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Abstract: This research creates a framework for modelling the rainfall-runoff process using satellite precipitation data 
and a floodplain map in ungauged urban watersheds. The combined effects of urbanisation and climate change over 
the past few decades have increased the number of flooding incidents. Accurate prediction of the flood-prone zone is 
crucial for policymakers and system managers to build the watershed’s resilience during catastrophic flooding events. 
Precipitation and runoff data are crucial for hydraulic and hydrologic analysis and for identifying flood-prone areas. 
However, it is difficult to obtain precipitation and discharge data for hydrologic analysis in data-scarce regions. In this 
context, this research employs satellite precipitation products for rainfall-runoff analysis, which is subsequently utilised 
in a hydraulic model to delineate a flood-prone zone in an ungauged watershed. The Hydrologic Engineering Centre-
River Analysis System (HEC-RAS) and Hydrologic Modelling System (HEC-HMS) models were utilised in the study 
region to simulate and analyse interactions between rainfall, runoff, and the extent of the flood zone. Setting up and 
calibrating the HEC-HMS model using a satellite precipitation product is required for the dry and wet seasons. For the 
wet and dry seasons, HEC-HMS gets validated with an R-square value of 0.72 and 0.85, respectively. Three types of 
simulations were conducted in the calibrated HEC-HMS model to create the hydrograph with 25-, 50-, and 100-year of 
rainfall return periods. Finally, the one dimensional HEC-RAS model generates a flood inundation map for the pertinent 
flooding occurrences from the acquired peak hydrograph. By comparing the values of the specified return periods, the 
produced flood map depicts the affected area during various return periods of flooding events and provides a quantifiable 
display of inundation extent percentage (IE%).

Keywords: precipitation estimation from remotely sensed information using artificial neural networks-climate data 
record (PERSIANN-CDR), HEC-HMS, HEC-RAS, flood, inundation extent

1. Introduction
According to the Intergovernmental Panel on Climate Change (IPCC), studies from 1951 to 2012 concluded that 

the global temperature increased by 0.8 to 0.14 °C [1]. Climate change has increased droughts, uncertain precipitation, 
and flooding [2, 3]. Thus, climate change may cause more precipitation and frequent rises in water levels in many places 
than they used to be, while in some places it may cause more drought [4]. The simple and general reason is that the more 
the temperature rises, the higher the evaporation rate, increasing the frequency of rainfall and more flooding events. 

https://www.wiserpub.com/
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Moreover, the melting and evaporation of the accumulated snow also change the precipitation pattern. In the western 
part of the United States (US), due to the warmer climate, the hydrology has altered, resulting in the alteration of snow 
and rainfall, which resulted in a decrease in spring-summer flow [5]. With a high precipitation measurement, the US has 
a 24% incremental storm count. Also, there has been colossal damage around the US due to floods in the 20th century. 
The northeast’s extreme condition after Hurricane Sandy is evidence of what the future might hold and what will happen 
to the communities built over the floodplain. Furthermore, the damages in the Midwest are the result of the 100 and 
500 years return period floods. So, even the smaller creeks in the Midwest are getting flooded. The catastrophic floods 
are destroying settlement areas and increasing pollution in the downstream area, degrading the water quality and public 
health. There is also the shrinkage of water supplies due to the shift in rainfall patterns and increasing temperatures [6]. 
As a result, proper planning of the settlement around the rivers is necessary, so the inundation analysis of various rivers 
and creeks is crucial to see their risk factors.

