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Abstract: Machine Learning (ML), which provides timely insights for efficient threat identification and prevention,

has become a crucial cybersecurity technology. However, the growing number of features in modern datasets increases

both processing complexity and computational cost. By concentrating on feature selection and extraction techniques, this

study seeks to improve the efficacy of Mirai botnet analysis. A data extraction approach that transforms Internet of Things

(IoT) network attack datasets (in Packet Capture (PCAP) format) to flow-driven attributes (in Comma-Separated Values

(CSV) format) was presented in our earlier work. A unique framework for effectively developing, assessing, and analyzing

Mirai botnet assaults in IoT networks is provided by the obtained and labeled features of the Mirai-based multi-class IoT

botnet dataset. In this study, experiments were conducted using the extended Mirai-based multi-class dataset and the widely

used Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) dataset for comparison. The results of

both experiments demonstrate that Random Forest Feature Importance (RFFI) outperforms the Boruta feature selection

algorithm. Furthermore, the random forest and decision tree models achieved superior performance in all tests, attaining

100% accuracy in the first experiment using the extended dataset. These findings highlight the importance of selecting

relevant features, rather than using all available attributes, to enhance detection performance and computational efficiency.

Keywords: Boruta algorithm, Internet of Things (IoT) network, Machine Learning (ML), Mirai botnet, multi-class

classification

1. Introduction

The Internet of Things (IoT) is currently becoming an essential element of everyday life. However, many users

neglect to change the default credentials of their smart devices, leaving default configurations as vulnerabilities that can be

exploited by threat actors [1]. Globally, the number of IoT devices is increasing rapidly [2], which heightens security risks

and contributes to the growing prevalence of botnet attacks. A botnet is a network of compromised Internet-connected

smart devices, each running malicious software (bots) that allow attackers to remotely control the infected hosts. Prominent

examples, such as Mirai and BASHLITE, exploit vulnerable device configurations to launch Distributed Denial-of-Service

(DDoS) attacks [1]. To detect and prevent such malicious activities or unauthorized access, Intrusion Detection Systems

(IDS) play a critical role [3].
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Machine Learning (ML) has emerged as a key component of cybersecurity in the twenty-first century, as it can rapidly

generate actionable insights for attack detection and prevention [3]. Network devices typically record security-related

data as Packet Capture (PCAP) files, which are subsequently converted into structured formats such as Comma-Separated

Values (CSV) for ML-based analysis. These datasets enable the identification of anomalous network activity and provide

security experts with timely alerts. However, Mirai botnet detection faces significant challenges due to the enormous

volume, high dimensionality, and redundancy of IoT network traffic. Such extensive data often degrade classification

performance and slow down the detection process [4]. While earlier ML applications commonly utilized fewer than 40

features [5], modern datasets may contain hundreds of features, substantially increasing computational complexity and

resource requirements. Consequently, the “curse of dimensionality” has been highlighted by numerous studies as a major

issue in high-dimensional datasets with relatively few samples [6].

The procedure of lowering a dataset’s dimensionality by keeping those which are most relevant attributes while

removing unnecessary or repetitive components is known as Feature Selection (FS) [7, 8]. FS methods generally evaluate

feature relevance in two ways: (i) by assessing the importance of individual features, and (ii) by identifying and removing

features that are highly correlated or duplicated. By selecting a smaller yet representative subset of features, FS enhances a

classifier’s predictive performance—especially in scenarios where training data is limited [9, 10]. In supervised FS, the

relationship between features and class labels guides the selection process, ensuring that the chosen subset effectively

contributes to accurate classification [8]. Overall, FS plays a role that extends beyond simply building a sophisticated

predictive model; models trained on raw or irrelevant data often suffer from reduced accuracy and poor generalization [9].

Many researchers have investigated various approaches to address the challenges of high-dimensional data by

identifying the most relevant and non-redundant features [4, 7–10]. FS not only improves precision, accuracy, and recall

but also reduces computational costs, simplifies model interpretation, and enhances overall model performance. The main

motivations for employing FS include reducing the number of parameters to simplify the model, decreasing training time,

preventing overfitting through better generalization, and alleviating the curse of dimensionality. Datasets often contain

diverse variables that influence their predictive quality and usefulness during preprocessing and evaluation [11]. Moreover,

addressing class imbalance and selecting optimal models that achieve high predictive accuracy with minimal error remain

critical challenges in classification tasks.

To address these challenges, FS filters and removes superfluous or irrelevant features, thereby reducing dataset

complexity and retaining only the most informative attributes for precise attack classification. FS is typically applied during

the preprocessing stage to enhance overall anomaly detection performance and classification accuracy. In this study, we

propose a novel framework for IoT botnet detection that integrates multiple classification techniques with advanced feature

selection methods. Unlike previous approaches that often rely on a single classifier or feature selection algorithm, our

framework combines RFFI and Boruta with four classifiers, Random Forest (RF), K-Nearest Neighbors (KNN), Gaussian

Naïve Bayes (GNB), and Decision Tree (DT), to comprehensively evaluate feature relevance and classifier performance.

Furthermore, our approach reduces computational cost while maintaining high detection accuracy by emphasizing the

effective identification of critical features. The robustness and generalizability of the framework across various IoT traffic

scenarios are validated using both the widely adopted NSL-KDD dataset and a recently developed Mirai-based multi-class

dataset. Additionally, by incorporating computational efficiency analysis (runtime and memory), our method addresses

practical considerations for deployment in resource-constrained IoT systems—an aspect often overlooked in previous

studies. The proposed models accurately detect and classify Mirai-based IoT botnet attacks, including Synchronize (SYN)-

Flooding, Acknowledgement (ACK)-Flooding, and Hypertext Transfer Protocol (HTTP)-Flooding, distinguishing between

benign and malicious network traffic. Moreover, the results demonstrate that classical ML models achieve significantly

improved performance when trained on carefully selected subsets of critical features. Experimental comparisons are

conducted using the NSL-KDD dataset [12] and a customMirai-based dataset developed in our previous work [13], adapted

from [14] and available in [15].

