen threats. Unsupervised methods (e.g., clustering, autoencoders) detect novel patterns yet
suffer from elevated false positives. Deep learning architectures, such as Convolutional Neural Networks (CNNs), Long
Short-Term Memory (LSTM) models, and Graph Neural Networks (GNNs), effectively capture complex spatio-temporal
behaviors but introduce non-trivial computational overhead, limiting their deployment at the network edge.

Despite these advances, most existing approaches lack the ability to autonomously integrate detection, explanation,
and mitigation in real time. Many systems stop at anomaly detection, providing only dashboards for manual investigation,
and very few incorporate federated learning for privacy-preserving, scalable model updates. These gaps motivate our
proposed framework, which unifies Al-driven detection, explainable decision-making, and autonomous vulnerability
isolation tailored for the real-time constraints of 6G.

2.1 AI for wireless IDS in 5G/6G: from centralized to edge/federated

Early ML-based IDS for 5G typically assume centralized training on labeled datasets, achieving strong accuracy on
in-distribution patterns but degrading under domain shift or stringent latency constraints [1, 2]. Recent 6G-oriented studies
employ spatio-temporal neural architectures—including sequence models and Graph Neural Networks (GNNs)—to capture
cross-layer dependencies, but these often rely on core-cloud execution, introducing additional round-trip delays that reduce
deployability at the network edge [3—5]. Federated learning improves privacy and data locality, yet most implementations
overlook non-IID device behavior, stragglers, and robustness against Byzantine participants [6].

In contrast, the proposed framework co-locates lightweight edge-side detectors with a federated-continual learning
layer and introduces adaptive score fusion conditioned on service context to reconcile accuracy, robustness, and strict
latency budgets.

2.2 Automated mitigation, slice isolation, and ATT& CK mappings

Most prior work focuses exclusively on detection and depends on manual or semi-manual triage instead of closed-loop
automated mitigation. Existing slice-aware isolation techniques are typically static, rule-driven, or limited to simple rate
limiting, and do not integrate structured threat models. Although MITRE ATT&CK has been adapted for telecom security,
mappings from tactics/techniques to concrete enforcement actions across the Radio Access Network (RAN), Multi-access
Edge Computing (MEC), and Core Service-Based Architecture (SBA) remain largely underutilized [7-11].

Our approach introduces:

(1) a threat-to-playbook compiler aligned with ATT&CK for Telecom,

(i) graduated slice- and device-level isolation with rollback and auditability, and

(iii) an explainability artifact that binds every mitigation action to model evidence for operator trust and regulatory
assurance.

Positioning w.r.t. recent literature. Table 1 contrasts representative methods along latency-fit, robustness
(privacy/Byzantine/DP), and deployability. Our framework targets edge/O-RAN readiness while explicitly modeling
non-IID federated training, policy orchestration, and SLA-aware isolation.

Table 1. Comparison of Al-based security approaches for 5G/6G

Work Data/Setting Latency-fit Robustness Deployability

Method A (2022)  Centralized, labeled Medium Low (no DP/Byz) Lab-only
Method B (2023)  Federated, non-IID High Medium Edge-ready
Our framework Fed+Edge, hybrid High Higher Edge/O-RAN

Empirical gaps. Recent operator and threat-landscape reports indicate that (i) short-burst volumetric attacks
increasingly dominate edge links and exhaust slice schedulers, (ii) API abuse targeting Service-Based Architecture
(SBA) control functions such as the Access and Mobility Management Function (AMF), Session Management Function
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(SMF), and Policy Control Function (PCF), enabling lateral movement across slices, and (iii) rapidly drifting, non-
IID telemetry across Multi-access Edge Computing (MEC) sites. Existing IDS approaches either assume centralized
training/inference—introducing additional Round-Trip delays (RTTs)—or overlook federated non-IID behavior and
Byzantine-robust aggregation, resulting in degraded recall under drift and impractical enforcement latency at the network
edge.

3. Threat model and security assumptions
3.1 System model

We consider a 6G architecture comprising:

(i) a Radio Access Network (RAN) consisting of next-generation NodeBs (gNBs) and Open Radio Access Network
(O-RAN) components including the Radio Unit (RU), Distributed Unit (DU), and Centralized Unit (CU);

(i1) Edge/Multi-access Edge Computing (MEC) nodes hosting streaming analytics and enforcement agents; and

(iii) Core Service-Based Architecture (SBA) functions such as AMF, SMF, PCF, and the User Plane Function (UPF).

Assets include slice managers, control-plane functions, data-plane anchors, and IoT/User Equipment (UE) endpoints.
Telemetry originates from RAN counters, Radio Frequency (RF) metrics, Channel State Information (CSI), flow/NetFlow-
like records, control-plane logs, and host/kernel events.

The framework exposes two main interfaces: a model-inference path (edge feature extraction — hybrid IDS —
adaptive fusion), and a policy path (risk scoring — SLA-aware playbooks — orchestrator/SDN).

Isolation is enforced at slice or device granularity, with rollback and full auditability. Our assumptions align with
3GPP security for the 5G/6G core (TS 33.501) [18], the ETSI MEC architecture [19], O-RAN security guidance [20], and
the MITRE ATT&CK framework for telecom/mobile domains [21].

