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Abstract: Hybrid metal-organic frameworks (MOFs) have many positive features like high porosity, surface area, 
and conductivity as compared to other materials. They have better potential than pristine ones due to the reason that 
hybrid materials have good faradic responses due to variable metal oxidation states. These all-favorable factors make 
hybrid MOFs more potential electrodes for energy storage. In this study, hybrid Ni-Co MOFs presented good specific 
capacitance of 745 F g-1 (447 C g-1 @ 1 A g-1) in comparison with pristine Co MOFs of 109 F g-1 (65.5 C g-1 @ 1 A g-1). 
Also, the hybrid MOFs showed superior electrical conductivity of 1353.3 S cm-1 as compared to pristine MOFs. The 
charge transfer resistance (Rct) of hybrid MOFs was 2.271 Ω pretty much greater than pristine MOF and other closely 
related studies. The best electrochemical performance was attributed to the synergic effect of Ni, Co, and organic ligand.
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1. Introduction
Batteries use a closed system concept, in which the electrodes are the active masses which directly participate in 

the redox reactions and provide a medium for charge transfer at the same time. Capacitors, on the other hand, do not 
convert energy through oxidation/reduction reactions [1]. Lately, there is a focus on searching for new materials to 
enhance the characteristics of conventional energy storage devices to meet future requirements. In this regard, metal-
organic frameworks (MOFs) have shown high potential. MOFs are materials which have high porosity then activated 
carbons (AC) [2] with a highly exposed surface area of 7,000 m2 g–1 [3]. Two or more metal cations when combined, 
provide us with enhanced performance thus showing the formation of hybrid electrode material. Research has been 
conducted on both electrode materials, cathodes as well as anodes. They have good electrochemical performance 
like stability, catalytic activity, and adsorption properties due to variable oxidation states transition metals [4]. Few 
researchers like De Combarieu et al. [5] reported the preparation of a new hybrid cathode material using Iron MOF 
called MIL-53(Iron), i.e., Fe3+(OH)0.8F0.2[O2C-C6H4-CO2] and benzoquinone. Due to the redox properties of the 
benzoquinone molecules, electrochemical performance was enhanced. Han et al. [6] prepared a hybrid MOF of Ni and 
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Li. The performance of three MOFs was compared and results revealed that the hybridization of pristine MOFs is the 
main cause of their excellent performance. M-1,4,5,8-naphthalenetetracarboxylates (M = Li and/or Ni) MOFs were 
prepared by hydrothermal method, followed by heat treatment. This results in a charge capability of 1,084 mAh/g which 
dropped down to 482 mAh/g with the completion of 80 cycles. It was also observed that hybridization led to the fusion 
of good charge capacity and cyclic stability of Ni and Li-MOFs, respectively [6]. Similarly, Xu et al. [7] synthesized 
iron oxide electrode material with high porosity by using MOF precursor, MIL-88-Fe (Fe3O(H2O)2Cl(BDC)3·nH2O. At a 
temperature of 0.2 ℃, the oxide exhibited 911 mAh/g even at the 50th galvanostatic charge-discharge (GCD) cycle. At 
a slightly higher temperature of 10 ℃, the capacity observed was 424 mAh/g [7]. In M3II (CoIII(CN)6)2·nH2O, M = Co 
or Mn, had good potential to be used as an anode material. This study explored the open structure of Co MOFs with ion 
transportation, which exhibited a predominant high-power output with small voltage loss and a reversible capacity of 
299.1 mAh/g. Between 20 to 2,000 mA g-1 current densities, MOF showed 34% of capacity retention [8]. Further studies 
include, Zn-Co-MOF@CuO composite presented a capacity of 308 C g-1 at 2 A g-1 maintained to 220 C g-1, even at 20 
A g-1 [9]. Ni/Zn bi-metallic CSN prepared through a hydrothermal approach showed 210 C g-1 at 0.5 A g-1 [10]. Among 
the different MOFs employed in these studies, Ni and Co-based materials have very good results owing to their small 
ionic radii (69 pm and 74.5 pm, respectively), which results in easy diffusion as compared to the other metals [11, 12]. 
Additionally, Zn, Ni, and Co have different oxidation states in comparison with K+-, Li+-, and Na+- based materials so 
have superior electrochemical performance [13, 14]. So, this study relates to the electrochemical properties’ evaluation 
of Co and hybrid Ni-Co MOFs. As per the obtained results, the hybrid Ni-Co MOFs showed a capacitance of 745 F g-1 
pretty much greater than pristine Co MOF.