The following points represent the findings of the paper.

1. Anewly extracted multi-class dataset comprising normal traffic andMirai-based attacks, specifically SYN-Flooding,

ACK-Flooding, and HTTP-Flooding has been developed to support the training and evaluation of machine learning models.
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2. Network traffic behavioral patterns have been analyzed to identify and select the most relevant features, thereby

reducing dimensionality, enhancing the performance of classifiers and anomaly detection algorithms, and achieving

improved overall detection accuracy.

3. A performance comparison was conducted by applying machine learning models to our dataset and the widely used

NSL-KDD dataset.

The following is how the paper is structured: The relevant work is reviewed in Section 2. The suggested approach,

which includes the procedures and methods employed in the study as well as the materials used, is presented in Section 3.

The outcome and a summary of the findings are presented in Section 4. The paper comes to an end and future study are

provided in Section 5.

2. Related works

Numerous studies have concentrated on enhancing the effectiveness of supervised learning techniques for feature

selection-based attack categorization. High-dimensional data often contains attributes that are irrelevant or redundant,

which can compromise the reliability of predictions. When training models for classification or anomaly detection, it

is crucial to consider the dimensionality of the data (i.e., the number of features) to achieve efficient training, enhance

the performance of classifiers or outlier detectors, and ensure correct interpretation of results. FS algorithms provide a

systematic approach for selecting attributes based on their relevance [16]. Related studies [17] have demonstrated that

traditional detection techniques often fail on high-dimensional data due to the curse of dimensionality. This raises an

important question: how can one select an optimal set of critical features and choose the most appropriate FS algorithm

when addressing classification and anomaly detection tasks in high-dimensional datasets? The related research works are

presented in the following section.

2.1 FS and machine learning

In studies [18, 19], Principal Component Analysis (PCA) was employed for feature reduction to identify an optimal

feature set. During preprocessing, categorical features were mapped to numerical values using feature scaling. The

NSL-KDD dataset, originally containing 41 features, was reduced to 23 features after FS. A Radial Basis Function (RBF)

was used as the kernel to handle the high-dimensional features, and the model’s accuracy was compared with and without

FS, showing improved performance when FS was applied. In [18], the KDD CUP 99 dataset was used; preprocessing

involved feature normalization, and PCAwas combined with Support Vector Machine (SVM) to optimize kernel parameters

and enable automatic parameter selection. An ensemble of Decision Tree classifiers and rule-based approaches was

proposed in [20], utilizing three classifiers—REPTree, JRip, and the Forest algorithm—for classifying network traffic as

normal or malicious. Experiments were conducted using the CICIDS2017 dataset, which contains 14 attack categories.

The proposed model achieved a detection rate of 94.4%, accuracy of 96.9%, and a false alarm rate of 1.1%.

Network-based intrusion detection using a Random Forest classifier was investigated in [21]. FS was performed

by measuring feature importance with the RF algorithm, and attack classification was subsequently carried out on the

reduced feature set. Experiments on the CICIDS2017 dataset demonstrated that the RF classifier achieved an accuracy

of 97.34% using the selected features, highlighting the effectiveness of FS in improving classification performance and

computational efficiency. Authors produced flooding-based DDoS assault dataset specifically intended for classification

into several groups, and they examined the efficacy of flexible ML models. There were three thorough examinations. In

every experimental group, they showed that the random forest strategy had a predictive level of over 90.

In [22], Recursive Feature Elimination (RFE) has been applied as an FS mechanism to collect and order properties by

relevance. The top five attributes were selected for classifying from the UNSWNB15 dataset. The results demonstrated

that preprocessing the data and applying FS improved classifier performance. PCAwas also employed for dimensionality

reduction on the NSL-KDD and GureKDD datasets in [23], reducing the number of features from 41 to 31, which led

to improved classification accuracy and a lower false alarm rate. In [24], RFE was combined with SVM and RF for

feature selection. Experiments on the NSL-KDD dataset selected 13 out of 41 attributes for attack classification, and
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the study evaluated the effectiveness of anomaly detection using varying sample sizes. Similarly, Ahmad et al. [25]

investigated different sample sizes of the NSL-KDD dataset using SVM, RF, and Extreme Learning Machine (ELM)

classifiers, showing that ELM outperformed the other methods. In [26], binary classifiers including SVM, Stochastic

Gradient Descent, Sequential Model, Logistic Regression (LR), and RF were applied to the NSL-KDD dataset. Experiments

were performed both with and without feature encoding, and the results indicated that RF achieved the fewest false negatives

and outperformed the other classifiers.

Similarly, a Least Squares Support Vector Machine (LS-SVM) model was developed using FS based on mutual

information and tested on three datasets: KDD CUP 99, NSL-KDD, and Kyoto [27]. The results demonstrated that the

LS-SVM model built with mutual information FS is computationally more efficient compared to other classification

techniques [27]. The detection of various attack types is a complex process that often relies on the analysis of large datasets.

These large datasets can be divided into representative subgroups using sampling techniques, also referred to as optimum

allocation [28]. In [28], a framework combining optimum allocation with LS-SVM was proposed to extract and validate

samples for intrusion detection. Experiments conducted on the KDD CUP 99 dataset showed that the proposed method is

effective for both static and incremental datasets.

2.2 Hybrid FS

A hybrid intrusion detection system model was proposed in [29], integrating DT and one-class Support Vector

Machine (SVM) classifiers. In this approach, the DT classifier is used for signature-based attack detection, while the

one-class SVM handles anomaly-based attack detection. The model is designed to identify both known and novel attacks.

Experiments conducted on the NSL-KDD and AFDA datasets achieved accuracies of 83.24% and 97.04%, respectively.

A stacked ensemble classification technique was proposed in [30] for network-based intrusion detection. The stacked

model combines RF, LR, KNN, and SVM classifiers to derive optimal predictions based on the collective learning of the

classifiers. Experiments were performed using flow-based datasets, namely UNSW-NB15 and UGR-16, and the model

achieved an accuracy of 94%. In [31], a binary classification approach using SVM was implemented to distinguish between

normal and anomalous network traffic. Feature selection was performed using the information gain technique, selecting 10

out of 41 features for training the SVM with a radial basis function kernel. The proposed approach achieved an accuracy

of 96.34%.