Determining inundation extent has been the primary goal for the water resources planners and policymakers, as 
such studies are crucially important for developing the proper management plan to start the new structuring of the 
residential areas or developing new policies of protection [7-9]. There are many rivers and creeks in the US whose 
watersheds will not have meteorological stations within their watersheds, so the precipitation data required for 
hydrology and hydraulic modelling can be extracted in various other ways. One of the methods accepted in this study 
is extracting the precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN). The study cannot begin with the extraction of precipitation because getting the runoff 
primarily depends on the precipitation and other parameters, like land use and soil type [10]. To extract the runoff for 
multiple land use and soil type parameters using Geographic Information System (GIS) extensions, the Hydrologic 
Engineering Centre-Hydrologic Modelling System (HEC-HMS) is used. Finally, the hydraulic modelling in the 
Hydrologic Engineering Centre-River Analysis System (HEC-RAS) generates the floodplain. So, this study is based 
on the physical model coupling HEC-HMS and HEC-RAS in the ungauged watershed. Different return periods might 
have different floodplains; thus, their comparative study shows an increasing or decreasing risk factor. Several past and 
present studies show that the GIS is appropriate for the mapping of flood plains at various stages and presenting various 
flood zones [11].

There are several theories on applying the PERSIANN system and case studies in different areas. The study of the 
event of Hurricane Katrina in 2005 shows the good spatial coverage of PERSIANN-Climate Data Record (CDR). The 
study of the 1986 Sydney flood in Australia supports the good estimation of the PERSIANN-CDR precipitation [12]. 
In addition to the comparative study in East Asia and the Taklamakan desert, when comparing precipitation indices 
of different percentiles with the gridded precipitation data, PERSIANN holds better validity in the extreme monsoon 
region than in a dry climate. However, the gridded data can also be scattered [13]. Furthermore, a comparative study of 
the rainfall prediction model across the central US PERSIANN shows better estimation than others. However, it needed 
to give better volumes during extreme events [14]. The current study aims to use the PERSIANN system when the 
watershed is ungauged and show the validation of the model for each separate season.

The framework developed for any study is useful for a similar approach to generating the required floodplain. In 
several approaches, the model is verified for either dry season or wet season rainfall. Many studies have shown the 
validity of the HEC-HMS model for any single-season dataset [15]. Then the floodplain is generated directly using 
HEC-RAS or CivilGeo HEC-RAS [16]. The approximate validation of the model for the rainfall of both seasons is 
believed to predict a more reliable floodplain. The effectiveness and dependability of the model may be adequate 
given the seasonal variation in rainfall [17]. The water availability fluctuates in the wet and dry seasons, so the model 
validation of precipitation data for both seasons is adequate [18]. Considering precipitation data from both seasons 
improves flood forecasting by removing systematic errors [19]. Including precipitation data from all seasons when 
representing runoff in the HEC-HMS model enhances the accuracy and dependability of floodplain approximations and 
projections. After the first simulations, if the parameters considered for checking the accuracy are not within the defined 
limit, then the rainfall-runoff model is optimised using the optimisation tools in HEC-HMS. The optimising parameters 
in the rainfall-runoff model are the curve number (CN), initial abstractions, lag time, Muskingum coefficient K, and x 
value. Following optimization, the parameters for checking accuracy are checked again, and the value must be within 
the limit to be considered validated and used for further processing. For applying the runoff from HEC-HMS, HEC-RAS 
is modelled to present the flood plain. The parameter to optimise the HEC-RAS model is Manning’s coefficient. Once 
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the model is optimised and gets validated by checking accuracy parameters, the floodplain it generates can be utilised 
for further processing. The floodplain can be directly presented in the two dimensional analysis, considering the time 
series data [20]. Climate data is typically taken into account when predicting the floodplain using projected flow values 
in most studies [21]. Considering the climate model, the scenario is sometimes different and projects drought conditions 
[22]. Therefore, the portrayal of hydro-climatic co-variability shows the variability of impact on water resources [23, 
24]. Compared to the machine learning model, the rainfall-runoff model (HEC-HMS) predicts better values [25]. The 
Artificial Neural Network (ANN) model is also considered in rainfall-runoff simulation [26]. The Support Vector 
Machine (SVM) framework's projected precipitation is considered to be more dependable for approximating stream 
flow more accurately [27].

