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Abstract: Additive manufacturing (AM) was originally developed to manufacture polymer prototypes. Today, it 
has been used for the manufacturing of many critical machine components. Most of the structural health monitoring 
(SHM) methods were developed for monitoring the condition of large and thin plates on airplane fuselages. Additively 
manufactured parts are generally small, thick, and have complex geometries. SHM methods have been improved to 
sense load, detect defects, and identify loose bolts with the help of a permanently installed sensor. In this study, the 
adaptability of SHM methods was researched with additively manufactured metal parts with complex geometry. Magnets 
were used to apply pressure to 9 different locations on the surface of a stainless steel additively manufactured thick plate 
with deep groves. SHM was used to estimate the magnets’ location. Many SHM (Lamb wave) methods cannot work 
on smaller parts since their dimensions are shorter or very close to the wavelength of the created oscillations. Surface 
response to excitation (SuRE) method which has similar characteristics to electromechanical impedance methods was 
used for data collection. To obtain descriptive features of the time domain data, fast Fourier transformation (FFT), short-
time Fourier transformation (STFT), continuous wavelet transformation (CWT), and synchrosqueezing transform (SST) 
were applied to CWT. 1D and 2D convolutional neural networks (CNN) were used to classify the cases. When CNN was 
optimized for the analysis of our data, 100% location estimation accuracy was obtained by using 50% of 320 scalograms 
for training. The scalograms were obtained by enhancing the CWT results with SST. STFT-CNN combination was the 
second best. It obtained 95% accuracy with the same number of spectrograms and training allocation.

Keywords: SHM, AM, data processing techniques

Nomenclature
   xn/x    The given signal in the time domain in the STFT function
   wn    The analysis window function
   m    The time index of the STFT function
   ω    The sampling frequency of the STFT function
   n    The step size
   a    Dilation/scaling parameter in the CWT function
   τ    The location of the wavelet of the CWT function
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   ψ    The wavelet function, a mathematical function used in digital image processing and compression to improve 
                 image quality
   t    Time
   T    A parameter of waves, the period is a definite interval between two points in time

1. Introduction
Additive manufacturing (AM) emerged in the 1980s as a pioneering technique for producing polymer prototypes, 

and over time, there has been a notable advancement in the quality, quantity, and diversity of materials used in 
additively manufactured parts. Additively manufactured products have found applications across a wide range of 
industries, spanning from soft polymer parts [1] to highly durable aerospace components [1]. With critical applications, 
it will be necessary to evaluate loads in order to detect loose bolts and identify flaws. Structural health monitoring (SHM) 
[2, 3] methods have been developed for these types of applications and optimized for many metal structures such as 
the plates of the fuselages seen in airplanes and wind turbine blades. The evaluation of polymer or metal additively 
manufactured parts using existing SHM methods is ineffective, requiring modifications that account for the unique 
geometry and properties of these parts. This study aims to assess the applicability of the surface response to excitation 
(SuRE) method for SHM in such scenarios. By attaching a magnet to various positions on a complex stainless steel 
additively manufactured part, a distributed load was applied to a small area of the plate, allowing for the evaluation of 
SuRE performance without causing damage to the workpiece. The investigation focused on determining the accuracy of 
surface load location estimation achieved through the SuRE method.

In recent research studies, SHM methods typically comprise three main components. The first component involves 
the collection of experimental data, where measurements are gathered to capture the behavior of the structure or 
component under investigation. The second component focuses on processing the collected data to aid/ facilitate the 
subsequent classification and analysis of the data. The third component entails the classification of the processed data, 
where algorithms or techniques are employed to categorize the data into different classes or states. This classification 
process enables the identification and assessment of the condition or performance of the structure or component being 
monitored.