To address the increasing volume of network traffic, an ensemble FS method was proposed in [32], which combines

the outcomes of multiple filter-based FS techniques to achieve optimal feature selection. In this ensemble-based multi-filter

framework, four filter methods—Information Gain, Relief-F, Gain Ratio, and Chi-Square—are applied to reduce the

NSL-KDD dataset from 41 attributes to 13. Each FS method ranks the features in the original dataset, and the top features

are selected based on these rankings. A threshold is defined to measure the frequency of occurrence of each feature across

the methods, and majority voting is used to determine the final threshold value. During the generation of the combined

feature subset, a counter identifies features meeting the threshold, resulting in the selection of the most relevant attributes.

The ensemble FS approach, combined with a Decision Tree classifier, achieved an accuracy of 99.67%, demonstrating the

effectiveness of combining multiple FS methods for high-dimensional network traffic datasets.

Despite numerous studies addressing the attack classification problem, existing models exhibit several limitations.

For instance, Kabir et al. [28], Rajagopal et al. [30], Kumar et al. [31], and Osanaiye et al. [32] do not address the class

imbalance commonly present in intrusion detection datasets. Furthermore, the selection of training examples is often

performed randomly rather than using a systematic approach. Many related works are also constrained by the use of

outdated datasets, such as NSL-KDD and KDD CUP 99. Additionally, reported results are typically evaluated on a single

dataset rather than being validated across multiple datasets, limiting the generalizability of the findings.

Recent advances in IoT and network anomaly detection have leveraged deep learning and federated learning techniques.

A resilience baseline for distributed detection pipelines was presented by the authors [33], robustness diagnostics for

ML security were introduced by [34], and defense-oriented ML techniques were examined by [35]. In addition to these

efforts, current IoT botnet detection techniques often reduce high-dimensional traffic data using feature-selection or

dimensionality-reduction techniques like Boruta, RFE, Mutual Information, LASSO, and PCA. To enhance model privacy

and efficiency across distributed IoT devices, Xia et al. [36] and Gebrye et al. [37] proposed an abnormal traffic detection
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approach that integrates depthwise separable CNNs with federated learning. In their survey of CNN-basedAndroid malware

detection methods, Shu et al. [38] highlighted the importance of feature representation and model design in malware and

network threat detection. Similarly, Dong et al. [39] demonstrated the benefits of combining limited labeled data with

reinforcement signals by introducing a semi-supervised deep reinforcement learning model for abnormal traffic detection.

Although these studies achieved promising results, they primarily focus on distributed frameworks and deep learning

approaches. In contrast, our study emphasizes robust feature selection using Boruta and ensemble classifiers, providing a

highly interpretable, computationally efficient, and accurate method for detecting Mirai-based and other network attacks,

thereby complementing and extending the existing literature.

3. The proposed approach

This section describes the suggested research technique, comprising the general procedure and resources used in the

study.

3.1 Research workflow

Figure 1 explains the methods and materials of the study. The input data, consisting of three Mirai-based attacks, were

first converted from PCAP to CSV (a format better suited for machine learning) and then merged with benign data. Further,

this work uses the popular and most common dataset called NSLKDD [12] to conduct the experiment and compare the

performance with the newly generated dataset during the study. Second, our effort utilizes two feature selection methods

to handpicked significance attributes. The success is the contrast among the different supervised learning models for

classification analysis. Selecting an optimal subset of features from a larger set is a computationally challenging task,

particularly when the evaluation process becomes complex without applying specific assumptions or trade-offs. Different

models will excel in classification and data analysis in different ways. We will compare the detector method using different

attributes in order to choose the finest detector method grounded on accuracy.

Figure 1. Research workflow
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3.1.1Transforming the dataset from PCAP to CSV

Initially, the IoT Network Intrusion Dataset was captured and saved in PCAP format using Wireshark network traffic

analyzer. Although each PCAP file contains numerous packet records, machine learning algorithms cannot directly process

this raw data. Therefore, it is necessary to extract and convert the packet information into a machine-readable format.

Initially, Wireshark filtering rules provided by the dataset creators were applied to accurately classify packets, as the dataset

contains both attack and normal traffic [14]. After preprocessing, two types of packets were identified: attack packets

(SYN, ACK, and HTTP flooding attacks) and normal traffic. Subsequently, a custom PCAP extraction and processing tool

was developed using Python and the Scapy module to automatically convert the categorized PCAP files into CSV format.

Python was chosen for its flexibility, object-oriented features, and efficient text-parsing capabilities. The tool processes

attack and normal files from different directories, extracts relevant features, and generates structured CSV datasets suitable

for machine learning analysis. The resulting labeled dataset is publicly available on the IEEE Dataport repository [15]. For

classification, only the most informative features were selected from the CSV data. Linear Discriminant Analysis (LDA)

[40] was employed to evaluate and validate feature significance. Comparative studies using LDA demonstrated that these

extracted features significantly enhance classification performance compared to other datasets, such as the full version of

our dataset and IoTID20 [41]. Accuracy metrics for both training and testing datasets are presented in Figure 2.

Figure 2. Accuracy evaluation of features employing LDA

3.1.2Mirai-based multi-class dataset

The dataset used in the study is composed of various IoT data on network traffic archives; every one of which contains

benign, i.e. typical network activity data, and fraudulent traffic data associated with the Mirai botnet, which is the most

common IoT botnet attack. We focus on SYN-Flooding, ACK-Flooding, HTTP-Flooding, and normal/benign traffic data

from these various forms of attacks by IoT botnets for the study. The dataset utilized in this study was retrieved and adapted

from [14] and generated in our earlier work [13] aimed at binary classification, and it allows for multi-class classification

in addition to identifying an example as benign, SYN-Flooding, ACK-Flooding, or HTTP-Flooding assault. During the

inquiry, network traffic data was used to detect three types of Mirai-based botnet assaults. The newly created dataset, which

had 16 features, was obtained from the initially created dataset, that was saved in PCAP type. The full set of characteristics

of the newly produced dataset utilized in the present study for multi-class attack categorization will be presented in the

experiment’s results assessment and discussion portion of the study.