The work aims to create floodplain maps for three different return periods by combining the HEC-HMS and HEC-
RAS models and using satellite-based PERSIANN precipitation records. The study's innovative approach is to evaluate 
hydrologic model accuracy using the coefficient of correlation (R-square) and use this to predict flow and generate a 
floodplain map. The resulting inundation map helps to illustrate changes in the floodplain across three different return 
period intervals. The study also compares it to the Federal Emergency Management Agency’s (FEMA) floodplain 
map. The comparison computation of the inundation extent percentage aids in the evaluation of the risk factor. Finally, 
comparing values makes it easier to comprehend how climate change affects precipitation and creek flooding. The main 
objective of the study is to check the accuracy of the hydrologic model considering wet and dry season PERSIANN 
precipitation data and compare the 25-, 50-, and 100-year return periods floodplain with the FEMA. Although identical 
ungauged creeks can be mapped using the model under consideration, the precipitation data may vary depending on the 
location.

2. Study area
The river reach considered is Brush Creek, located in Missouri, US. Figure 1 shows the location map. Brush Creek 

is the tributary of the Blue River, which is the urban tributary. A major part of the land use around the creek covers 
approximately 10.02 km² of developed space for the commercial and residential areas. However, the total land use of the 
watershed and that around the study reach is 12.25 km2 of developed open space, 23.43 km2 of developed low intensity, 
6.94 km2 of developed medium intensity, 4.06 km2 of developed high intensity, and 0.018 km2 of pasture or hay. Table 
1 shows the land use data. Figure 2 shows the land use map of the watershed and the area around the creek. The year 
considered for the initial phase of significant climate change by the IPCC is 1951, and catastrophic flash floods were 
seen in Brush Creek in 1977 and 1998. 

The reach of the river considered for this study is in Jackson County. However, a major part of the watershed area 
is in Kansas State. Our study region is from Ward Parkway through Mission Woods (upstream side) to Frank A. Theis 
Park (downstream side). For the rivers section considered in the study, the upstream gauge station ID is 06893557, and 
the downstream gauge station ID is 06893557. The location of the upstream station is 94° 36’ 19.4” W, 39° 11’ 59.1” N, 
and the downstream station is 94° 34’ 43.4” W, 39° 02’ 21.3” N. The study reach is approximately 2.725 km long. On 
the upstream side, the watershed area is approximately 33.92 km2. The flow and gauge height data from the downstream 
gauge stream aid in verifying the HEC-HMS and HEC-RAS models.
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Figure 1. Study area map of the (a) country, (b) state, (c) county, and (d) river reach considered

              
Figure 2. (a) Land use of the watershed, (b) map legend, and (c) land use around the study reach 
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Table 1. Total land use covered by watershed and that around the study reach considered

Grid code Area (km2) Land use type

21 12.255 Developed, open space

22 23.431 Developed, low intensity

23 6.943 Developed, medium intensity

24 4.069 Developed, high intensity

81 0.018 Rangeland

3. Methodology
Although the work demonstrates an understanding of rainfall-runoff modelling in HEC-HMS and the creation 

of an inundation map using HEC-RAS, the watershed under consideration is an urbanising watershed without a 
meteorological station. As a result, the mathematical value of the inundation extent percentage is compared to the 
floodplain developed for 25-, 50-, and 100-year return periods. The subsections below provide a complete description of 
the methodology.

3.1 PERSIANN precipitation data

The PERSIANN system uses an algorithm that estimates the precipitation by combining infrared (IR) and passive/
active microwave (PMW) sensor data from multiple satellites, like Geostationary Earth Orbiting (GEO) and Low Earth 
Orbit (LEO) satellites [28]. The PERSIANN system, created by the Centre for Hydrometeorology and Remote Sensing 
(CHRS), calculates the rainfall rate using an ANN function based on the 0.25° x 0.25°-pixel infrared, the brightness 
temperature image that is currently available from geostationary satellites [29]. The feature class of the watershed 
boundary is uploaded to the CHRS data site to gather rainfall data, and the results are produced in the format of NET.
CDF. Considering the centroid of the watershed’s latitude and longitude coordinates, the acquired file is extracted using 
Python code. The precipitation data was acquired in Excel and may now be used directly in the HEC-HMS model.