In aerospace and mechanical engineering applications Lamb wave (LW), electromechanical impedance (EMI), 
time reversal (TR), and heterodyne effect (HE) are the most used procedures for data collection. The LW method [4, 
5] uses one or multiple piezoelectric elements for excitation and data collection. The location of the defect can be 
estimated with good accuracy by tracing the wave propagation. The EMI method [6-8] uses one or more piezoelectric 
elements and evaluates the change of the EMI characteristics by using an EMI analyzer. SuRE method [9, 10] has 
similar characteristics to the EMI. However, there is no need for an EMI analyzer. In addition, any exciter and sensor 
may be used for data collection if they have proper frequency response and characteristics [11]. LW and EMI methods 
need a reference to compare the signal. TR and HE methods monitor the characteristics of the structure between the 
piezoelectric elements to determine if it is linear or nonlinear. These methods don’t need to compare the signals with 
a reference. A well-made solid structure and tightened joints have the characteristics of a linear system. If a defect 
develops, the structure becomes a nonlinear system. TR method [12] sends a harmonic signal from the exciter to the 
sensor. The sensor sends the received signal back to the exciter after it is properly processed. The received signal at the 
exciter is very similar to the original signal if the structure is in perfect condition. Defects create nonlinearity, hence 
sent and received signals will have different characteristics. The HE method [13, 14] sends the addition of two harmonic 
signals from the exciter. If the structure is in perfect condition and the bolts are tight, the sensor sees the signal with the 
excitation frequencies. In the case where there are loose bolts or disbanding between the layers, the system becomes 
nonlinear, and a new harmonic signal develops at the difference of the frequencies of the transmitted signals. LW 
methods are expected not to work effectively with small parts that have dimensions smaller than the wavelength of the 
excitation signal.  Since the magnet did not affect the linearity of the part, the SuRE method was selected and used in 
this study.

Fourier transformation (FT), short-time Fourier transformation (STFT), and wavelet transformations have been 
widely used for signal processing in SHM applications to extract the characteristics of the signal in a more compact 
and representative way. FT [15] was used in many studies to obtain the spectral characteristics of the signals in the 
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frequency domain [16]. However, it is difficult to encode 1D amplitudes of the spectrums to train conventional neural 
networks. Recently, time-frequency methods such as STFT [17] and wavelet transformation (WT) [18] have been used 
since many deep learning neural networks were developed to classify 2D images automatically. STFT has constant 
frequency resolution, hence the user needs to compromise either the time or frequency domain resolution. WT has better 
computational efficiency. Since the frequency resolution widens at the higher frequencies.

For classification of the processed SHM data, comparison of the spectrum, artificial neural networks (ANNs), 
support vector machines (SVMs), k-nearest neighbors (KNNs), and deep learning have been widely used. For the 
quantitative representation of the frequency domain results, the sum of the squares of the spectral differences (SSD) of 
the spectrums [19] or similar statistical parameters [20] such as root mean square deviation (RMSD), and the means 
absolute percentage deviation (MAPD) were used. Instead of writing programs, multipurpose ANN [21] software is 
capable of learning the characteristics of the signals and classifying the given cases after training [22, 23].  The user 
must determine the most descriptive features and encode the data for ANNs. Since the spectrum obtained by the fast 
Fourier transformation (FFT) of SHM data is generally very complex for encoding, other parameters such as strains 
have been preferred [24]. SVM [25] can generalize the shorter datasets better compared to the ANNs and may deal with 
larger numbers of features [26, 27]. KNN algorithms [28] have been developed from a simple and very efficient nearest 
neighbor pattern classification (NNPC) method [29] as it performs favorably in many studies [30]. Deep learning 
convolutional neural network (CNN) [31] is capable of classifying 2D images without any encoding. Time-frequency 
plots of STFT and WT [32] or square matrices created with Euclidian distances [33] may be used to generate 2D images 
to work with the CNN.

Additive manufacturing methods build parts layer by layer, allowing for precise control and customization of 
the final product. The first commonly used machines created polymer parts by curing the liquid resin with a laser 
[34] or melting a filament [35] selectively. Selective laser sintering (SLS) [36] and selective laser melting (SLM) 
[37] equipment was developed later to build the metal parts in a metal powder bed. Metal fused filament fabrication 
(MFFF) methods [38] of Markforged and desktop metal create the part layers by melting a rod or a filament made of 
metal powder and polymer (binder). After the washing and sintering process, a fully formed metal part with the desired 
geometry is achieved. Recently, wire arc additive manufacturing (WAAM) has been gaining popularity in manufacturing 
large-size parts with limited dimensional resolution [39, 40]. Additive manufacturing has found many applications in 
industry and it will continue to increase its gains in the future [41-43].