3.1.3NSL-KDD dataset

To evaluate the usefulness of the newly constructed dataset, we also utilized the NSL-KDD dataset. Developed and

curated by the Canadian Institute for Cybersecurity over a nine-week period [42], NSL-KDD represents an improved and

more concise version of the original KDD Cup 99 dataset. The NSL-KDD dataset’s data format and attack categorization

remains same from KDD Cup 99, with the exception of the removal of replicated entries. As a result, the detectors won’t

have any prejudices in favor of more prevalent recordings. NSL-KDD data is divided into two files: the KDD Train+

Computer Networks and Communications 6 | Hayelom Gebrye, et al.



dataset for training and the KDD Test+ dataset for evaluation. The NSL-KDD datasets include 37 categories of attack [43]

with 41 features discussed later.

3.1.4FS algorithms

In light of the large scale of many intrusion detection tasks, feature-based techniques are in plentiful supply. In

the present study, we apply two choice of characteristics methods: Boruta and RFFI, which are discussed in detail in

the following section. Boruta and random forest feature significance were chosen because they provide model-based

significance of features metrics capable of capturing interaction between features and nonlinear associations, both of

which are critical in complex network invasion data. Through its intrinsic feature importance ranking, RFFI provides

interpretability [44]. Boruta expands this capability by carrying out an all-relevant feature selection procedure to guarantee

that no potentially helpful features are prematurely omitted [45]. On the other hand, unsupervised techniques like Principal

Component Analysis (PCA) can decrease interpretability by converting original features into latent components [46], and

mutual information techniques, while useful, might ignore multivariate dependencies between features [47].

Boruta algorithm: The Boruta method is a feature selection and ranking tool based on the RF methodology. We

utilized Python’s Boruta library to validate the feature selection [45]. This set of components is based on the wrapper,

which employs the RF classification technique to find important characteristics. It uses a consequence value that captures

all of the important and significant properties in every compilation of datasets.

Random forest feature importance method was used to identify significant characteristics for network intrusion

identification. In numerous domains, RFFI is frequently explored as a robust learner [44, 48]. The goal of selecting

characteristics is to determine the most important features of an issue’s domain. It aids in increasing computing speed and

forecast accuracy [49]. The RF technique can accommodate a large number of duplicate characteristics while avoiding

model over-fitting. According to the research conducted in [50], the optimal features for improving the efficiency of models

are critical.

3.1.5Machine learning classification

The technique of anticipating a category or class determined by observed values or points of data is known as

categorization. In our circumstance, the multi-class outcome might be normal or ACK-Flooding, SYN-Flooding, or

HTTP-Flooding. Classification of (Y ) refers to the process of estimating a graphing function ( f ) between input data (X)

to output variables. Because target variables are provided along with the input portion of the dataset, it is classified as

supervised machine learning. As a result, on the created dataset, we used four supervised methods for categorization.

Random forest comprised of many decision trees. It optimizes the ability to discriminate of an individual tree classifiers

through the integration of the bootstrap aggregating approach and randomness in choosing a set of input components

throughout the creation of a decision tree [51]. A decision tree with M branches partitions the feature region into M regions

Rm, where 1 <= m <= M. Every tree’s forecasting parameter f (x) is specified as

f (x) =
M

∑
m=1

Cm ∏(x,Rm), (1)

where

M = is the number of regions in the feature space;

Rm = is a region appropriate to m;

Cm = is a constant suitable to m;

∏(x,Rm) =

{
1, if x ∈ Rm

0, otherwise.
(2)

The ultimate classification choice is made by obtaining the majority vote from all trees in the ensemble.
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K-Nearest Neighbor [52, 53] performs under the assumption that samples of an indistinguishable category are typically

followed by instances that belong to the same category. Consequently, it is assumed a subgroup of training cases in the

attribute space as well as the scalar k. A particular unlabeled instance is identified by assigning the label that appears the

most frequently among the k training examples closest to it. The Euclidean distance is the furthermost frequently used

metric for the distance between instances, according to several different measures [54]. Previous investigations on KNN

can be found in [55–57]. This approach employs the Euclidean distance metric, which is represented in the equation below:

L(xi,x j) =

(
n

∑
i, j=1

((∣∣∣∣xi − x j

∣∣∣∣))2

) 1
2

X ∈ Rn. (3)

Gaussian Naive Bayes the most basic classifier used is Gaussian Naïve Bayes (GNB), which assumes that the features

for each class follow a Gaussian distribution. Naïve Bayes is a probabilistic classification approach based on Bayes’ theorem,

together with the strong assumption that all features are conditionally independent given the class label. Furthermore, the

availability of one feature is thought to be independent to the availability of another inside the same group, disregarding

the fact that all features participate in the procedure for categorizing.

Decision Tree a decision tree is a classification model that organizes instances based on their feature values. Each

internal node represents a feature, and each branch corresponds to a possible value that the feature can take. Starting from

the root node, instances are progressively routed through the tree according to their feature values until they reach a leaf

node, which provides the final predicted class [58]. Decision trees are widely used in machine learning and data mining

to map observations about an instance to conclusions about its target label. Classification trees [59] specifically refer to

tree-based models designed for categorical outcomes. A tree consists of two main components: decision nodes, where data

are split, and leaf nodes, which provide the classification result. In this context, the cost function evaluates the quality of

splits for the categorical target classes, Normal, ACK-Flooding, SYN-Flooding, and HTTP-Flooding, ensuring that the tree

identifies the most informative partitions in the dataset.

4. Experimental result analysis and discussion

The experiments were performed using a Python implementation running on an HP laptop with an Intel Core i7-7500U

(2.9 GHz) processor and 8 GB of RAM. To assess model performance, we employed common classification metrics

such as accuracy, precision, recall, the confusion matrix, and the F1-score, following the criteria described in [60]. The

corresponding equations for these metrics are provided in the following section.