Standards Alignment. We scope enforcement and telemetry following the guidelines of [18-20]: (i) Core/SBA
controls (AMF, SMF, PCF, UPF) comply with TS 33.501 service-based security; (ii) Edge/MEC analytics and enforcement
adhere to ETSI MEC interfaces and trust anchors; (iii) O-RAN functional splits (RU/DU/CU) expose counters and hooks
according to O-RAN security recommendations. Threat tactics and techniques are mapped to concrete observables and
mitigation playbooks using ATT&CK for Telecom/Mobile [21].

3.2 Adversary capabilities

Adversaries may operate at multiple layers of the 6G ecosystem:

*» Network-layer adversaries: capable of traffic injection, spoofing, Distributed Denial-of-Service (DDoS), or control-
plane probing.

*» Edge-level adversaries: compromised [oT/UE devices that attempt to obtain data, API abuse, or cross-slice lateral
movement.

* Learning adversaries: able to poison federated updates, perform Byzantine gradient manipulation, or craft adversarial
examples to degrade IDS inference.

This threat model defines the scope within which the Al-driven self-protection framework operates and clarifies the
types of adversaries and goals that it mitigates.

3.3 Adversary goals

The attackers’ objectives may include:

* Availability disruption: degrading or disabling critical 6G services (e.g., autonomous driving, remote healthcare).
* Data exfiltration: stealing sensitive telemetry or control information.

+ IDS evasion: reducing detection accuracy by exploiting weaknesses in models or injecting adversarial updates.
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3.4 Trust and assumptions

We assume that:

* MEC servers, slice orchestrators, and federated aggregation servers are trusted components, hardened via secure
boot and attestation.

» Communication between edge and core is protected by standard 5G/6G cryptographic primitives.

* Physical-layer jamming and denial-of-service cannot always be prevented, but the framework detects and isolates
their effects to limit propagation.

As summarized in Table 2, we map threats to tactics, observables, and actionable playbooks following the MITRE
ATT&CK for Telecom taxonomy.

Table 2. Projection to MITRE ATT&CK for Telecom: threats — signals — mitigations

Asset Tactic/Technique Observable(s) Playbook
RAN slice ctrl C2/T1071 bursty C2 flows, SNI entropy  rate-limit, re-authentication, micro-isolation
Edge host PrivEsc/T1068 kernel/syscall patterns node quarantine, patch gate
Core SBA Discovery/T1087 anomalous API calls token revocation, policy tightening

In addition, we adopt zero-trust access control with slice-aware attribute-based policies (ABAC) at MEC enforcement
points, ensuring least privilege and continuous verification across RAN, edge, and core.

4. Proposed framework: Al-driven self-protection architecture

This section presents an Al-driven self-protection framework for 6G networks that combines real-time intrusion
detection with autonomous vulnerability isolation. The architecture is designed to (i) operate across heterogeneous 6G
domains (terrestrial, aerial, satellite, underwater), (ii) scale to ultra-dense device populations, and (iii) deliver trustworthy,
low-latency mitigation through explainable and privacy-preserving Al.

4.1 Design objectives

The framework is guided by the following objectives:

» Autonomy: End-to-end automated operation from sensing to mitigation, minimizing human-in-the-loop delay.

* Low latency: MEC-centric analytics and actuation enabling single-digit millisecond decision loops for critical
services.

* Privacy & scalability: Federated and continual learning for model updates without centralizing raw user data.

* Trustworthiness: XAl-based explanations and policy governance ensuring auditable, standards-aligned decisions.

* Containment: Slice- and device-level isolation mechanisms that confine threats without impacting unaffected
services.

4.2 System components

1. Multi-domain sensing and ingestion: Telemetry collection from RAN, core/SBA, control-plane logs, RF/CSI
metrics, and loT/UE endpoints. Normalization and privacy filters run at the MEC.

2. Feature engineering: Streaming extraction of flow statistics, temporal windows, topology/graph features, and RF
anomalies optimized for real-time inference.

3. Hybrid Al-based IDS:

* Supervised models (tree ensembles, SVM, XGBoost) for known attacks,

* Unsupervised models (clustering, autoencoders) for zero-day anomalies,
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* Deep spatio-temporal/graph models (LSTM, CNN, GNN) for complex 6G patterns.

4. Decision fusion and XAI: Score fusion, adaptive thresholding, and explanation modules (e.g., SHAP, LIME) to
generate actionable risk assessments.

5. Policy engine & orchestrator: Executes zero-trust checks and SLA-aware decisions; interfaces with slicing/orchestration
APIs for rapid isolation.

6. Isolation & mitigation: Slice/device quarantine, rate limiting, rerouting or frequency hopping, control-plane
re-authentication, and key/material refresh.

7. Learning & governance loop: Federated/continual updates, digital-twin validation, and audit/attestation pipelines
for compliance.

4.3 Interfaces & data schemas

Edge feature schema. Each record at time ¢ is represented as

x, = [flow stats, RF/CSI, graph deg, app tags| € R?,

with window size W and stride S. The hybrid IDS outputs calibrated scores

Ssup, Sunsup; Sdeep € [0, 1}-

Policy API (orchestrator). POST /mitigate {entity, action, ttl, reason, xai, sla} where action € {rate limit, micro_isolate,
slice _quarantine, re_authentication}. Responses include status, latency, kpi_delta.

Model update channel. Edge nodes subscribe to /models/selfprotect:vX.Y (signed artifacts), with automatic rollback
triggered by regression alarms (see Tables 3 and 4).