The work focuses on polymer parts with varying internal geometries (infills) to study and improve the ability of the 
SuRE method [44] when they were used to estimate the load location, infill density, and artificial corrosion and cracks. 
It was discovered that small polymer parts attenuated the surface waves quickly. In this study, additively manufactured 
metal parts were used, and the challenge was to obtain meaningful data while the created waves moved along the 
surface with very little attenuation relative to polymer parts. Continuous wavelet transformation (CWT) signals were 
enhanced with synchrosqueezing transform (SST) and classified using the CNN. 

The paper attempts to explore an original approach to evaluating the effectiveness of SHM methods on an 
additively manufactured part with complex geometry. The goal is to figure out the crucial factors for accurate defect 
identification as well as find the correct optimization that can be used for future SHM methods and other data-processing 
techniques that are discussed at length throughout the rest of this paper. The purpose of this work is to consider the 
limitations and boundaries of the techniques used in SHM methods, formulate the key requirements for optimal results, 
and present the promising potential in additively manufactured parts.

2. Theoretical background of signal/data processing techniques
The classification of wave propagation is easier in the frequency domain compared to working in the time domain 

is easier since the frequency domain shows much of a signal lies within each given frequency band over a range of 
frequencies [45]. There are many different tools available to convert data from the time domain to the frequency domain, 
each with its own advantages and disadvantages [46, 47]. Two techniques that are widely used for data processing in 
SHM are the STFT and the WT. The STFT is used to observe wave propagation, separate the reflected waves from the 
incident waves, and designate the associated damage measures [48, 49]. The WT is very effective for denoising and 
feature extraction [50]. The frequency resolution of the STFT is fixed and very detailed signal analysis can be done 

Digital Manufacturing Technology 192 | Romaine Byfield, et al.



by overlapping the analysis windows at the expense of the computation time. Time and frequency resolutions need 
to be compromised according to window length. Time and frequency resolutions are inherently adjusted at WT and 
computations are extremely efficient. However, the frequency resolution of the WT changes at different frequencies.

2.1 STFT
The STFT is calculated by dividing the signal into consecutive segments of what we will refer to as windows.  

The spectrogram is created by calculating the Fourier spectrum of each window one by one [51] filling results along 
the columns of a 2D matrix and repeating the process for consecutive windows. STFT is usually visualized using its 
spectrogram, which is an intensity plot of the magnitude of the STFT against time [52-54]. The spectrogram is prepared 
from this matrix with time in the x-axis and frequency in the y-axis, and the amplitude/power of the signal is represented 
by the color or gray level according to the magnitude of the element. The length of each segment/epoch is determined 
by the window size. STFT provides the time-localized frequency information for situations in which frequency 
components of a signal vary over time, compared to the standard Fourier transform provides the frequency information 
averaged over the entire signal time interval [55]. One drawback of the STFT is that there is a trade-off between time 
and frequency resolution. Short window length results in a better (finer) resolution in the time domain, it generates a 
poor (coarser) resolution in the frequency domain, and vice versa. 
        The equation for the STFT is shown in equation (1), where nx  is the input signal, nw  is the window function, m is 
the time index, ω is the frequency and n is the step size.

                                                                    
STFT ( , ) n

n
i t

n n m
n

X m x w e ωω
=∞

−
−

=−∞

= = ∑                                                                
(1)

2.2 WT

The WT is a tool that separates the signal/data into different signal components, with each having a resolution 
that matches its scale [56, 57]. In other words, the WT has the capability to use several time resolutions, in contrast to 
windowed Fourier transforms, where a fixed window size is used for all frequency components [58]. Taha et al. [59] 
mentioned that it is important to note that WT should not be considered as competition to the FT but as an extension of 
this technique.

2.3 CWT
CWT has been gaining popularity. The CWT maps the original time series, which is only a function of time, into a 

function that contains two variables: time and frequency. Computations take time to create the redundant information [60]. 
However, this redundancy makes it easier to analyze and classify the data compared to other forms, such as the discrete 
wavelet transform (DWT) [61-63]. CWT can be calculated with the following equation (2) from a given signal.
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where a is the dilation/scaling parameter, τ is the location of the wavelet, ψ is the wavelet function and x is the signal.
The SST was applied to the CWT, to assess its impact on the CNN’s ability to extract the features from the signal. 

The purpose of the SST is to sharpen linear time-frequency representations (TFRs), like the CWT. It is built on an 
estimation of the instantaneous frequency (IF) of each mode from the TFR. This is used to sharpen and squeeze the energy 
of the representation [64-66]. In order to create an image with sharper rendering.