Accuracy=
T P+T N

T P+FP+FN +T N
(4)

Precision=
T P

T P+FP
(5)

Recall=
T P

T P+FN
(6)

F1−Score = 2∗ Precision∗Recall
Precision+Recall

, (7)
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where T P is True Positives, T N is True Negatives, FP is False Positives and FN is False Negatives.

4.1 Dataset descriptions

This study utilizes two datasets. The first is a Mirai-based multi-class dataset containing 287,230 instances and 16

features, collected and generated in earlier work [13]. The second is the widely used and publicly available NSL-KDD

dataset, hosted by the Canadian Institute for Cybersecurity [12]. Developed in 2009, NSL-KDD comprises a total of

147,976 training and testing samples. Both datasets represent multi-class attack scenarios but differ in the number of

instances and feature dimensions. Table 1 contains an overview regarding both datasets.

Table 1. Dataset file description

No. Dataset name Instances Features Year

1 Mirai Based Dataset 287,230 16 2023

2 NSl-KDD Dataset 147,976 41 2009

The next Table 2 displays the label distribution of the newly extracted dataset, which is the multi-class dataset based

on Mirai. The NSL-KDD dataset has 37 attack class labels overall, but we eliminate attack labels with fewer than 100. The

purpose of this exercise is to improve the classifiers’ performance. The class label distribution of the NSL-KDD dataset

utilized in the investigation is described in Table 3.

Table 2. Label distribution of Mirai-based multi-class dataset

Label encoded Label name No of instances

0 ACK Flooding 75,632

1 HTTP Flooding 10,464

2 Normal 136,488

3 SYN Flooding 64,646

Table 3. Label distribution of NSL-KDD dataset

Encoded Label name No of instances Encoded Label name No of instances

0 apache2 228 8 pod 236

1 back 1,183 9 portsweep 3,302

2 guess_passwd 464 10 processtable 211

3 ipsweep 4,078 11 satan 4,331

4 mscan 310 12 smurf 3,186

5 neptune 47,868 13 teardrop 996

6 nmap 1,699 14 warezclient 997

7 normal 78,588 15 warezmaster 299

Table 4 provides descriptions of the features of the Mirai-based multi-class dataset and Table 5 provides descriptions

of the features of NSL-KDD dataset.
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Table 4. Mirai-based multi-class dataset description

No Feature name Feature description

1 IP src Source IP address

2 IP dst Destination IP address

3 Iflags IP flags

4 Tflags TCP flags

5 Sport Source port number

6 Dport Destination port number

7 Frag IP fragment

8 Ttl IP ttl

9 Ichksum IP checksum

10 Len IP length

11 Ack TCP acknowledgment

12 Dataofs TCP Dataofs

13 Seq TCP Sequence

14 Window TCP window size

15 Tchksum TCP checksum

16 Label Multi-class label (Normal/SYN/ACK/HTTP)

Table 5. NSL-KDD dataset feature descriptions

No Feature name Feature description

1 duration Length of the connection in seconds

2 protocol_type Type of protocol used

3 service Network service on the destination host

4 flag Status flag of the connection

5 src_bytes Bytes sent from source to destination

6 dst_bytes Bytes sent from destination to source

7 land connection is from/to the same host/port

8 wrong_fragment # of incorrect IP fragments

9 urgent # of urgent packets

10 hot # of hot indicators

11 num_failed_logins # of failed login attempts

12 logged_in logged in status

13 num_compromised # of compromised conditions

14 root_shell root shell obtained or not

15 su_attempted su root command attempted

16 num_root # of root-level accesses

17 num_file_creations # of file creation operations

18 num_shells # of shell prompts accessed.

19 num_access_files # of access-control file operations

20 num_outbound_cmds # of outbound commands in an FTP session

21 is_host_login host login status

22 is_guest_login guest login status

23 count Connections from same source to destination

24 srv_count Connections to the same service

25 serror_rate % of connections with SYN errors

26 srv_serror_rate % of service connections with SYN errors

27 rerror_rate % of connections with reject errors
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Table 5. (cont.)

No Feature name Feature description

28 srv_rerror_rate % of service connections with reject errors

29 same_srv_rate % of connections to the same service

30 diff_srv_rate % of connections to different services

31 srv_diff_host_rate % of connections to d/t destination for same service

32 dst_host_count # of connections to the same destination host

33 dst_host_srv_count # of connections to same service on destination host

34 dst_host_same_srv_rate % of connections to same service on destination host

35 dst_host_diff_srv_rate % of connections to different services on destination

36 dst_host_same_src_port_rate % of connections from the same source port

37 dst_host_srv_diff_host_rate % of service connections to different destination hosts

38 dst_host_serror_rate % of destination-host connections with SYN errors

39 dst_host_srv_serror_rate % of same-service destination-host with SYN errors

40 dst_host_rerror_rate % of destination-host connections with reject errors

41 dst_host_srv_rerror_rate % of same-service destination-host with reject errors

42 labels label category

The performance of the models trained on the Mirai-based dataset and the NSL-KDD dataset depends heavily on the

selection of hyperparameters. Accordingly, the tuning process was carried out with care to ensure effective model behavior

and improved optimization. The GNB classifier does not require hyperparameter adjustments, while the parameters used

for the remaining three ML models are summarized in Table 6.

Table 6. Hyper-parameter setting for ML models

ML model Hyper-parameter name value

KNN n_neighbors 8

metric euclidean

p 2

DT random_state 123

max_depth 30

criterion gini

RF random_state 123

max_depth 30

n_estimators 500

4.2 Mirai based multi class dataset

This study performs two major operations on two independent datasets, as previously described. First, we use the

suggested methods for selecting features (RF, and Boruta,) to identify key traits for detecting Mirai botnet attacks in IoT

networks. Second, we confirm and verify what we found by comparing the effectiveness of four predictor types (RF, KNN,

GNB, and DT) prior to and following the methods for selecting features.