2. Materials and methodology
2.1 Materials

Ethanol absolute was obtained from Sigma Aldrich with an assay of min. 99.8%, cobalt(II) nitrate hexahydrate 
purified from Merck with an assay of 99.0%. Nickel(II) nitrate hexahydrate from Daejung with an assay of 97%. 
N-dimethylformamide from Duksan with an assay of 99.5%. Terephthalic acid was obtained from Daejung with an 
assay of 97%.

2.2 Synthesis of pristine Co MOF and Ni-Co MOF powders

First, unary metal pristine Co MOFs were synthesized by a simple hydrothermal process. Co(NO3).6H2O (0.9 
mmol) and benzene-1,4-dicarboxylic acid (1.5 mmol) (also known as BDC or terephthalic acid) were mixed in 52.5 ml 
of dimethylformamide (DMF) to form a solution by 30 min stirring. While stirring 1:1 ethanol/de-ionized (DI) water 
mix was prepared. 7.5 ml of this ethanol/DI water mix was added dropwise to the solution under constant stirring, after 
which it was left to stir for further 25 minutes. This stirred solution was then transferred to a 250 ml autoclave with 
Teflon lining. This autoclave was then transferred to an oven in which it was kept for 12 hours at 125 ℃. The autoclave 
was then oven cooled followed by centrifugation and washing of unreacted material for 3 cycles with DI water and 
ethanol to prepare Co MOF. The prepared precipitates of Ni and Co MOFs were oven dried for 12 hours at 60 ℃ [15]. 
Using the same procedure, as depicted in Figure 1, Ni-Co hybrid MOF with different molar ratios were synthesized by 
varying the Ni(NO3).6H2O/Co(NO3).6H2O ratio to be 1:1 (1:1 Ni-Co MOF).
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Figure 1. Experimental steps followed for the preparation of Co and Ni-Co MOFs

2.3 Synthesis of pristine Co MOF and Ni-Co MOF powders

Prepared compositions were evaluated electrochemically in a three-electrode assembly. The active materials (MOFs) 
were deposited on nickel foam (substrate) whereas, platinum and Hg/HgO were used as counter and reference electrodes 
respectively. A slurry consisting of Ni-Co MOF (1:1) was used as active material (8 mg), acetylene black (1 mg), and 
polyvinylidene fluoride (PVDF) solution (1 mg in 50 µL). After this, the slurry was deposited onto nickel foam (1 × 
1 cm2) followed by oven drying for 8 hours at 90 ℃. Electrochemical characterization was done using a potentiostat/
galvanostat Reference 3000 by Gamry USA, in three electrode assemblies. The specific capacity/capacitance (F g-1) was 
calculated using the following equations reported in the literature [16-18]. 
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where Qs and Cs are specific capacity/capacitance, I is the current density in A g-1, m is active mass in grams (g), and ∆t 
is the discharge time in seconds (s) and ∆V is the potential range in volts (V).

3. Results and discussion
3.1 Microstructural and electrochemical evaluation of pristine Co and Ni-Co MOF

Figures 2(a) and 2(b) explain the morphological analysis of hybrid Ni-Co MOF from SEM (Zeiss Evo 15). It is 
quite clear that Ni-Co MOF has an ideal small rectangular block-like structure as reported in the literature [19]. The 
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structural morphology indicates that there is a high surface area and efficient porous active sites for electrochemical 
reactions. These are very important parameters for an excellent electrochemical reaction to take place which results in 
increasing the specific capacity, capacitance, and electrical conductivity as explained in the preceding sections.
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Figure 2. SEM image of Ni-CO hybrid MOF at (a) low and (b) high 

