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Abstract: We investigated the presence of organochlorine pesticides (OCPs) and total petroleum hydrocarbons 
(TPHs) on the surface sediments sampled at the Ilaje coastal river in Ondo State, Nigeria. The samples were taken at 
five locations along the coast to determine their distribution in surface sediments and identify the input of industrial 
activities. The identified OCPs included G-BHC, d-BHC, chlorothalonil, alachlor, aldrin, dacthal, heptachlor-epoxide, 
g-chlordane, and trans-nonachlor, accounting for roughly 99% of the total detectable in the samples. The pesticide 
concentrations (dry weight) were ≤ 326.98 ng/g, with an average value of 15.49 ng/g. The pesticide levels at the various 
studied locations were in this order: Idiogba Police > Igbokoda > Idiogba Subu > Ayetoro > Eyunona. Furthermore, 
considerable negative and positive correlations exist between the various components of chlorinated pesticides. Based 
on the dry weight, TPH values in the samples ranged from 5.42 to 22.53 ng/g, in the order Eyunona > Idiogba Police 
> Idiogba Subu > Ayetoro > Igbokoda. Our data suggest that the hydrocarbons in the sediment matrices arise from 
anthropogenic causes other than oil spillage, such as water transportation and residential waste discharge, storm waters, 
rural runoff, etc. Although pollution levels are generally low, there is a need for regular monitoring and enforcement of 
stringent implementation of environmental laws and standards designed to curb any potential environmental pollution 
arising from oil spills and indiscriminate waste disposals in the coastal community.
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1. Introduction
Chemical pollutants from numerous anthropogenic sources are found in coastal ecosystems, posing severe 

hazardous consequences to marine ecosystems [1-3]. River runoffs may carry enormous quantities of these contaminants 
into the sea via various routes, such as sewage disposal, accidental oil spills, indiscriminate municipal and industrial 
discharges, automotive wastes, vehicular emissions, etc., caused by incomplete thermal oxidation of fossil fuels [4]. The 
release of numerous organic contaminants into the environment from these diverse sources (especially runoff or effluent 
discharges) is a major source of environmental depletion in many countries. Most organic pollutants incessantly enter 
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the sea, rivers, dams, and lakes, converting such media into environmental reservoirs for unwanted organics [5].
Various organochlorine pesticides (OCPs) and their breakdown intermediates are common organic pollutants 

deteriorating water bodies globally [6]. Some OCPs promote agricultural produce, which, in turn, improves human and 
animal health. However, these successes have been tainted by the discovery of unintended consequences in untargeted 
organisms [7]. Typically, OCPs are incredibly refractory to biological, photochemical, and chemical degradation. 
They are also prone to bioaccumulation and long-distance transfer [8]. Because of their carcinogenic, hepatotoxic, and 
mutagenic properties, many chemicals are classified as high-priority pollutants [9]. They often exhibit low water and 
high lipid solubility and are linked to significant environmental impact in various species and nearly every tropic level.

Several organochlorines have been associated with various adverse impairments in man and his environment, 
such as marred reproduction, endocrine disruption, and immunosuppression [10]. Organochlorine exposure has been 
correlated with the decline in the population of several marine mammals [8]. Most OCPs accumulate and biomagnify 
in the food chain, reaching larger quantities in top carnivores. As a result, organisms higher up the food chain, such as 
birds and mammals, may be susceptible to adverse health impacts from exposure to OCPs. Since the mid-1970s, several 
developed nations (including the United States of America and Sweden) have banned or restricted the use and sale of 
most OCPs due to their hazardous effects on aquatic organisms [11]. Despite being banned for decades, research on 
OCPs in various water bodies across Europe [6], Asia [12], and America [13] has found widespread occurrences of their 
residues. In some developing countries (e.g., Nigeria), using dichlorodiphenyltrichloroethane (DDT) for malaria control 
is still legal in some regions of the nation [14]. Because of their relatively high affordability and efficiency for pest 
management, some OCPs could still be produced and used clandestinely in agriculture under unsuspicious trade names.

Total petroleum hydrocarbons (TPHs) are common organic pollutants in organic waste [15]. Primarily, they have 
been employed to discover the origins of petroleum residue in marine habitats [16, 17]. Oil spills arising from lands 
(including oil rigs, refineries, transportation, and storage) and municipal and industrial discharges are more destructive 
in the cold than in warmer climates [18]. Because oil bioaccumulates in fish fillets, mollusks, mussels, and other 
mammals’ fatty tissues, its effects on aquaculture could be severe [19]. TPHs are typically delivered into the sea as 
solutions, such as stormwater, runoff from agricultural and urban lands, home waste discharges, or industrial effluents. 
However, only a fraction of the load is retained in the solution, while the bulk gets immobilized with the sediments via 
flocculation, sedimentation, and coagulation [20, 21]. Therefore, sediment remains a viable sink for the biosphere’s 
polycyclic aromatic hydrocarbons (PAHs) and other unwanted organics. At contamination levels, these organics could 
severely compromise the health of aquatic organisms in the ecosystem [22]. Specifically, alkanes, burnt hydrocarbons, 
and spent oils are the most critical components of TPHs in marine environments [20, 23]. 