In the first experiment, RF and Boruta used for selecting features on a mirai-based multi-class datase. Figure 3

displays the Boruta analysis, which includes comparisons of shadow features and statistically significant choices, while

Figure 4 displays the features ranked according to Random Forest relevance scores. To begin, in RF, the solution procedure

at every parent node depends on the efficacy of the splitting requirement, and this is dependent on the purpose of impurity.

The RF feature choice method identifies the 11 most significant characteristics, as seen in the picture beneath.
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Figure 3. Mirai-based multi-class dataset feature selection using Boruta

Figure 4. Feature selection using RFFI

Succeeding, we used the Boruta selection of features approach using a mirai-based multi-class dataset to obtain the

characteristic score shown below. Using machine learning categorization, we employed the top 14 characteristics that were

categorized first or regarded as among the most significant characteristics for multi-class attack categorization. Figure

5 presented the confusion matrix result of different classifiers with/without feature selection methods. Tables 7 and 8

describe the accuracy, precision, f1 score and recall outcomes of the experiment utilizing the mirai-based multi-class

dataset containing and without selecting features using several machine learning approaches.
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Figure 5. Confusion matrix: (a) All features; (b) Using Boruta and (c) Using RFFI

The prediction performance of four classifiers, GNB, KNN, DT, and RF, was evaluated using 5-fold cross-validation

in order to guarantee reliable model evaluation and reduce the possibility of overfitting. The findings, which are displayed

in Figure 6, demonstrate that GNB had a mean cross-validation accuracy of 0.8741 (± 0.0042), indicating a moderate

capacity for prediction but a limited ability to capture the nonlinear feature dependencies present in network intrusion

data. KNN, on the other hand, achieved an exceptionally high accuracy of 0.9975 (± 0.0002), demonstrating its capacity

to take advantage of local data structures and similarity patterns. Furthermore, flawless cross-validation accuracies of

1.0000 (± 0.0000) were attained by both DT and RF, indicating that these tree-based techniques successfully captured

intricate decision boundaries. All models exhibit similar performance, as seen by the small variance across folds. Overall,

the cross-validation results show that when modeling the intricate structure of intrusion detection data, tree-based and

instance-based learning algorithms (RF, DT, KNN) perform better than probabilistic models (GNB).

Table 7. Accuracy of different classifiers with Mirai multi-class dataset

Method Accuracy No. of features

RF 100 16

RF+RFFI 100 11

RF+Boruta 100 14

KNN 99.52 16

KNN+RFFI 99.56 11

KNN+Boruta 99.51 14

GNB 66.34 16

GNB+RFFI 91.24 11

GNB+Boruta 87.22 14

DT 100 16

DT+RFFI 100 11

DT+Boruta 100 14
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Table 8. Precision and recall of classifiers with Mirai multi-class dataset

Method Precision Recall F1 score No.of features

RF+RFFI 100 100 100 11

KNN+RFFI 100 100 199 11

GNB+RFFI 91 87 88 11

DT+RFFI 100 100 100 11

RF+Boruta 100 100 100 14

KNN+Boruta 100 100 100 14

GNB+Boruta 94 91 92 14

DT+Boruta 100 100 100 14

Figure 6. 5-fold mean accuracy for Mirai-based multi-class dataset

4.3 NSL-KDD dataset

In the subsequent experiment, the NSL-KDD dataset was put through to attribute selection using RF and Boruta.

Figure 7 shows a correlation heatmap between the chosen features using Boruta and the features that were kept versus those

that were rejected. The interpretability and robustness of the feature selection process are supported by these visualizations,

which offer a clear grasp of how each feature contributes to the prediction task. To begin, in RF, the solution procedure at

every parent node relies on the accuracy of the splitting criterion, and this is depending on the purpose of impurity. The RF

choice of characteristics method chooses the 17 most important characteristics, as illustrated in the picture below.
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Figure 7. Selected features using NSL-KDD: (a) Using RFFI; (b) Using Boruta

Following, we used the Boruta selection of features methodology using the NSL-KDD dataset to obtain the

characteristic score shown below. Using machine learning detectors, we employed the best 26 characteristics that were

either ranked first or regarded as among the most pertinent characteristics for multi-class attack categorization. Figure

8 presented the confusion matrix result of different classifiers with/without feature selection methods. Tables 9 and 10

describe the accuracy, precision, and recall outcomes of the study using the NSL-KDD dataset both with and without

selecting features using several machine learning approaches.

Table 9. Accuracy of different classifiers with NSL-KDD dataset

Method Accuracy No. of features

RF 99.67 41

RF+RFFI 99.69 17

RF+Boruta 99.31 26

KNN 97.91 41

KNN+RFFI 97.91 17

KNN+Boruta 97.73 26

GNB 39 41

GNB+RFFI 41.77 17

GNB+Boruta 37.81 26

DT 99.51 41

DT+RFFI 99.54 17

DT+Boruta 99.10 26
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Figure 8. Confusion matrix: (a) All features; (b) Using Boruta and (c) Using RFFI

Table 10. Precision and recall of classifiers with NSL-KDD dataset

Method Precision Recall F1 score No.of features

RF+RF 100 100 100 17

KNN+RF 98 98 98 17

GNB+RF 71 42 39 17

DT+RF 99 100 98 17

RF+Boruta 99 99 99 26

KNN+Boruta 98 98 98 26

GNB+Boruta 71 38 45 26

DT+Boruta 99 99 99 26

4.4 Performance evaluation and discussion
4.4.1Performance evaluation

Compared to the number usually chosen using raw random forest feature importance, the Boruta method chose 14

features for the Mirai dataset and 26 features for NSL-KDD. This discrepancy results from Boruta’s all relevant feature

selection procedure, which involves statistically comparing each original feature with randomized shadow features and

keeping any that exhibit noteworthy predictive value. On the other hand, weaker features may be ignored by RF significance

alone, even if they make a significant contribution. Further investigation showed that adding the additional characteristics

Boruta chose had no detrimental effect on classifier performance, but rather enhanced robustness across cross-validation

folds by identifying more subtle patterns in network traffic data. These results show that Boruta offers a more complete

feature collection without compromising prediction accuracy.
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We built a smart PCAP extractor and processing solution as part of the prior research that can transform the data in

PCAP file into an appropriate machine-learning processable format. We created a new dataset utilizing the newly developed

technology that will be useful in deploying mirai-based multi-class identification of attacks in IoT networks. In the present

study, we employed the dataset to identify multi-class attacks. For multi-class assault categorization, we used the four

most prevalent machine learning frameworks (RF, KNN, GNB, and DT). It was additionally contrasted with the efficiency

of the datasets when methods of feature selection were used to choose the key characteristics. In Figure 9, we evaluated

the results of the contrast between the two experiments done using the mirai-based multi-class dataset and the NSL-KDD

dataset utilizing two approaches to selecting features (random feature and boruta feature selection techniques) including

four machine learning strategies.