2.4 CNN
CNNs similar to traditional ANNs incorporate neurons that self-optimize through learning. As seen in traditional 

ANNs, each neuron will still receive an input and perform an operation [67]. In other words, they consist of neurons and 
use weights that change in each iteration (forward and backward pass of a set of data through the network) to simulate 
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the learning process. What sets them apart is that CNNs, as the name suggests, consist of convolutional layers. These 
layers contain filters that are passed through with the input image to create a feature map. CNNs are primarily used in 
the field of pattern recognition within images.

2.5 Windowing
There are many different types of windowing functions available. Two commonly used windows are the Hann 

and the Hamming windows. These window functions are useful with better frequency resolution compared to other 
windows, but moderate side lobes do not present a problem. The Hann and Hamming windows differ in the way they 
taper at the ends, where the Hamming window doesn’t reach zero (0.8), hence still has a small discontinuity in the 
signal. Due to this difference, the Hamming window does a better job of canceling the nearest side lobe [68]. Equation (3) 
is used to calculate the coefficients of the Hamming window [68].

                                                                     0.54 0.46 cos (2 / )( )nw t t Tπ= − ×                                                                  (3)

In most applications, any one of the windows considered above, except the rectangular window, will give acceptable 
results. The Hamming window is preferred by many due to its relatively narrow main lobe width and good attenuation of 
the first few side lobes [69].

3. Experimental setup

The diagram and picture of the experimental setup are presented in Figures 1 and 2 respectively. An additively 
manufactured stainless steel test plate (17-4 PH Stainless Steel v1) was used in the study (Figure 3) with exact specifications 
shown in Figure 4. The test plate was 225 mm long and 75 mm wide. It was printed by using a Mark forged Metal X 3D 
printer. The part was built with 1 mm height layers with 100% infill. It had rectangular slots. Each slot was 1.83 mm wide. 
There was a 6.38 mm gap between the slots. The slots had three depths: shallow (3.10 mm), medium (5.00 mm) and deep 
(7.15 mm).

Two piezoelectric transducers (Steminc SMD12T06R412WL) were bonded to the opposite sides of the plate with 
a 195 mm distance (Figure 3). M-Bond 200 adhesive was used to attach the disks. Rigol DG1022Z function/arbitrary 
waveform generator was used to excite the piezoelectric disk on one side of the test plate. An OWON XDS3104AE 
digital oscilloscope was connected to the piezoelectric disk on the other side of the plate to acquire the data. The function 
generator excited the disk with a sweep sine wave ranging from 100 to 120 kHz with a p-p amplitude of 20 V. 

Reference data was collected first without attaching any magnets to the plate. Later, three magnets were put on top 
of each other. Each magnet had a holding force of 16 lbf on the steel plate. Data was collected by attaching the magnets 
to 9 different locations on the test plate to collect the experimental data. At each test, three magnets stayed on top of each 
other. The location of the magnets is presented in Figure 5. The distance between the selected magnet locations was 65 
mm horizontally and 25 mm in the vertical directions.

Figure 1. The diagram of the experimental setup

Function/arbitrary waveform generator
Rigol DG1022Z

Additively manufactured steel 
plate with groves 

Digital oscilloscope
 OWON XDS3104AE Dekstop computer
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Figure 2. Picture of the experimental setup

Figure 3. Picture of the additively manufactured stainless-steel test plate

Figure 4. Dimensions of the stainless-steel test plate

Function generator

Digital oscilloscope

Disk

PZT disk (sensor) Magnet

PZT 
(excitor)
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Figure 5. Test points of the magnet (three different points longitudinally with a spacing of 65 mm and three different points laterally with a spacing of 
25 mm, totaling nine different points)

4. Data analysis and classification
Two experiments were performed 320 times in the study: one without any magnets and two when the magnets were 

placed in 9 different locations. For the first half of the study, only 25% of the dataset was used then in the later half all 320 
datasets were used. For all data, FFT, STFT, and CWT were calculated. For classification, 1D and 2D CNN were used 
in the study. The data processing techniques and classification method combinations are outlined in Figure 6. The 1D 
spectrum of the FFT was used to train and test the 1D CNN. 2D time-frequency spectrogram of STFT and scalograms of 
CWT were used to train and test the 2D CNN. In addition, scalograms were enhanced by using SST with CWT in order 
to train and test the 2D CNN. The initial and final versions of the 2D CNN architectures are presented in Figures 7 and 
8 respectively with the convergence plot for the CNN architecture shown in Figure 9. The architecture of the CNN was 
changed to improve the performance of the algorithm until 100% estimation accuracy was obtained. To find the optimal 
architecture, CNN was tested many times with different combinations of convolution layers, pooling layers, and other 
components.