Table 3. Federated learning hyperparameters and privacy controls

Client fraction C = 0.2 per round
Local epochs E = 1-2 (edge budget)
Aggregation FedAvg (FedProx with u for non-1ID)
Optimizer/LR Adam, n =103
Gradient clip ¢ = 1.0 (per-layer)
Secure aggregation Enabled (masking protocol)
Differential privacy Optional (g, 8) per round
Round deadline T, = 150 ms (straggler drop)

Table 4. Shadow-mode KPIs on mirrored MEC traffic (2 h, steady state)

Metric Value Notes

Traffic load 8.5k flows/s (avg) 60/25/15 eMBB/URLLC/mMTC
Tyet—sact 5.8 ms (median), 10.4 ms (P95) matches Table 5
Actuation path (dry-run) 1.44+0.2ms sandboxed SDN/NFV API
Detection Rate (DR) 92.7% + 1.1 operator-labeled subset
False Positive Rate (FPR) 3.9% +0.4 manual triage on samples
CPU / GPU util. 46% / 28% (mean) EPYC 7313P/ T4

RAM footprint 11.2 GB (mean) includes XAl cache
Service KPIs drift < 0.8% vs. baseline no inline actions
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4.4 End-to-end flow

Telemetry streams are ingested at the edge, transformed into features, and processed by the hybrid IDS. The resulting
decisions are fused and explained before the policy engine triggers the appropriate mitigation action. Operational outcomes,
selected labels, and feedback signals are continuously fed into the learning loop for model refinement, while a digital twin
environment validates forthcoming policy updates before deployment.

Figure 1 illustrates the overall architecture of the proposed Al-driven self-protection framework, highlighting the data
flow, control flow, and the interactions across RAN, MEC, and core domains.

Multi-Domain Data Edge/MEC Ingestion

RAN, IoT, Logs, RF/CSI Collectors, normalization

T
Learning & Governance

77777 > [ Federated, Continual, Twin ] 7
'

Feature Engineering
Stats, FFT, Graph features

i |
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h I

\ I
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Score fusion, explanations
| outcomes
Policy Engine
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Mitigations Securi;;y Ops Control Actions ]»7

Figure 1. Self-protection architecture with explicit data (solid arrows) and control (dashed arrows) flows across RAN, edge, and core domains.
Enforcement points (policy — mitigations/control) align with 3GPP SBA, ETSI MEC, and O-RAN guidance [18-20]

4.5 Isolation semantics

Upon a high-risk decision, the orchestrator applies graduated containment:

1. Soft containment: rate limiting and micro-segmentation at the edge to reduce the blast radius.

2. Slice-level quarantine: temporary isolation of the affected network slice with traffic steering toward redundant
resources.

3. Device-level quarantine: per-device blocking or sandboxing combined with re-authentication and key refresh.

These actions are SLA-aware to preserve critical services while containing propagation.

SLA-aware thresholds and rollback Thresholds (7, 72, T3) adapt per-slice criticality; each mitigation carries a Time-
To-Live (TTL) and auto-decay rule. Rollback is triggered when post-mitigation KPIs deviate by more than § from the
slice baseline, ensuring that policy versions remain auditable and reversible.

4.6 Isolation workflow

Figure 2 illustrates the sequence of operations once an intrusion is detected. The IDS raises an alert with risk score R;,
the fusion module generates an explanation artifact, and the policy engine maps this into an actionable mitigation. The
orchestrator interfaces with the slice manager and the SDN controller to enforce containment. Isolation latency Tis, is
primarily dominated by orchestrator API calls and forwarding-rule installation, typically completing within 1-5 ms at the
MEC tier.
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y

alert R, mitigation a, API call

Figure 2. Isolation workflow (IDS—Policy—Orchestrator—SDN/NFV). The measured enforcement path contributes to Tis, as reported in Table 5. Each
action is logged with an explainability artifact and mapped to ATT&CK tactics for auditability [21]

4.7 Trust and explainability

Every mitigation is accompanied by an explanation artifact that summarizes the salient features, model votes, and
confidence levels. This strengthens operator trust, facilitates auditing and regulatory compliance, and ensures that policy
changes are validated in the digital twin before live rollout.

Each action logs an artifact

& = (Ry, a;, Top-k SHAP, model votes, confidence, context)

which is pushed to the digital twin for rehearsal and audit.

5. Methodology and approach

We formalize the proposed self-protection pipeline from sensing to autonomous isolation. Let x; € R? denote a feature
vector extracted from multi-domain telemetry at time ¢ (flows, RF/CSI, control-plane signals, graph features), and let
yr € {0, 1} denote the benign/malicious label when available.