3.2 Hydrologic modelling

To create the model in HEC-HMS, first the files are created in the GIS using the extension Arc-Hydro Tools and 
Geospatial Hydrologic Modelling Extension (HEC-GeoHMS). The primary work for any hydrologic modelling involves 
the delineation of watersheds, and streams and extracting other common properties like drainage lines, outfall points, 
river length, slopes, flow path lines, and their characteristics. The data used are shown in Table 2.

Table 2. Data and its sources

Data Sources

Watershed Streamflow Statistics and Spatial Analysis Tools for Water-Resources Applications: USGS

Stream network National Hydrography Dataset: USGS

Land use Multi-Resolution Land Characteristics Consortium

Impervious layer Multi-Resolution Land Characteristics Consortium

Soil data Soil Survey Geographic Database (SSURGO)

Rainfall intensity National Oceanic and Atmospheric Administration - Precipitation Frequency Data Server (NOAA-PFDS)

Note: USGS = United States Geological Survey

The detailed steps for rainfall-runoff simulation in HEC-HMS are described below.



Volume 3 Issue 1|2023| 155 Environmental Protection Research

3.2.1 Terrain processing using Arc-Hydro Tools

The extracted digital elevation mode (DEM) is converted into the required projected coordinate system if the 
coordinate system is not assigned. To refine the DEM more for analysis, it is reconditioned. The hydrologic parameters 
are extracted using the reconditioned DEM, and the final output required from this process is the drainage lines, the 
drainage outlet points, and the slope grid of the catchment. The detailed steps are shown in Figure 3.

                
Figure 3. Terrain processing steps

3.2.2 Basin processing using HEC-GeoHMS

This involves creating the project area by defining the project point at the outlet point. Then the sub-basins are 
created. After that, it involves the determination of characteristic properties like river and basin slope, length, the longest 
flow path, and centroids. The major parameter to be determined in this process is the CN grid. The CN grid is obtained 
by merging land use and soil data. CN that is considered in past studies show that the runoff in any basin depends upon 
the type of vegetation around [30], which implies that current land use and soil data integration is necessary. The method 
based on which loss is calculated that involves the use of a CN grid is the Soil Conservation Service (SCS) method. The 
resulting CN grid is the file assigned along the CN related to soil type for specific land use types. The detailed steps are 
shown in Figure 4.

                     
 

Figure 4. Basin processing steps and creating final files for HEC-HMS
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3.2.3 Model simulation in HEC-HMS

The final exported files in GIS using HEC-GeoHMS are imported into the HEC-HMS model, i.e., importing the 
basin and the meteorological model. The major task before the simulation is creating the gauge parameter and assigning 
the precipitation data for the specific time interval. In HEC-HMS, the control specification includes the date and time 
interval of precipitation data added, i.e., the date and time of wet and dry season precipitation data considered. So, for 
the wet season event, hourly precipitation data is specified from July 22 to July 28, 2022, and for the dry season event, 
hourly precipitation data is specified from November 4 to November 6, 2022. The precipitation data extracted using 
Python code in the file from PERSIANN-CDR is the input to HEC-HMS and is a user-specified hyetograph. The SCS 
CN method is considered to estimate runoff, i.e., the CN grid, which is based on land use and soil type and developed 
using HEC-GeoHMS, is added to the HEC-HMS model. The next method is the Muskingum method, which uses k and 
x values and is the conservation of mass approach to route and inflow hydrographs. To compare the simulated flow with 
the observed flow value, the flow value extracted using USGS is specified as direct runoff in the model, and the method 
is called user-specified unit hydrograph. Then the flow of data for the same time interval is added to see the difference 
between the simulated data and the data from the USGS gauge station. Looking at the different parameters, the final 
decision will be based on whether the model is verified. After the validation, the model is run with the three different 
25-, 50-, and 100-year return periods of rainfall from the National Oceanic and Atmospheric Administration (NOAA), 
which lead to the three different values of flow. The detailed steps are shown in Figure 5.