             

Figure 6. Flow chart showing the data gathering, processing, and classification steps
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Figure 7. Initial 2D CNN algorithm

Figure 8. Optimized 2D CNN algorithm
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Figure 9. Additional convergence plot for optimized 2D CNN architecture

5. Results
The results will be presented in 4 sections. First, the time and frequency domain characteristics of the collected 

data will be evaluated. Second, the spectrogram of STFT, scalogram of CWT, and SST enhancement of the CWT will 
be discussed. Third, performances of 1D CNN working with FFT, 2D CNN working with STFT, 2D CNN working with 
CWT, and 2D CNN working with SST-enhanced CWT will be compared. Fourth, the architecture of the 2D CNN working 
with SST will be optimized. The performance of the optimized 2D CNN (O-2D CNN) will be evaluated with all the 
processing methods and the best training data set size will be determined for the best performing approach.

5.1 Time and frequency domain characteristics of the collected experimental data

The time domain data presented in Figure 10 serves as a baseline for when there is no magnet on the plate. The time 
domain data when the magnet was put at 9 different test points on the plate are presented in Figure 11. These figures 
clearly demonstrate an overall decrease in the amplitude of the signal received at the sensor when the magnet was attached 
to the test locations with the most significant changes being the profile of the envelope, while the general shape remained 
relatively consistent.

Looking at Figure 11 and comparing it to both Figures 10 and 12, the plots clearly indicate that the character
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the signals were significantly changed when the magnets were attached to different test points creating disparity between 
almost all testing points.

Figure 10. Time domain response for baseline readings

Figure 11. Time domain response for the magnet placed at each point
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Figure 12. The envelopes of the acquired signals when the magnet was attached to the test points (blue line). The envelope of the baseline is 
presented with red broken lines.

Figure 13 presents the frequency domain plots for each signal and the baseline. Each FFT of the signals obtained at 
different magnet locations had distinct patterns. To minimize the similarity of the signals when the magnets were attached 
to the top half and the bottom half the depth of the groves were different. Shallow groves had 3.10 mm depth at the bottom 
half while the deep groves at the top had 7.15 mm depth. The frequency domain analysis demonstrates clear changes in 
the profiles of the signals, indicating a correlation between the magnet placement and the characteristics of the FFTs. 
However, even the 1D FFT is very complex to encode manually in order to work with conventional neural networks 
which prefer to have less than 10 inputs. These signals were given to 1D CNN for classification.

5.2 Data process methods including spectrogram, scalogram, and SST enhancement of the 
scalogram

The spectrogram created by the STFT of the baseline signal is presented in Figure 14. The scalogram of the same 
data is presented in Figure 15 after it was calculated by using the CWT. The studied test band around the excitation 
frequency range is presented in Figure 16. SST was applied to the CWT in Figure 16 and presented in Figure 17. By 
applying the SST to the CWT, the resulting image in Figure 17 exhibits enhanced localization of peak features, which 
are crucial for identifying significant patterns and details in the analyzed data. This improved visual representation offers 
a more distinct and informative image, allowing CNN to potentially extract and leverage these features more effectively 
during the classification process.

The clearer peaks observed in Figure 17 indicate that the application of the SST to the CWT enhances the representation 
of salient features within the data. These enhanced features can aid CNN in its ability to distinguish important patterns 
and make more accurate classifications.
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Figure 13. FFT of the signal when the magnet is attached to different test points (blue line). For comparison, the FFT of the baseline is presented with 
the red dashed line.