OCPs and TPHs are acknowledged for their environmental refractivity, bioaccumulation, and toxicity features. 
They have been utilized in significant quantities and will likely remain of significance for some years. Although OCPs 
are unquestionably relevant in large-scale agriculture, their environmental toxicity has escalated concerns that could 
ensure their global ban [24]. Their extensive use has made them discoverable by evaluating their residues in diverse 
ecological matrices, including water, air, sediments, soil, vegetation, and biota [25]. Hence, the current research will 
assist in filling the knowledge gap about chlorinated pesticides and TPHs on the Nigerian coast and provide management 
implications for future sustainable development toward achieving source control from anthropogenic activities. Our 
findings could help provide crucial baseline data for the environmental monitoring of OCPs and TPHs.

2. Materials and methods
2.1 The study area

The study area is located between the Greenwich meridian’s longitudes of 5°45 and 6°15 and the equator’s latitudes 
of 4°30 and 5°00. Ilaje has a total land area of around 2,300 square kilometers. It is bordered on the west by Ogun 
State, on the east by Ese Odo local government and Delta State, on the north by Ikale Local Government Area, and on 
the south by the Atlantic Ocean and the southern Bight of Benin. In general, Ondo State is divided into two geological 
zones. The first is the sedimentary rock region in the south, while the second is the Precambrian Basement Complex 
rock region in the north. The basement sedimentary rocks’ limit is a few kilometers north of Aaye.
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2.2 Sample collection and preparation

With the aid of a metallic core sampler, we sampled the surface sediment (0-10 cm) in July 2021 at Ayetoro, 
Idiogba Subu, Idiogba Police, Eyunona, and Igbokoda (Figure 1). The samples were placed in an icebox before being 
taken to the lab. All samples were air-dried to a consistent weight. Other extraneous items, such as plant debris, were 
eliminated. Then, the samples were pulverized in a glass mortar, sieved through a 0.3 mm metallic sieve, and kept at -4 
°C until analysis.
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Figure 1. A map of the study indicating the sampling locations in the study area

2.3 TPH extraction from sediment samples

For further moisture removal, 10 g of the dried sample was combined with anhydrous sodium sulfate (Na2SO4). 
For spiking, 1 mL of 10 µg/mL surrogate standard was added to the mixture before it was extracted into 200 mL of 



Volume 4 Issue 1|2024| 63 Environmental Protection Research

dichloromethane using a Soxhlet extractor for 24 h. The extract was passed via a glass funnel with anhydrous Na2SO4 
and later concentrated using a rotary evaporator [26].

2.4 Silica gel clean up

The organic extracts were cleaned in a chromatographic column (10 mm i.d. × 30 cm) bearing 10 g activated 
silica gel, capped with a 2-cm-thick layer of anhydrous Na2SO4. 20 mL of n-pentane eluted the material before being 
concentrated and exchanged using n-hexane. For quality assurance, a blank sample was handled similarly to this process 
[27].

2.5 GC analysis 

The analytes’ concentrations were determined analytically using an HP-5 fused silica capillary column (30 m; 0.32 
mm i.d. × 0.25 m film) and gas chromatography (Agilent 7820A GC, Agilent, Santa Clara, CA, USA) equipped with a 
flame ionization detector. Helium was the carrier gas, passed at 1.75 mL/min (average face velocity of 29.47 cm/s), and 
the detector was set to 300 °C. For 1 minute, the column temperature was held at 40 °C before ramping it to 320 °C at 7 
°C/min [19].

From the stock solutions, working standards for the alkanes and surrogate (1-chlorooctadecane) were produced and 
stored in amber bottles at 4 °C. With n-hexane, we developed 0.05-20 g/mL working range standards to calibrate the 
instrument. The Agilent Chemstation chromatography software calculated the average response factor for each analyte 
using plotted calibration curves with correlation coefficients between 0.9846 and 0.9919. All the analytes’ estimated 
linearity was within R2 ≥ 0.990. Adding an unresolved complex mixture (UCM), we calculated the TPH as the sum of 
n-alkane concentrations eluted from nC9 to nC36 [28].