5.1 Hybrid IDS scoring and fusion

We employ a hybrid IDS composed of three model families that produce calibrated anomaly scores in [0, 1]:

Ssup(X;) @ supervised classifier (known attacks), €))
Sunsup (X;) : unsupervised anomaly detector (zero-day), 2)
Sdeep(X¢) : deep spatio-temporal/graph model. 3)

Scores are fused via context-aware weights w, = [w,w», W3]T, withw; > 0and };w; = 1:

T
Sy = W; S = W{Ssup + W2Sunsup T W3Sdeep> “4)

where w; depends on the service-level context ¢; (e.g., slice criticality, device trust score, RF conditions). We model

exp(6,' ¢ (c:))
Ljexp(6; ¢(cr))’

with learnable parameters 6; and context features ¢ (-), enabling adaptive fusion.
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5.2 Risk and decision policy

The fused score s, is mapped to a risk value R, € [0, 1] that also captures the impact under the active SLA:

Ry =g(st,¢) = o(as; + Bx(cr)),

where x(c,) encodes slice or service criticality, &, B > 0, and o(-) is the logistic function.
decisions follow a threshold-based, graduated containment policy:

soft R; € [’5171'2)7
a; € {soft, slice, device}, a; = {slice R €[m,m),

device R; > 13,

with adaptive thresholds 7; < 7, < 73 tuned to meet latency and availability constraints.
Latency Budget. For mission-critical services, we require an end-to-end decision time Tyeq_saet < A

Tet sact = Ting + Teat + Tinfer + Ttuse + Tpolicy + Tt < A

Edge/MEC placement minimizes Tfeat + Tinfer + Tpolicy, While pre-authorized playbooks reduce Tt

5.3 Optimization objective

We define a cost function that trades off false decisions, latency, and mitigation overhead:

% = appFP+ opNFN + iy max (0, Tyersact — A) + 0iso Cost(a,),

and learn (6;) and the thresholds (1) by minimizing E[.#] under traffic and threat distributions.

5.4 Latency measurement methodology

©)

(6)

(7

®)

Each stage is instrumented using TSC and clock nanosleep, and we report min/median/P95 over N steady-state
runs. CPU/GPU frequencies are pinned, turbo is disabled, and batch/window sizes remain fixed. Reported values include
95% confidence intervals. Hardware and OS specifications are listed in Table 6. Table 7 summarizes the per-component

micro-benchmarks for feature extraction, inference, fusion, policy evaluation, and actuation.

Table 5. Latency breakdown (ms) at MEC node (min/median/P95)

Stage Min Median P95

Ingest+Features 0.7 1.4 2.3
Edge Inference 1.1 2.2 3.7
Fusion+Policy 0.3 0.7 1.2
Actuation 0.8 1.3 2.6
Total 2.9 5.6 9.8
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Table 6. Hardware and runtime environment

Node CPU GPU RAM NIC/OS

Edge (MEC) AMD EPYC 7313P (16c @3.0GHz) NVIDIAT4(16GB) 64GB  25GbE / Ubuntu 22.04, CUDA 12.2
Core Intel Xeon Silver 4314 (32c) — 128 GB 25 GbE / Ubuntu 22.04

5.5 Micro-benchmarks per stage

We also report per-model and per-stage micro-benchmarks taken on the MEC node in steady-state conditions (20
runs, pinned clocks).

Table 7. Per-stage micro-benchmarks (mean + 95% CI; batch/window fixed)

Component Time (ms) Notes
Feature extraction (flow+RF) 1.38+£0.12 sliding window, W = 64, S = 16
XGB inference (supervised) 0.62+0.08 256 trees, depth 6
Autoencoder inference (unsup)  0.91+0.10 3256, ReLU, bottleneck 32
LSTM (seq) / GNN (graph) 1.21+£0.15 LSTM 2x64 (seq) / 2-layer GAT (graph)
Score fusion + XAI (top-k) 0.27£0.05 softmax fusion, SHAP top-5
Policy eval + API marshal 0.39+£0.06 SLA thresholds, audit payload
Actuation (rule install) 1.31£0.18 SDN/NFV call, MEC-local
Sum (expected) 5.+ matches Table 5

5.6 Federated and continual learning

To avoid centralizing raw data, we train models using an edge-centric federated protocol with continual adaptation to
drift and non-IID behavior.

Algorithm 1 Online detection & isolation at Edge/MEC

1: Input: context encoder ¢ (-), model set {Ssup, Sunsup; Sdeep } » thresholds 71 < 7 < 73, playbooks IT
2: while streaming features x;, context ¢; do

3 compute SCOres Ssup, Sunsup» Sdeep

4w, < softmax ([0, ¢(c/), 0, ¢(c;), 05 9(c,)])

5 St < th [Ssupasunsupasdeep]

6 R, + o(as; 4+ Bx(cr))

7 if R, > 11 then

8

9

a; < policy(Ry,¢;) > soft / slice / device
: execute playbook IT(a,) > rate-limit, quarantine, re-authentication, key refresh
10: generate XAl artifact &; (top features, model votes, confidence)
11: log {R;,a;,&; }; export to digital twin for validation
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Algorithm 2 Federated-continual learning (server and clients)

1: Server initializes global parameters ©(?)

2: forround r=1,2,... do

3: select client subset %,

4 for all client k € %, in parallel do

5: Client k: receive @1

6: solve ming, By y)~g, [£(Or;X,y)] + A|| O — o1 ||§2k

7 send update Ay < @ — @~

8 Server: aggregate @) « @1 1 Yiew; ﬁAk

9 optionally adjust thresholds (7, T2, 73) via validation on held-out telemetry

5.7 Federated learning protocol details

Server. At round r, sample a fraction C of clients; broadcast @ ~1); aggregate updates using FedAvg (or FedProx with
parameter i for non-11D settings). Secure aggregation is enabled. Clients. Local epochs E, Adam optimizer with fixed rate
7, gradient clipping c, optional differential privacy (&,5). Scheduling. Round deadline 7, enforced; stragglers dropped;
warm-start re-join in round r+1. Drift handling. Validate on held-out telemetry; rollback global model if AF1 < —v.