 

Figure 14. Spectrogram created using STFT

Fres = 5.0003 kHz, Tres = 461.08 µs

Fr
eq

ue
nc

y 
(k

H
z)

400

350

300

250

200

150

100

50

0
200 300 400 500 600 700 800

-10

0

10

20

30

40

Po
w

er
 (d

B
)

 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point D1 signal

FFT of Baseline signal and FFT of Point M1 signal

FFT of Baseline signal and FFT of Point S1 signal

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

 150

50

A
m

pl
itu

de
 (m

V
)

100

0

 150

50

A
m

pl
itu

de
 (m

V
)

100

0
1

Frequency (Hz)
1.05 1.1 1.15 1.2 1.25

×105

FFT of Baseline signal and FFT of Point D2 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point M2 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point S2 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point D3 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point M3 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

FFT of Baseline signal and FFT of Point S3 signal
 150

50

A
m

pl
itu

de
 (m

V
)

1
Frequency (Hz)

1.05 1.1 1.15 1.2 1.25
×105

100

0

Time (µs)

Volume 3 Issue 2|2023| 201 Digital Manufacturing Technology



Figure 15. Scalogram created using CWT

Figure 16. Scalogram created using CWT with reduced frequency range

Synchrosqueezed scalogram of the baseline

Fr
eq

ue
nc

y 
(M

H
z)

Time (µs)
0 100 200 300 400 500 600 700 800 900

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

50

100

150

200

250

300

350

400

M
ag

ni
tu

de

Scalogram of the baseline

Fr
eq

ue
nc

y 
(M

H
z)

10

1

0.1

0.01

0 200 400 600

50

100

150

200

250

300

M
ag

ni
tu

de

800

350

400

Time (µs)

Digital Manufacturing Technology 202 | Romaine Byfield, et al.



Figure 17. Scalogram created using SST on CWT

5.3 Comparison of the performances of different data processes and classification combinations

First, the test data of 80 experiments were used in the study to select the best data processing and classification 
combination. 1D CNN with FFT spectrums, 2D CNN with spectrograms of STFT, 2D CNN with scalograms of CWT, and 
2D CNN with SST-enhanced scalograms of CWT were used. In all these studies the initial architecture of the CNN was 
used. It was trained with 50% of the data. The confusion matrix in Figure 18 showed that 1D CNN obtained the lowest 
accuracy of 50% when it was processed with the spectrums of the FFT. 2D CNN obtained the second-best performance 
with 63% accuracy when the spectrograms of the STFT were used as seen in the confusion matrix in Figure 19. The 
confusion matrix in Figure 20 displayed that 2D CNN which was trained and tested with the CWT obtained a very low 
accuracy of 50%. When the SST was used to enhance the scalograms of the CWT, the 2D CNN obtained the best results 
with 66% accuracy according to the confusion matrix in Figure 21. These results indicated that STFT is computationally 
very expensive but capable of obtaining great results if the window size is selected properly. 2D CNN-SST enhanced 
CWT (CWT-SST-2D CNN) was selected as the best combination for the rest of the study. When a sweep sine wave is 
applied, theoretically FFT-1D CNN and STFT-2D CNN combinations are expected to perform almost the same. However, 
that wasn’t the case.  Most likely, because of the reflecting waves, the receiver acquired signals outside of the excitation 
frequency, potentially providing some useful information. The excitation frequency range was selected very narrow (100 
to 120 kHz) in this study to avoid the presence of surface waves with very high or very low frequencies at the same time.
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Figure 18. Data of 80 experiments were used. Confusion chart showing the prediction accuracy of 1D CNN using the FFT, with 50% of the dataset used 
for training and initial architecture.

Figure 19. Data of 80 experiments were used. Confusion chart showing the prediction accuracy using the STFT spectrograms, with 50% of the dataset 
used for training and initial architecture.
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Figure 20. Data of 80 experiments were used. Confusion chart showing the prediction accuracy using the CWT scalograms, with 50% of the dataset 
used for training and initial architecture.

Figure 21. Data of 80 experiments were used. Confusion chart showing the prediction accuracy using the SST on CWT scalograms, with 50% of the 
dataset used for training and initial architecture.
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from 320 tests were used. The accuracy of the same combination was 66% in Figure 21 when 80 datasets were used in the 
study. 50% of the data was used for training in both studies. The architecture of the 2D CNN was optimized (O2D CNN) 
with trial and error until the best possible performance was achieved.  The new architecture as shown in Figure 8 greatly 
improved the performance of the CWT-SST-O2D CNN combination to 100% as is seen in Figure 23. 50% of the dataset 
(images) were used for training. When the training set was further reduced to 30% (96 images), the accuracy remained 
exceptionally high at 96.36%, as depicted in Figure 24. These results indicate the effectiveness of SST in extracting 
discriminative features from the data, enabling accurate predictions even with limited training samples. 