Figures 3(a) and 3(b) represent the cyclic voltammetry (CV), and GCD curves in scan rate and current densities 
range of 5 to 100 mV s-1 and 1-10 A g-1 respectively. All plots showed visible reduction and oxidation peaks up to 30 
mV s-1 which can be attributed to oxidation peaks of Ni2+/Ni3+ and Co2+/Co3+. As the scan rate increases above 30 mV 
s-1, the reduction and oxidation peaks shift towards the negative and positive voltages, respectively, which was due to 
the inbuilt internal resistance of electrodes. Furthermore, according to Figure 3(c), the area enclosed by the 1:1 Ni-Co 
MOF CV plot is the greatest as compared to pristine Co MOF at the same scan rate of 10 mV s-1 indicating much better 
faradaic features [20]. According to Figures 3(d), 3(e) and 3(f), the GCD results concluded the best electrochemical 
behavior of 1:1 Ni-Co MOF as compared to the other candidates, based on the maximum discharge time. In Figure 3(f), 
the discharge time of hybrid MOF at 1 A g-1 is greater as compared to pristine Co MOF. The specific capacitance values 
calculated for pristine Co and hybrid Ni-Co MOFs were 109 F g-1 and 745.3 F g-1 @ 1 A g-1 respectively (Figure 4(a) and 
4(b)). Thus, hybrid MOFs depict higher specific capacitance not only from pristine MOF but also higher for the values 
reported in the literature for Ni-Co MOF/GO2 (447.2 F g-1 @ 1 A g-1) [21]. The values for RS, Rct resistances of pristine 
Co, and hybrid Ni-Co MOF were calculated from electrochemical impedance spectroscopy (EIS) model fitting and are 
given in Table 1 (Figure 4(c)). The Rct value of pristine MOF is greater than hybrid MOF and also greater than literature-
reported MOFs, e.g., calcined and decomposed MnOx/NC/MnO2 MOF derived composite showed RS and Rct values of 
5.93 and 5.57 Ω respectively [22], pretty much greater than our reported results for hybrid Ni-Co MOF (RS = 1.459 Ω, 
Rct = 2.271 Ω) as evident from Table 1. The equivalent series resistance (ESR), electrical resistivity and conductivity 
have been calculated from the IR-drop method as determined by reported studies [16, 23] (Figures 4(d), 4(e) and 4(f)). 
The ESR and electrical resistivity of Co MOF are greater than that of hybrid Ni-Co MOF (Figures 4(d) and 4(e)). The 
electrical conductivity of hybrid MOF (1,353.3 S cm-1) is pretty much greater than pristine Co MOF (800.3 S cm-1) MOF 
(Figure 4(e)). The combined contribution of Ni and Co increases the redox reaction due to variable oxidation states. Its 
combination with the legend terephthalic acid creates the organic complex in which the metallic ions are entrapped. This 
increases the conductivity, surface area and many porous active sites for electrochemical reactions to take place. This 
combination produces very effective conductive paths for ionic intercalation so increases the oxidation and reduction 
reactions and increased the whole electrochemical performance of MOFs [24, 25].
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Figure 3. Electrochemical evaluation of pristine Co and hybrid Ni-Co MOFs: (a) CV of pristine Co, (b) hybrid Ni-Co MOFs, (c) CV comparison at 
10 mV s-1, (d) GCD of pristine Co, (e) hybrid Ni-Co MOFs, (f) GCD comparison at a current density of 1 A g-1
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Table 1. EIS model fitting data of both electrodes

Samples RS (ohms) Rct (ohms) Warburg resistance, 
W (ohms)

Pristine Co MOF 0.802 10.14 0.048

Hybrid Ni-Co MOF 1.459 2.271 0.035

4. Conclusions
Hybrid MOFs have highly exposed surface area with a lot of active electrochemical reaction sites as compared to 

other materials which result in the increment of electrochemical reaction sites that increase the faradic reactions. Hybrid 
MOFs have good electrochemical performance as compared to pristine materials due to good oxidation-reduction 
characteristics because of variable valance transition metals (Ni, Co). In the present study, hybrid Ni-Co MOFs showed 
better capacitance of 745 F g-1 (447 C g-1 @ 1 A g-1) than pristine Co MOF of 109 F g-1 (65.5 C g-1 @ 1 A g-1), that may 
be attributed to the synergic effects of Ni, Co and organic ligand. Overall, obtained results show the hybrid Ni-Co MOFs 
as potential candidates to be used as electrode materials for energy storage devices applications.
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