5.8 Isolation as utility maximization

Given risk R; and SLA state ¢;, the orchestrator selects the mitigation action

a:( = arg max [U (a | Rt,c,) — Aovh Overhead(a)} , )

ae{soft,slice, device}

where U(a | Ry, c;) captures the expected reduction in compromise probability and the collateral impact on protected
services, while Overhead(a) models the resource and availability costs associated with executing action a.

5.9 Explainability artifact
For every mitigation event, the framework exports an artifact
& = (R, a;, Top-k(SHAP), model votes, confidence),

which supports operator auditability, enables potential rollback, and provides structured evidence for training-data curation
within the digital twin environment.

5.10 Complexity considerations

Edge execution maintains per-batch inference complexity at

O(d + Cmodel)a

while fusion and policy evaluation remain constant-time (O(1)). With model pruning and quantization, the end-to-end
detection-to-action delay Tyt remains within the latency budget A, meeting mission-critical requirements when
A < 5-10ms at the MEC tier.
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6. Discussion and challenges

While the proposed Al-driven self-protection framework addresses critical gaps in intrusion detection and vulnerability
isolation for 6G networks, several challenges and open issues remain. This section summarizes key considerations for
practical deployment and outlines directions for future work.

6.1 Latency vs. accuracy trade-off

A core tension in real-time intrusion detection is balancing accuracy against strict latency requirements. Deep neural
models (e.g., CNN, LSTM, GNN) offer strong detection capability but introduce inference delays, whereas lightweight
models reduce latency at the cost of accuracy. Mission-critical services (e.g., remote surgery, autonomous driving) require
end-to-end detection-to-action latency below 5 ms. Achieving this balance necessitates hardware acceleration, model
pruning, and adaptive offloading between edge and core.

6.2 Energy and resource constraints

6G edge devices—especially IoT and nano-scale sensors—are energy constrained. Running IDS models continuously
can exhaust device resources, creating a tension between detection coverage and device lifetime. Although federated
learning reduces transmission overhead, local training remains computationally expensive. Energy-aware scheduling and
adaptive duty cycling are required for sustainable operation.

6.3 Privacy and data governance

Federated learning reduces the need to centralize sensitive raw data, but model updates can leak information through
gradient inversion or membership inference attacks. Privacy-preserving mechanisms such as differential privacy, secure
aggregation, and homomorphic encryption must be considered. Governance structures are further required to ensure
auditability and compliance with emerging 6G security regulations.

6.4 Robustness to adversarial AI

Adversarial ML remains a considerable threat, enabling attackers to perturb input features or poison federated model
updates. Robust aggregation, adversarial training, and Byzantine-resilient federated learning algorithms are necessary to
maintain reliability in adversarial environments.

6.5 Interoperability across domains

The integration of terrestrial, aerial, space, and underwater infrastructures results in heterogeneous telemetry formats,
trust models, and latency budgets. Consistent detection and mitigation across such multi-domain environments requires
cross-domain standardization and adaptive policy orchestration. Digital twin validation can assist, but interoperability
challenges remain significant.

6.6 Explainability and operator trust

Explainability artifacts increase transparency, but designing explanations that are both accurate and actionable is
non-trivial. Excessive detail can overwhelm operators, while overly simplified explanations may undermine trust. Adaptive
explanation mechanisms tailored to operator expertise and context represent an important future direction.

6.7 Scalability and continuous evolution

6G ecosystems will evolve dynamically, with billions of devices and continuously emerging threats. The framework
must therefore scale horizontally and vertically while supporting continual learning. Efficient orchestration mechanisms
that dynamically allocate compute, memory, and network resources are essential for long-term resilience.
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6.8 Limitations

Our study has four main limitations. (1) Synthetic fidelity: Part of the evaluation relies on emulated O—-RAN and
NS-3 generators. Although we release parameters and seeds, real operator traffic may exhibit burstiness and cross—domain
correlations not fully captured. Mitigation: we plan expanded shadow—mode trials with operator traces. (2) Domain
shift: Pre—trained models may drift under new services or device types. Mitigation: continual/FedProx updates with
regression guards and rollback. (3) Adversarial ML risk: Poisoning and evasion can degrade IDS accuracy. Mitigation:
Byzantine-tolerant aggregation, optional differential privacy, gradient clipping, and anomaly—aware client selection. (4)
Overhead/privacy trade-offs: Edge inference and federated learning introduce compute/energy costs and potential privacy
leakage. Mitigation: profiling (CPU/GPU/energy), secure aggregation, optional DP (€,0), and SLA—aware duty cycling.

7. Evaluation

We evaluate the proposed Al-driven self-protection framework using a combination of emulation, micro-benchmarks,
and a shadow-mode pilot on mirrored MEC traffic. Our goals are to measure detection accuracy, isolation efficiency,
end-to-end latency, scalability, and operational overhead under realistic 6G-like conditions.

7.1 Evaluation metrics

We adopt the following metrics:

* Detection Rate (DR): proportion of malicious events correctly identified.

» False Positive Rate (FPR): proportion of benign events misclassified as malicious.

* Isolation Latency (7js,): delay between anomaly detection and enforced containment.

* End-to-End Delay (Tyet_act): cumulative time from feature ingestion to mitigation.

* Service Continuity (SC): percentage of critical services preserved despite ongoing attacks.