              
Figure 5. HEC-HMS model processing steps
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Figure 6.
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Figure 6. HEC-RAS modelling steps

Manning’s coefficient is then assigned to every part of the cross-section depending upon the land use extracted 
from the MRLC viewer. The range of the allowable Manning’s coefficient and the assigned value are shown in Table 3.

Table 3. Manning’s coefficient allowable range and value considered

Land use Allowable range Assigned value

Developed, open space 0.030 - 0.050 0.030

Developed, low intensity 0.050 - 0.120 0.050

Developed, medium intensity 0.060 - 0.140 0.060

Developed, high intensity 0.080 - 0.200 0.080

3.4 Model validation
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considered for validation are Nash-Sutcliffe efficiency (NSE), root mean square (RMSE), percent bias (PBIAS), and 
standard deviation ratio (RSR). The values considered to be checked are NSE ≥ 0.65, PBIAS ≤ ± 10%, and RSR ≤ 0.60 
[31]. Table 4 shows the mathematical representation of the parameters considered for validation. 
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3.5 Federal emergency management agency comparison

The FEMA prepares the floodplain maps of the rivers and creeks. The study compares the floodplain generated by 
the FEMA and represents the increase or decrease in the floodplain area. Previous studies considered the validation of 
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the hydraulic model by comparing the flood area generated with FEMA [32, 33], but recently, the flow generated from 
recent precipitation data has exceeded the flood map produced by FEMA. So, the comparison passes the information 
through the research in different areas for making the proper emergency response plan to reduce the flood risk around 
the creeks and rivers [34].

3.6 Calculation of inundation extent percentage

The vulnerability of the rivers and creeks can be shown by calculating the percentage of inundation extent, which 
is the numerical representation obtained by comparing with FEMA. Equation 1 is used for the calculation of the 
inundation extent percentage. The relative difference in inundation extent can be directly obtained from the difference in 
the inundation area within two return periods, and the final value is expressed in terms of percentage [35].

                                                                       
( )1 % 100%F I

F
I

IE IEIE
IE−

−
∆ = ×

                                                                  
(1)

IEI represents the inundation area of the initial time period, and IEF represents the inundation area of the subsequent 
time period considered. ∆IEI-F is the inundation area change in the F return period as compared to the I return period. 
The computed values will be presented in the form of IE25-50, IE50-100, and IE25-100. 

4. Result and discussion
This section elucidates the alliance of the simulation output from HEC-HMS with the HEC-RAS model. This 

section focuses on model validation, output results from simulation, inundation floodplain maps, and the representation 
of inundation extent percentage. The detailed results are presented in the subsection below.