2.6 Quality control 

Analytical and high-performance liquid chromatography (HPLC)-grade reagents and solvents were used, 
respectively, to ensure reliable results. Blanks and spiked samples were intermittently analyzed in duplicate. However, 
no interference was discovered in any of the blanks. With eight replicate injections of a middle-level calibration 
standard, we calculated the limit of detection (LOD) for n-alkanes [29-31]. We derived the LOD by multiplying the 
“t” value at a confidence level of 99% with the instrument response, resulting in values within 0.06-0.13 µg/L. The 
instrument’s relative standard deviation (RSD) was often less than the maximum limit of 25%, ranging from 3.61 to 
8.32% for the n-alkanes [32]. The recoveries of spiked samples determined the method’s efficiency at 20 µg/L (within 
76-137%), with an average ranging between 87% and 127% for water and sediment samples. Similarly, the recovered 
1-chlorooctadecane spiked into the samples, ranging from 44% to 96%, falling within the allowed 40%-140% range for 
hydrocarbons [32].

2.7 Data analysis 

The IBM SPSS version 20 (IBM, Armonk, NY, USA) and Microsoft Excel (2016 version) packages did the 
statistical analyses. A one-way ANOVA was performed for several groups, with standard errors calculated to illustrate 
the measure of dispersion. A correlation compared the relationships between groups, and significance was assessed as 
p 0.05. [17]. The link between regional socioeconomic levels and pesticide concentrations in mangrove sediment was 
investigated using the Pearson correlation. Data visualization and calculations were done in Origin Pro v9.9 and the 
Microsoft Excel 2019 package. Principal component analysis (PCA) was utilized to examine the correlations between 
the chlorinated pesticide concentrations and sampling sites and between the TPH and sampling sites and identify the 
potential factors. The PCA enables more empirically robust data analysis than conventional techniques, yielding a better 
understanding of data variability [33].
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3. Results and discussion
3.1 Levels of OCPs in the sediments

Table 1 shows the OCP concentrations in coastal river surface sediments from the Ondo State coastal zone. The 
examined quality of surface sediments can also inform about likely contamination during sampling [34]. However, the 
current study assumed all precautions to avoid introducing contaminants that might compromise the integrity of the data 
were taken and adhered to.

Table 1. Concentrations of OCPs (ng/g) in the sediment samples 

OCP/ Location Ayetoro Idiogba Subu Idiogba Police Eyunona Igbokoda

Etridiazole 0.0051 ND ND ND 0.0100

Chloroneb ND ND ND ND ND

a-BHC 0.4068 0.3651 ND ND ND

Simazine ND ND ND ND ND

Atrazine ND ND ND ND ND

b-BHC ND 0.2237 0.1616 0.3977 ND

g-BHC 10.67 16.40 6.748 7.966 8.352

d-BHC 50.03 89.32 327.0 7.486 189.3

Chlorothalonil 13.59 3.237 3.462 7.990 9.228

Alachlor 12.31 64.75 14.40 15.41 25.18

Aldrin 5.55 17.12 4.469 2.244 10.02

Dacthal 18.62 19.66 21.75 15.53 8.336

Heptachlor epoxide 4.570 10.37 22.79 8.044 11.26

g-chlordane 9.569 9.900 13.02 4.938 8.150

trans-nonachlor 11.90 8.868 7.372 8.789 14.13

ƩOCPs 137.2 240.2 421.2 78.80 283.8

ND = not detected. Each value is a mean of duplicate analyses with a negligible difference.

Etridiazole, chloroneb, a-BHC, simazine, atrazine, b-BHC, g-BHC, d-BHC, chlorothalonil, alachlor, aldrin, 
dacthal, heptachlor-epoxide, g-chlordane, and trans-nonachlor were among the OCPs found in this coastal zone. The 
cumulative OCPs (dry weight) ranged from ND to 326.978 ng/g, with an average of 15.49 ng/g, indicating significant 
spatial variance of the chlorinated pesticides (Figure 2).
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Figure 2. Distribution of cumulative pesticides in the coastal sediment samples of Ilaje, Ondo State