Figure 9. Accuracy result comparison between the two datasets

4.4.2Computing time evaluation

We implemented four baseline classifiers—GNB, KNN, DT, and RF—to examine computation time and accuracy as

part of assessing the proposed approach. Both raw and modified versions of the datasets (with RFFI and Boruta applied)

were evaluated. The results indicate that dataset size, in terms of feature count and number of records, has a notable

impact on computational cost. Compared with models trained without feature reduction, the use of RFFI and Boruta

generally enhanced performance and lowered processing time. Table 11 summarizes the computation time outcomes,

highlighting the benefits of applying feature-selection methods. We measured wall-clock training and inference times,

along with peak memory usage, for each pipeline paired with four classifiers (RF, DT, KNN, and GNB) on both the

Mirai-based multi-class and NSL-KDD datasets in order to compare the computational efficiency of our proposed RFFI

against well-known feature selection and dimensionality-reduction methods, Boruta. The mean ± standard deviation was

calculated by repeating the experiments five times on a normal workstation with an Intel i7 CPU and 16 GB of RAM. These

results demonstrate that RFFI delivers competitive predictive performance while dramatically reducing both computational

cost and memory footprint. Consequently, our hypothesis, that lightweight, randomized feature selection performs well

on modern, high-dimensional cyber-security datasets, has been confirmed. These results demonstrate that lightweight,

randomized feature selection achieves a satisfying compromise between processing efficiency and prediction accuracy for

modern high-dimensional cyber-security datasets, supporting the design thinking of our approach.
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Table 11. Execution time comparison

Mirai-based multi-class dataset

Original dataset Boruta RFFI

Models Train time Test time Train time Test time Train time Test time

GNB 1.175 0.376 0.138 0.251 0.075 0.156

KNN 0.049 0.002 0.34 0.001 0.02 0.001

DT 0.792 0.019 0.56 0.015 0.437 0.013

RF 8.446 0.844 7.12 0.74 8.1 0.82

NSL-KDD dataset

GNB 0.11 0.093 0.109 0.078 0.094 0.062

KNN 1.42 0.001 1.265 0.001 0.937 0.001

DT 0.48 0.001 0.45 0.001 9.328 0.001

RF 11.11 0.69 10.72 0.64 10.37 0.51

4.4.3Ablation study

We assess each classifier’s performance both with and without feature selection. To evaluate the contribution of each

design choice in our proposed pipeline, we conducted a controlled ablation study utilizing the NSL-KDD and Mirai-based

multi-class datasets. We specifically looked at two components: (i) the feature selection strategy, which required comparing

RFFI with Boruta; and (ii) the classifier family, which comprised RF, DT, KNN, and GNB. Following five evaluation runs,

each configuration’s mean ± standard deviation for accuracy, precision, recall, F1-score, wall-clock training, inference

time, and peak memory use was reported. When the feature selection method was isolated, Tables 12 and 13 summarized

the controlled ablation study using the two datasets.

The findings show that using RFFI consistently increases classification recall, accuracy, and precision for all classifiers.

Although RFFI shows a superior mix between performance gains and computational efficiency, Boruta also offers

improvement. In every experiment, RF and DT consistently achieve the highest accuracy and stability, outperforming

KNN and GNB. Due to its simplifying assumptions about feature independence, GNB exhibits the lowest performance,

while KNN performs quite well but is sensitive to attribute dimensionality. The ablation investigation unequivocally

demonstrates that the best overall performance is achieved by combining RFFI with RF (RF+RFFI) and DT (DT+RFFI),

supporting the design decision to incorporate feature selection with the classifier. The study further emphasizes the

significance of finding pertinent features in IoT botnet detection by showing that feature selection correlates more to

improvements in performance than classifier choice alone. This research enables the practical implementation of the

suggested approach in resource-constrained IoT contexts and offers insights into which components are essential for high

performance and robustness. By separating the contributions, we show that RF guarantees consistent and dependable

classification across datasets, and RFI greatly improves model accuracy while lowering computational cost. The ablation

investigation demonstrates that a robust classifier (RF and DT) in conjunction with efficient feature selection is the primary

driver of the suggested approach’s higher performance. This strengthens the evidence for the efficacy and generalizability

of the method by validating our design and offering deeper insights into the relative importance of each component.
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RFFI consistently achieved the best predictive accuracy on both datasets while maintaining a significantly lower

computational overhead. Despite minor differences in predicting performance, all classifiers maintained short inference

times when combined with RFFI. This suggests that while classifier selection can further maximize efficiency or marginally

increase resilience, RFFI causes the majority of accuracy gains. The ablation analysis concludes that the recommended RFFI

approach is the primary factor determining accuracy, robustness, and computational efficiency. Although preprocessing

and classifier selection provide ancillary advantages that enhance stability and fine-tuning performance, the reported

enhancements are mostly due to the randomized feature selection itself. These results demonstrate that lightweight,

randomized feature selection achieves a satisfying compromise between processing efficiency and prediction accuracy for

modern high-dimensional cyber-security datasets, supporting the design thinking of our approach.