4.1 HEC-HMS simulation and validation

For the final simulation of the HEC-HMS model, the data on rainfall and flow are stored in model’s control 
specifications in the precipitation gauge and flow gauge. The model validation considers both dry and wet seasons 
[36-38]. The data for the wet season ranges from July 22 to July 28, 2022, and the data for the dry season ranges from 
November 4 to November 6, 2022. Figures 7 (a) and (b) show the comparison of the simulated and observed runoff 
for both seasons. The simulated and observed peak runoff for the wet season is 28.55 and 26.04 m3/s, respectively. The 
simulated and observed peak runoff for the dry season are 19.99 and 20.23 m3/s, respectively. For the wet season, the 
values of the validation parameters are 0.68 for NSE, 3.01 for RMSE, -14% for PBIAS, and 0.55 for RSR. For the dry 
season, the values of the validation parameters are 0.77 for NSE, 2.5 for RMSE, -11% for PBIAS, and 0.35 for RSR. 
All the values are within the limit; hence, the model is verified for both wet and dry seasons [39]. So, the PERSIANN 
precipitation data is helpful in the hydrologic modelling of smaller creeks like Brush Creek for both seasons. The 
R-square values for the wet and dry seasons are 0.72 and 0.85, respectively. According to Gholami [40], to overcome 
the limitations of the calibration and validation of the model, the flood mapping will be more efficient by using the flood 
marks in the tree trunks. The precipitation depth from NOAA for 25-, 50-, and 100-year return periods is then used as 
input data in the model’s frequency storm tab for the meteorological station defined. The simulation resulted in flow 
values of 260.51, 313.41, and 373.95 m3/s for 25-, 50-, and 100-year return periods, respectively. The hydrograph for 
the three-return period is shown in Figure 8. This depicts the increase in flow as the return period precipitation value 
increases. The precipitation uncertainty resulted in a significant increment in flow value [41-43]. 
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              (a)                            (b)  

Figure 7. Observed and simulated discharge for (a) wet and (b) dry seasons  

                                         
Figure 8. The hydrograph for the 25-, 50-, and 100-year return periods

4.2 Inundation analysis from HEC-RAS

At first, the simulation considers the known flow value from the USGS. Then the gauge height downstream from 
the USGS and the simulated model are considered for validation. The simulation and validation consider the flow 
values of 3.05, 2.74, 2.77, 1.86, and 2.52 m3/s. These flow values are from different days. The flow has been observed, 
and the simulated gauge heights are 1.42, 1.42, 1.48, 1.35, and 1.64 metres and 1.45, 1.41, 1.42, 1.34, and 1.63 metres, 
respectively. The validation parameters calculated are 0.9 for NSE, 0.03 for RMSE, 0.82 for PBIAS, and 0.316 for RSR. 
These values are within the limit as discussed in the methodology section. Hence, the model is verified. The R-square 
value of the model is 0.96. The verified model is subjected to 25-, 50-, and 100-year return period flow values, which 
provide the inundation extent as shown in Figure 9. The outflow for 25-, 50-, and 100-year return periods is 260.51, 
313.41, and 373.95 m3/s, respectively. The inundation area for 25-, 50-, and 100-year return period flow values is 0.4, 
0.42, and 0.44 km2. The urban area affected by the three different return periods is 0.38, 0.4, and 0.42 km2. The change 
in inundation extent indicates that the uncertainty in precipitation is causing the alteration in the flood regime. The 
maps show a clear view of the flood-risk areas. Moreover, the flow from the model verified using PERSIANN data 
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also predicts the flood regime, which will be helpful for the policymakers in the proper planning of the area around the 
creeks for urban expansion. Usually, city planners and policymakers define the area for artificial reservoirs or wetlands 
to control the flood regime after studying it [44], and it usually comes into action whenever the urbanisation expansion 
is rapid [45].

     
Figure 9. Map showing the floodplain area of three return period flood

4.3 Comparison with FEMA

The FEMA maps are readily available online and are open source. The FEMA maps show the regulatory floodway 
and the hazard area, which have a 1% annual chance of occurring. Response plans and safety measures are documented 
in the underlying FEMA flood hazard layers. But, due to climate change and abnormalities in the precipitation pattern, 
flooding is more likely to increase, even in the creeks [46]. The flash flood caused the river to rise up to the residential 
areas, and all the roads were blocked in the creek considered for this study in 2020. This study compares the FEMA map 
with the floodplain generated by considering the 100-year return period flow. The area under the floodplain is larger than 
that of FEMA. Furthermore, the model considers both season and average precipitation data to validate the model so 
that it can be used for predicting floods in any season and help prepare the emergency response plan. The floodplain area 
of the 100-year return period is remarkably large compared to FEMA, and the repetitive flash floods due to uncertain 
precipitation stipulate the need for water resources managers and policymakers to upgrade the safety scenario around 
such creeks and prevent more social, financial, and environmental loss [47]. The change in flood regime also highlights 
that the creeks and rivers whose floodplain is not in FEMA can be developed using a similar framework for the future 
emergency plan [48]. Figure 10 shows FEMA’s comparison map of the floodplain area and the 100-year return period 
flood.
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Figure 10. Floodplain comparison map of modelled flood and FEMA

4.4 Inundation extent percentage

The computed values for IE25-50, IE50-100, and IE25-100 are shown in Table 5.