Volume 4 Issue 1|2024| 65 Environmental Protection Research

The Idiogba Police (421.2 ng/g) at the jetty, facing the mangrove zone, had the highest pesticide concentrations, 
followed by the river channel locations. Lower cumulative OCPs were generally found at Eyunona (78.80 ng/g) 
and other supratidal zone sampling stations. We discovered that river transport and tidal influence were this area’s 
principal sources of chlorinated pesticides. The high levels of pesticides observed at the Idiogba Police could result 
from anthropogenic activity in the vicinity, such as wastewater discharge, fishing, farm runoff, farming, and effluents 
from boating and commercial operations. Another source of the high level of pesticides in the water body could be 
its proximity to the jetty, which residents in the coastal zone heavily use. The chlorinated pesticide components in the 
sediment samples varied greatly: chloroneb, simazine, and atrazine were absent, while etridiazole, a-BHC, and b-BHC 
were either very low or nonexistent (Table 1). g-BHC, d-BHC, chlorothalonil, alachlor, aldrin, dacthal, heptachlor 
epoxide, g-chlordane, and trans-nonachlor were found in all surface sediments of Ondo coastal rivers, accounting for 
98-99% of ∑OCPs.

3.2 TPH Levels in the sediments 

Similar to the OCPs, we quantified the TPHs in the sediment samples. The concentrations ranged from 5.42 to 
22.53 ng/g on a dry weight basis (Table 2). All locations showed the presence of the twelve examined TPHs, except 
hentriacontane which was undetected at Ayetoro (along with Pentadecane, 2,6,10,14...) and Idiogba Subu.

Table 2. TPH concentrations (ng/g) in the sediment samples 

TPH/ Location Ayetoro Idiogba Subu Idiogba Police Eyunona Igbokoda

Dodecane 0.21 0.08 0.17 0.17 0.14

Tridecane 0.33 0.14 0.19 0.11 0.26

Tetradecane 0.25 0.11 0.14 0.53 0.16

Tetracosane, 3-ethyl- 1.18 0.34 0.23 0.34 0.44

Heneicosane, 11-decyl- 0.60 1.42 0.68 0.27 0.40

Pentadecane, 2,6,10,14... ND 0.10 0.15 0.66 0.51

Pristane 5.08 2.40 2.02 1.46 0.14

Octadecane 1.65 0.32 0.31 5.39 0.76

Octacosane 0.51 4.69 0.63 1.58 0.91

Nonacosane 0.18 1.24 1.45 5.12 0.57

Triacontane ND ND 7.33 6.64 0.83

Hentriacontane 0.19 0.99 0.33 0.26 0.30

ƩTPH 10.18 11.83 13.63 22.53 5.42

ND = not detected. Each value is a mean of duplicate analyses with a negligible difference.

The TPH distribution in the study area differed from that of OCPs. The maximum TPH concentration was found 
at Eyunona (22.53 ng/g) and the lowest at Igbokoda (5.42 ng/g). This observation could be attributed to potential 
hydrocarbon volatilization from the sediment and TPH biodegradation as the temperature rises. Higher temperatures 
have also been linked to a faster photochemical degradation rate of airborne hydrocarbons, likely responsible for the 
lower levels of pollutants seen during the dry season elsewhere [35]. Still, the emission rates (e.g., vehicle, biomass, and 
coal) increased, contributing to higher hydrocarbon concentrations in the wet season when our sampling took place (i.e., 
in July) [36]. The following is the order of TPH concentration decrease: Eyunona > Idiogba Police > Idiogba Subu > 
Ayetoro > Igbokoda. Generally, the mineral oil in the sediment samples was below the Nigerian 50 mg/kg permissible 
limit in Nigeria [37, 38].
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Massoud et al. [39] stated that sediment’s TPH levels of 10-15 mg/kg are considered unpolluted, while those within 
15-50 mg/kg should be considered somewhat polluted. Thus, the sediment samples in the current study were in the 
unpolluted and moderately polluted ranges. The higher values could emanate from substantial industrial and shipping 
activity in the coastal zone, such as the port’s operating influence near the river mouth, which can increase rainwater 
flow into the bay from the rural region. Other potential sources include vehicle deposits, oil spills, and engine leaks 
on asphalt-tarred highways, which are harmful to benthic species when they accumulate in the surficial sediment, thus 
causing developmental abnormalities, reproductive capacity loss, and various diseases in marine mammals [40].

In general, TPH levels in the sediment were significantly lower than in most other coastal environments, such as 
Ceuta Harbour in North Africa [41], Musa Bay [42], and the Barnegat Bay-Little Egg Harbor Estuary in the United 
States [43]. On the other hand, water from a few other places worldwide contained petroleum hydrocarbon amounts 
similar to those found in this study area. Examples include the shoreline and mangroves of the northern Persian Gulf [44], 
Todos os Santos Bay, Brazil [45], and the southeast coast of India [44, 46].