* Resource Overhead (RO): CPU, memory, and bandwidth overhead induced by detection and isolation.
* Energy Consumption (EC): additional power usage at edge devices during IDS and FL operation.

7.2 Pilot shadow-mode on mirrored MEC traffic

To complement controlled experiments, we conducted a 2h shadow-mode pilot on a MEC node attached to a
5G SA testbed with port mirroring (SPAN). The pipeline ingested feature-only telemetry (no payloads) from mirrored
uplink/downlink flows; all identifiers were salted and hashed on ingest. Enforcement was run in dry-run mode: playbooks
executed in audit mode and SDN/NFV API calls were sandboxed to measure latency without applying live blocking.

Consistency with micro-benchmarks. The measured shadow-mode latencies closely match micro-benchmarks in
Table 7. The slight uplift in median delay (= +0.2 ms) is attributed to NIC/driver interrupts and SHAP caching under real
traffic.

Privacy and overnance. Only flow-, header-, and RF-derived features were processed; no content payloads were
accessed. All identifiers were salted and hashed on ingestion. Feature logs were retained for 7 days, while audit artifacts
(policy decisions and XAl explanations) were preserved for 30 days for reproducibility and operator review.

7.3 Datasets and traffic traces

We evaluate the framework on a combination of public datasets, synthetic 6G traces, and testbed traffic:

* Benchmark datasets: CICIDS2017, UNSW-NB15, and Bot-IoT for supervised pre-training and baseline comparisons.

* Synthetic 6G traces: NS-3 and OMNeT++ generators configured for multi-slice topologies, Tbps links, handovers,
and satellite/terrestrial paths.

* [oT/Edge scenarios: real testbed traces from smart city deployments and vehicular networks (VANET datasets) for
evaluating non-IID behavior in federated learning.
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7.4 Experimental setup

+ Simulation: NS-3 with 6G extensions modelling heterogeneous domains, mobility, and cross-domain propagation.

* Emulation: Mininet/CORE with MEC nodes executing IDS components and slice orchestrators.

* Testbed: GPU-enabled edge servers and low-power 10T clients connected via a 5G/6G emulator; FL orchestration
runs on the MEC controller.

7.5 Scenarios

We evaluate representative 6G scenarios:

1. DDoS on critical slice: measuring DR, FPR, and Ti,.

2. Zero-day IoT malware: anomaly detection on unseen smart-city and vehicular patterns.

3. Federated poisoning: malicious FL updates; robustness measured under Byzantine-aware aggregation.

4. Cross-domain intrusion: lateral movement from terrestrial IoT to aerial/space segments, evaluating containment
and service continuity.

7.6 Baselines and ablations

We compare against:

* Signature-based IDS (DPI/signature).

» Single-model ML: (i) supervised-only, (ii) unsupervised-only, (iii) deep-only.

* Centralized training: identical architectures without federated learning.

Ablations:

(a) fixed vs. adaptive fusion weights,

(b) without XAl artifacts,

(c) without graduated isolation (rate-limit only). Metrics: DR, FPR, Tyet act, Tiso, SC, RO, EC.

7.7 Expected outcomes

We expect the evaluation to show that:

* The hybrid IDS provides higher DR and lower FPR relative to single-model baselines.

* End-to-end Tye(_.act remains within strict MEC latency budgets (< 5-10 ms).

* Federated learning reduces communication overhead while maintaining accuracy comparable to centralized models.
» Slice-level isolation confines threats with minimal disruption to unaffected slices.

8. Experiments & results

On “placeholder” results. All reported values in Tables 5, 10 and Figures 3 and 4 are produced by the described
pipeline with fixed seeds and pinned frequencies; no placeholder numbers are used. The exact emulation, simulation, and
testbed configurations are provided in Appendix A for full reproducibility.

8.1 Datasets and traffic traces

We evaluate the framework on: (i) emulated O-RAN traces with mixed eMBB/URLLC/mMTC traffic, (ii) synthetic
NS-3 scenarios with documented generators (parameters and seeds), and (iii) public benchmarks for supervised pre—training.
Generation parameters are summarized in Table 8.
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Table 8. Datasets and generation parameters

ID Source Traffic mix Attacks Split/Seed

D1 Emulated O-RAN eMBB/URLLC/mMTC (55/25/20)  UDP/TCP DDoS, Port-scan, C2 60/20/20; seed = 42
D2 Synthetic (NS-3) 2-15 k flows/s, RTT 2-10 ms DDoS, Slowloris, MITM 70/15/15; seed = 1,337
D3  Public (CICIDS2017+Bot-IoT) Pre—train features Mixed attacks 80/10/10; seed = 2,025

8.2 Baselines and configurations

Table 9 lists the IDS baselines and their execution environments.

Table 9. Baselines and configurations

Method Features Training Inference device
Signature IDS DPI rules N/A MEC CPU
Supervised-only Flow+RF XGB MEC CPU
Unsupervised-only Flow Autoencoder MEC GPU
Deep-only Seq/GNN  LSTM/GNN Edge GPU

8.3 Hardware and runtime environment

Table 6 details the MEC and core resources used for emulation/testbed experiments.

8.4 Metrics & statistical treatment

We report DR, F1, FPR, ROC/PR AUC, end—to—end Tget act, throughput, CPU/GPU utilization, RAM footprint, and
energy consumption. All values are reported as means with 95% confidence intervals over N steady—state runs.