Table 5. Inundation extent percentage of 25-, 50-, and 100-year return period floodplain

Inundation extent percentage
IE25-50 IE50-100 IE25-100

5% 4.7% 10%

From 25- to 50-year return period, the inundation extent changes by 5%, from 50- to 100-year return period by 
4.7%, and from 25- to 100-year return period by 10%. This suggests that the creek is in a mild flood-risk zone, and a 
flood may occur in the future. Therefore, this paper might be helpful for county planners in preparing quick response 
steps to avoid minor casualties and effectively manage urban expansion regions. According to a recent study, effective 
planning measures should be adopted in urban, semi-urban, and agricultural areas because the creeks are becoming 
more vulnerable. The contribution of this study is to provide the framework for developing the floodplain through the 
model, which is verified considering two-season precipitation data. If the gauge station is unavailable in the considered 
watershed, the gridded precipitation data can also be used [49-52]. Hence, the framework can be used similarly using 
PERSIANN data and verifying seasonally to provide a more convincing floodplain per requirements. The study 
leaves many unanswered questions and may consider various climate models and scenarios to better understand 
increasing flood regimes through future runoff projections. Additionally, future studies can focus on considering climate 
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model parameters like temperature, carbon emission scenarios, and wind speed to better represent the flood regime. 
Furthermore, validating a model by considering many seasonal data points to increase the model’s effectiveness is also a 
good point to draw attention to for future research purposes.

5. Conclusions
The rivers and creeks, which were not vulnerable in the past, have started to give warning signs due to flash 

flood events caused by altered precipitation patterns. Different climate-related research documents the change in the 
precipitation pattern caused by the warmer climate. As a result, the floodplain, considering the recent precipitation data 
and also in the summer, is covering a greater extent of the landscape around rivers and creeks. So, before developing 
the floodplain model for rainfall-runoff, the model is verified considering the precipitation data of both wet and dry 
seasons around Brush Creek. For PERSIANN-CDR, the gridded precipitation data is used when the gauge station is 
unavailable in the considered watershed. Thus, the result in the model is verified by the R-square value of 0.72 for the 
wet season and 0.84 for the dry season. Therefore, the study infers that the precipitation data from both seasons depicts 
the projection of the floodplain in the present climatic scenario. Moreover, the parameters considered for validation 
suggest that the model has higher accuracy when using the dry season data rather than the wet season data. The study 
also provides insights on the change in floodplain considering 25-, 50-, and 100-year retention period precipitation 
data. The study compares the geospatial representation of the flood inundation simulated by the hydraulic model. The 
simulated runoff value gradually increases considering recent data, and the change in floodplain area is also gradually 
increasing with a difference of 0.02 km2. Although this difference in the increase in the inundation area is not high, 
calculating the inundation extent percentage shows that the change is 10% between floodplains from 25- to 100-year 
return periods. So, the creek is now on the verge of a mild vulnerable zone. Hence, the current scenario suggests that 
policymakers and planners should consider this zone for developing further emergency response plans and be prepared 
for the future, as the reports highlight the rapid increase in temperature in a few decades and a warmer climate causing 
more abnormalities in the rainfall pattern. Furthermore, the geospatial comparison of the 100-year return period flood 
and the FEMA flood zone shows that the floodplain covers developed areas. So, the study also supports updating the 
flood-prone zone developed considering recent precipitation data and updating mitigation measures to overcome any 
uncertain casualties in the future.
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