Figure 22. Data of 320 experiments were used. Confusion matrix displays a prediction accuracy of 80.77%. This is the result of using 50% of the 
dataset containing 320 images for training with the initial architecture of the CNN featuring the use of SST on CWT scalograms.

Figure 23. Data of 320 experiments were used. The resulting confusion matrix after the optimization of the CNN architecture. This improved
 prediction accuracy to 100% while still using 50% of the dataset for training featuring the SST on CWT scalograms.
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Figure 24. Data of 320 experiments were used. Confusion chart displaying the prediction accuracy using the SST on CWT scalograms, 30% of the 
dataset was used for training the optimized 2D CNN.

To provide a comprehensive overview of the attained accuracy in each test, Tables 1 and 2 are presented. In Table 1, 
the performance of the O2D CNN with the improved architecture listed when it worked with the FFT, STFT, CWT, and 
SST-enhanced CWT. The listed performances in the first row of Table 1 for the optimized 1D and 2D CNNs are better 
than what were reported in Figures 18 to 21 even though the same number of images were used in both studies. As is seen 
in the first row of Table 1, 80 images were not enough to exceed 90% accuracy even if the O2D CNN is used. However, 
the performances of all the combinations immediately improved when the number of the presented cases increased from 
80 to 320 in the second row of Table 1, and CWT-SST-O2D CNN obtained 100% accuracy. The results seen in Table 2 
prove that at least 160 images are necessary for training the O2D CNN to obtain 100% overall accuracy when there were 
320 test cases.

Table 1. Prediction accuracy for both (80 and 320) datasets (spectrum or 2D image), with optimized 2D CNN architecture when the training dataset 
was 50 % of all data.

Size of dataset FFT STFT CWT SST on CWT

80 58% 62% 65% 90%

120 93% 95% 94% 100%

Accuracy = 96.3636% 
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Table 2. Prediction accuracy of the 2D CNN with optimized architecture when the training dataset is at different percentages of the overall dataset 
(images). Data was processed with an SST-CWD combination.

% of dataset used for training 70 60 50 40 30

Prediction accuracy 100% 100% 100% 99.4% 96.3%

6. Conclusions
This study used SHM methods, initially intended for conventionally manufactured parts and structures, for the 

testing of a metal plate with piezoelectric elements. This research has evaluated the adaptability of these methods to 
additive manufactured metal parts with complex geometry, particularly a stainless-steel plate with grooves of varying 
depths. The primary purpose of SHM is to detect and evaluate potential defects. These experiments involved 9 different 
magnet placements on the plate where LW methods were used to pinpoint defect locations, with data collected using the 
SuRE method. 

Initially, the study started with 80 tests and the standard CNN architecture, resulting in limiting results, with the best 
performance at 90% using a 2D CNN with a combination of SST and CWT. To improve results, the number of test cases 
from 80 to 320, and the CNN architecture was optimized, increasing the accuracy to 100%. With the increase in test cases, 
the FFT-optimized 1D CNN and the STFT-optimized 2D CNN improved accuracy to 93% and 95%, respectively seen in 
Figure 25 as well.

Figure 25. Performance of 1D CNN and 2D CNN when it is used with FFT, STFT, CWT, and SST-CWT signal processing techniques

Four essential requirements were identified to obtain optimal results: a dataset of 160 cases for training, CNN 
optimization, CWT-SST enhancement for descriptive features, and the presence of grooves with different depths for 
simplified identification. The study’s proposed SHM methods, employing the magnets to simulate various loading 
conditions and flaws without damaging the part, showed promising results for use in the listed case. Overall, the study 
successfully demonstrated the potential of SHM methods for additively manufactured metal parts and highlighted 
important factors for achieving accurate defect identification.

Instead of CNN, future studies may evaluate the performances of other classification methods. The performance of 
transfer learning may be tested by creating synthetic data and using them as part of the training cases. The performances 
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of the considered combinations in this study may be evaluated after training with experimental and synthetic data. The 
experimental procedure may also be changed. Instead of attaching magnets to a test point, this point may be compressed 
with a vise. Holes may be opened to put bolts at the desired points to create compression. Also, various defects may be 
simulated by milling the part to collect data at different lengths of a slot. The experiments will be longer, and costlier and 
preparation of many test parts will be necessary if the part is damaged to see the effect of flaws and performances of the 
proposed combinations in this study.
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