4.4.4Comparison with related works

Several machine learning approaches performed badly for classification with multiple classes compared with our

work and comparable efforts. It was additionally contrasted with additional comparable works to verify the validity and

acceptability of the suggested approach as well as the recently generated dataset in our prior study employing the tool. We

take out, handled, and suggested a characteristic picking and machine learning approach that outperforms previous work.

In Table 12, we summarised the comparison of our study with related works. In particular, we have included research that

makes use of cutting-edge feature selection methods and contemporary classification models. For example, Liu and Du [61]

proposed a feature selection strategy based on genetic algorithms that achieved 99.98% detection accuracy on the Bot-IoT

dataset. Furthermore, Hossain and Islam [62] demonstrated notable gains in botnet detection performance by introducing a

hybrid feature selection and ensemble learning approach. Additionally, Saied et al. [63] carried out a thorough analysis

of filtering-based feature selection methods, offering insightful information on how well they work for botnet detection

in IoT environments. The performance of the suggested method in contrast to previous studies is summarized in Table

14. It is crucial to remember that stated performance can be greatly impacted by variations in datasets, feature sets, and

attack types. For example, some research uses synthetic or small-scale datasets with fewer attack kinds, which could make

the categorization work easier. On the other hand, the current work captures a variety of DDoS attack behaviors using a

Mirai-based dataset with 16 carefully chosen flow-based variables. The computational cost and generalizability of the

model may be impacted by the use of packet-level features or higher-dimensional feature sets in other works. By giving

these specifics, the comparison puts performance differences in perspective and emphasizes that the high accuracy of the

suggested models is a result of both the efficacy of the chosen feature set and the uniqueness of the Mirai traffic patterns,

not just variations in experimental design.

Table 14. Performance comparison with related works

No. Paper # Dataset # FS # ML Accuracy

1 [64] CS-SCADA Chi RF 99.28

2 [65] KDD99 IG RF 99.96

3 [66] CICIDS2017 RF RF 97.46

4 [67] new IDS dataset Boruta RF 99.99

5 [68] CICDDOS2019 RF RF 99.82

6 [69] KDDCUP Boruta RF 99

7 [70] NSL-KDD Boruta RF 74.44

8 Our work NSL-KDD& Mirai RF RF 100

The four types of traffic in the Mirai-based dataset are not exactly the same as those in the NSL-KDD dataset. It

encompasses both regular traffic and a wider range of assault categories (37 attack types). When possible, we aligned

the NSL-KDD attack categories in our trials with the four-class framework for comparative assessment. As intended, the

algorithm concentrates on the four main classes. It is possible for an assault type that is entirely novel or unseen to be
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mistakenly categorized as one of the recognized classifications. In order to address undiscovered attack types, we intend to

investigate anomaly-based or incremental learning methodologies in future work. This limitation is addressed in the study.

We recognize that the NSL-KDD dataset predates the Mirai botnet from 2016. It was added to confirm the generalizability

of our method and to offer a well-known standard for comparison. This justification and the age disparity in the dataset are

now specifically mentioned in the publication.

According to recent research, dual-focused and variation-based attacks can alter estimations in graph neural networks

[71, 72], while selective and multi-targeted perturbations can deceive audio and text systems [73–77]. These references

place our IoT botnet detection approach into the larger framework of adversarial resilience research by highlighting the

generality of adversarial vulnerabilities and supporting the significance of resilient feature selection and classifier design.

5. Conclusion and future work

Our earlier work [13] presented a data extraction program that converts IoT network attack datasets (in PCAP format)

to flow-based (CSV) parameters. Despite introducing a data extraction program and creating a dataset in our earlier

work was created especially for binary classification. We use the same extraction technique in this study, but we create

a new, larger multi-class dataset that contains both regular traffic and many Mirai-based attack types (SYN-Flooding,

ACK-Flooding, and HTTP-Flooding). This new dataset was developed to facilitate multi-class machine learning assessment

and was not present in our previous work. The annotated features in the Mirai-based multi-class IoT botnet dataset offer

a structured basis for developing and assessing attacks related to Mirai within IoT environments. Accuracy, recall, and

precision were used to evaluate the experimental results. Four classifiers—RF, KNN, GNB, and DT—were tested, and

each was combined with two different feature-selection methods, RFFI and Boruta, to identify the most effective model

configuration. The experiments highlight the importance of selecting relevant features for classification tasks. As seen in

Figure 9, RF regularly demonstrated superior performance throughout the various measurement circumstances. In our

experiments with both the Mirai multi-class dataset and the NSL-KDD dataset, RFFI generally selected more impactful

features than Boruta. The findings also indicate that using the full feature set is unnecessary and may not be optimal. As

a result, it will have an impact on processing speed, accuracy, and more characteristics that are of greater depth of data.

According to our assessment results, our recommended approach overtakes other techniques across every dataset.

By methodically combining feature selection and classification techniques, the suggested framework increases IoT

botnet detection. Our findings demonstrate that the combination of RFFI and RF consistently produces better outcomes

in terms of computing efficiency and accuracy. The technique improves classification reliability while cutting down on

needless computational expenses by isolating important features. In contrast to previous research, our method shows:

(i) Methodological innovation by combining the assessment of several feature selection techniques and classifiers. (ii)

Improvement in practice by specifically taking computing efficiency into account for IoT implementation. (iii) Sturdiness

and generalizability among conventional and modern datasets, such as NSL-KDD and Mirai-based datasets. All things

considered, the study not only shows increases in empirical accuracy but also offers a methodical, effective, and deployable

methodology that raises the bar for IoT botnet identification.

In future work, we plan to explore unsupervised learningmethods to enhance anomaly detection forMirai-related DDoS

activity in IoT environments, leveraging the newly released IoT botnet dataset. The second purpose of the forthcoming

study is to test gradient boosting and other boosted algorithm families to see whether they can increase the algorithm’s

predicted accuracy. Certain enhancing techniques, such as XGBoost [78], AdaBoost [79], and Gentle Boost [80, 81]

contain mathematical formulas and vary in complexity. Gradient Boosting’s notion is in its advancement, resulting in a

new dimension that contributes to the requirement fitting.
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