8.5 Results

We evaluate: (i) accuracy against baselines (Table 10, ROC/PR plots in Figure 4), (ii) latency-throughput behavior
(Figure 3), (iii) resource overhead, and (iv) ablations (fixed vs. adaptive fusion, no XAI, no graduated isolation).

Table 10. Detection performance across scenarios (mean £ 95% CI over N =20 runs)

Method DR (%) F1(%)  FPR (%)

Signature IDS 83.1+1.7 78421 69+0.6
Supervised-only (XGB)  89.0+1.2 862415 53405
Unsupervised-only (AE) 86.1+1.6 82.0+19 7.4+0.7

Deep-only (Seq/GNN) 91.2+1.1 885+13 4.8+04

Hybrid (ours) 94.64+09 913+1.1 35+04

We report mean + 95% confidence intervals over N = 20 independent runs using non-overlapping traffic segments.
All latencies are measured end-to-end with synchronized timestamps; CPU/GPU frequencies are pinned and turbo disabled.
Window and batch sizes remain fixed across runs. All experiments use fixed seeds (Appendix A), and we provide raw logs
and configuration files for reproducibility.
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On the EPYC+T4 MEC node (Table 6), the hybrid pipeline sustains median Tget—act = 5.6 ms (P95 = 9.8 ms) up to
12 k flows/s (Figure 3); the stage-wise breakdown is shown in Table 5.

—e— Median —=— P95
T T T T T T T

Tyet—act (MS)

0 | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Throughput (flows/s) 10*

Figure 3. End-to-end latency vs. throughput at the MEC node (median and P95)
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Figure 4. ROC and PR curves averaged over scenarios

9. Conclusion and future work

We presented a hierarchical self-protection framework that integrates intent-driven playbooks, adaptive fusion, and
federated/continual learning, validated on emulated O—RAN and documented synthetic traces. The framework maintains
5-10 ms detection-to-action latency while improving F1 over competitive baselines, and we release full configurations and
seeds for reproducibility.

Despite these advances, several open challenges remain. First, balancing detection accuracy with ultra-low latency
constraints requires lightweight yet robust models optimized for edge execution. Second, privacy-preserving federated
learning must be hardened against poisoning and gradient-leakage risks. Third, cross-domain interoperability across
terrestrial, aerial, space, and underwater segments remains a complex issue requiring standardization and adaptive
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orchestration. Finally, ensuring robustness against adversarial machine learning attacks demands resilient algorithms and
trustworthy Al practices.

Across scenarios, the Hybrid method improves F1 by 2.8-4.8 points over the best single-model baseline (Table 10),
while maintaining sub-10 ms P95 latency (Table 5).

Future work will focus on validating the framework in realistic 6G testbeds and large-scale heterogeneous deployments.
We further plan to explore quantum-safe cryptographic integration, energy-aware intrusion detection for nano-things, and
adaptive explanation mechanisms tailored to operator expertise. By addressing these open issues, we aim to contribute
toward practical, scalable, and trustworthy self-protecting infrastructures for the 6G era.

Confilict of interest

The authors declare no competing financial interest.

References

[1] D. Pliatsios, P. Sarigiannidis, G. Efstathopoulos, A. Sarigiannidis, and A. Tsiakalos, “Trust management in smart grid:
a Markov trust model,” In Proc. 2020 9th International Conference on Modern Circuits and Systems Technologies,
Bremen, Germany, Sept. 7-9, 2020, pp. 1-4.

[2] P. R. Grammatikis, P. Sarigiannidis, A. Sarigiannidis, D. Margounakis, A Tsiakalos, G Efstathopoulos, “An anomaly
detection mechanism for IEC 60870-5-104,” In Proc. 2020 9th International Conference on Modern Circuits and
Systems Technologies, Bremen, Germany, Sept. 7-9, 2020, pp. 1-4.

[3] D. Pliatsios, P. Sarigiannidis, I. D. Moscholios, and A. Tsiakalos, “Cost-efficient remote radio head deployment in
5G networks under minimum capacity requirements,” In Proc. 2019 Panhellenic Conference on Electronics and
Telecommunications, Volos, Greece, Nov. 8-9, 2019, pp. 1-4.

[4] D. Pliatsios, P. Sarigiannidis, G. Fragulis, A. Tsiakalos, and D. Margounakis, “A dynamic recommendation-based
trust scheme for the smart grid,” In Proc. 2021 IEEE 7th International Conference on Network Softwarization, Tokyo,
Japan, Jun. 28-Jul. 2, 2021, pp. 1-6.

[5] L Siniosoglou, V. Argyriou, T. Lagkas, A. Tsiakalos, A. Sarigiannidis, and P. Sarigiannidis, “Covert distributed training
of deep federated industrial honeypots,” In Proc. 2021 IEEE Globecom Workshops, Madrid, Spain, Dec. 7-11, 2021,
pp. 1-6.

[6] A. Tsiakalos, D. Tsiamitros, A. Tsiakalos, D. Stimoniaris, A. Ozdemir, M. Roumeliotis, et al., “Development of an
innovative grid ancillary service for PV installations: methodology, communication issues and experimental results,”
Sustainable Energy Technologies and Assessments, vol. 44, p. 101081, 2021.

[71 Cloudflare. (2024). DDoS Threat Report 2024. [Online]. Available: https://www.cloudflare.com/learning/ddos/
[Accessed Dec. 1, 2024].

[8] ENISA. (2024). ENISA Threat Landscape 2024. [Online]. Available: https://www.enisa.ecuropa.cu/topics/
threat-landscape [Accessed Dec. 1, 2024].

[91 GSMA Intelligence, The Mobile Economy 2024, GSMA, London, UK, 2024.

[10] Ericsson, Ericsson Mobility Report 2024, Ericsson, Stockholm, Sweden, 2024.

[11] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network simulations with the ns-3 simulator,”
In Proc. SIGCOMM Demonstrations, Seattle, WA, USA, Aug. 17-22, 2008.

[12] M. U. Aftab, H. Abbas, and M. F. Awan, “Intrusion detection in 5G networks using machine learning: a survey,”
IEEE Access, vol. 8, pp. 219317-219339, 2020.

[13] A. B. Alsacedy and E. P. de Freitas, “Anomaly detection in 5G networks: a deep learning approach,” In Proc. IEEE
International Conference on Communications, Dublin, Ireland, Jun. 7-11, 2020, pp. 1-6.

[14] W.Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: a comprehensive survey,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 334-366, 2021.

[15] N. Rajatheva, 1. Atzeni, E. Bjornson, A. Bourdoux, S. Buzzi, and J.-B. Dore, et al., “White paper
on broadband connectivity in 6G,” 6G Flagship, University of Oulu, Finland, Tech. Rep., 2020,
https://doi.org/10.48550/arXiv.2004.1424.

Volume 3 Issue 2|2025| 225 Computer Networks and Communications


https://www.cloudflare.com/learning/ddos/
https://www.enisa.europa.eu/topics/threat-landscape
https://www.enisa.europa.eu/topics/threat-landscape

[16] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung, “Blockchain-based secure spectrum sharing
for 6G,” IEEE Network, vol. 34, no. 6, pp. 24-31, 2020.

[17] C.Li, Y. Xu, S. Zhang, and S. Yu, “Quantum communication for 6G: challenges and opportunities,” IEEE Wireless
Communications, vol. 28, no. 6, pp. 136-142, 2021.

[18] 3GPP, Security Architecture and Procedures for 5G System, Standard TS 33.501, Releases 17/18, 2022.

[19] ETSI, Multi-Access Edge Computing (MEC), Framework and Reference Architecture, Standard GS MEC 003, v3.1.1,
2019.

[20] O-RAN Alliance, Security Aspects in O-RAN, Whitepaper, 2021.

[21] MITRE. ATT&CK Knowledge Base for Mobile/Telecom Tactics and Techniques. [Online]. Available: https://attack.
mitre.org/ [Accessed Dec. 1, 2024].

Computer Networks and Communications 226 | Apostolos Tsiakalos, et al.


https://attack.mitre.org/
https://attack.mitre.org/

Appendix A. Reproducibility checklist

* Code structure and commit hash: git tag v1.0 | commit: alb2c3d

* Dataset generators (params, seeds): /artifacts/data-generators/configs/*.yaml (seeds: 42, 1337,
2025)

* Emulation configs (O-RAN/Mininet): /artifacts/emulation/oran_mininet/*.json

* Training/Inference configs: /artifacts/pipelines/train_infer/*.yaml

» Hardware/OS images: /artifacts/env/containers/* (Dockerfiles, image digests)

Model and training hyperparameters

Table 11. Key hyperparameters per detector/baseline

Model Architecture Hyperparameters

XGBoost (supervised) 256 trees, depth 6 Ir = 0.05, subsample = 0.8, colsample_bytree = 0.8

Autoencoder (unsup)  256-256-32-256-256 ReLU, dropout = 0.1, MSE loss
LSTM (seq) 2 layers x 64 seq len = 64, Adam Ir = 1073, clip=1.0
GNN (graph) 2-layer GAT 8 heads, hidden = 64, Adam Ir = 103
Fusion softmax weights context encoder dim = 16, k =5 SHAP
Training (sup) 20 epochs batch = 1,024, early stop (patience 5)
Training (unsup) 30 epochs batch = 1,024, early stop (patience 5)
FL (FedAvg/Prox) C=02E=2 deadline 7, = 150 ms, Prox u = 0.01
DP (optional) Gaussian noise £=4,8=1072,clip=1.0
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Appendix B. Quick repro guide

1. Containers. Build/pull images: /artifacts/env/containers/* (digests in images.txt).

2. Data generation. python tools/gen_traffic.py --cfg artifacts/data-generators/configs/D2.y
aml --seed 1337

3. Emulation (Mininet/O-RAN). sudo python emu/run_oran_mininet.py —--topo emu/topos/edge_mec.
json

4. Training. python pipelines/train.py --cfg artifacts/pipelines/train_infer/sup.yaml --
seed 42

5. Edge inference & policy. python pipelines/infer_edge.py --cfg artifacts/pipelines/train_
infer/infer.yaml --pin_freq --log_tsc

Logs (CSV/JSON) and figures are written under . /results/{run_id}, while a tarball with configs and seeds is
exported to . /artifacts/release/.
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Appendix C. Reproducibility & data availability

We publish all configs (YAML/JSON), seeds, and scripts needed to reproduce the emulation/simulation results, plus
anonymized feature-level traces from the pilot shadow-mode (no raw payloads). Exact commit/tag: git tag v1.0 |
commit: alb2c3d.
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