The levels of OCPs and PAHs found in the coastal sediment in the current study were similar to those found 
elsewhere but not in coastal regions. For instance, Qu et al. [47] investigated soil and air samples. Also, our results are 
similar to previous studies on the nature and distribution of TPHs and OCPs in coastal sediments. Specifically, PAHs 
have been found chronically embedded in the sediment, shaping the bacterial and crustacean communities [48]. More 
recently, another study carried out in Tanzania showed the presence of these organic pollutants at ppb levels, both in dry 
mass and lipid concentrations [49]. Here, the low-molecular-mass PAHs were found in relatively higher proportions than 
their high-molecular-weight counterparts. More critical is the possibility of bioaccumulating these pollutants, including 
OCPs, in the lipid structures of marine animals, which could be transferred along the food chains to humans. Hence, a 
transboundary study of these organics should be done to ensure the safety of exposed ecosystems and humans. Since 
previous studies [6, 12, 47-49] have identified the relationship and co-existence of OCPs, it is imperative to investigate 
the same in this study.

3.3 Relationship between TPHs and OCPs in the sediments 

At the two confidence intervals (0.01 and 0.05), there was no association between the overall contents of TPHs 
and OCPs in the sediment samples (Table 3). This observation shows that the point sources of these compounds in the 
sediment of coastal rivers come from various places. Nonetheless, there was some correlation between their components 
and TPH’s constituents (Table 4). Dodecane has a significant negative correlation with octacosane and hentriacontane, 
while tetradecane has a significant positive correlation with octadecane and hentriacontane. At varying confidence 
intervals, the chlorinated pesticides also showed some correlation (Table 5). Etridiazole showed a positive relationship 
with trans-nonachlor, g-BHC had a positive relationship with alachlor, which displayed a strong positive relationship 
with aldrin, and heptachlor epoxide portrayed a strong positive relationship with d-BHC. This significant association 
between TPHs and OCPs suggests that the chemical constituents entered the coastal river from similar sources.

Table 3. Matrix of Pearson correlation between TPHs and OCPs in sediment samples 

TPHs OCPs

TPHs Pearson correlation 1 -.441

Sig. (2-tailed) .457

OCPs Pearson correlation -.441 1

Sig. (2-tailed) .457

No. of observations = 5.
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Table 4. Matrix of Pearson correlation among TPHs in the sediment samples 

C12H26 C13H28 C14H30 C26H54 C31H64 C19H40 C19H40 C18H38 C28H58 C29H60 C30H62 C31H64

C12H26 Correlation 1 .536 .433 .592 -.716 .526 .459 .361 -.880* .041 .995 -.911*

Sig. (2-tailed) .351 .466 .293 .173 .474 .437 .550 .049 .948 .062 .031

N 5 5 5 5 5 4 5 5 5 5 3 5

C13H28 Correlation .536 1 -.338 .809 -.215 -.015 .472 -.388 -.575 -.769 -.791 -.477

Sig. (2-tailed) .351 .578 .098 .728 .985 .423 .519 .311 .129 .419 .416

N 5 5 5 5 5 4 5 5 5 5 3 5

C14H30 Correlation .433 -.338 1 .050 -.631 .800 -.023 .997** -.222 .852 .372 -.466

Sig. (2-tailed) .466 .578 .937 .253 .200 .971 .000 .719 .067 .757 .429

N 5 5 5 5 5 4 5 5 5 5 3 5

C26H54 Correlation .592 .809 .050 1 -.131 .541 .796 .009 -.348 -.453 -.899 -.380

Sig. (2-tailed) .293 .098 .937 .833 .459 .107 .989 .566 .444 .289 .528

N 5 5 5 5 5 4 5 5 5 5 3 5

C31H64 Correlation -.716 -.215 -.631 -.131 1 -.847 .246 -.592 .827 -.370 .300 .924*

Sig. (2-tailed) .173 .728 .253 .833 .153 .690 .293 .084 .540 .806 .025

N 5 5 5 5 5 4 5 5 5 5 3 5

C19H40 Correlation .526 -.015 .800 .541 -.847 1 -.690 .797 -.458 .616 -.324 -.681

Sig. (2-tailed) .474 .985 .200 .459 .153 .310 .203 .542 .384 .790 .319

N 4 4 4 4 4 4 4 4 4 4 3 4

C19H40 Correlation .459 .472 -.023 .796 .246 -.690 1 -.062 -.073 -.324 .981 -.070

Sig. (2-tailed) .437 .423 .971 .107 .690 .310 .921 .908 .595 .126 .911

N 5 5 5 5 5 4 5 5 5 5 3 5

C18H38 Correlation .361 -.388 .997** .009 -.592 .797 -.062 1 -.153 .873 .340 -.404

Sig. (2-tailed) .550 .519 .000 .989 .293 .203 .921 .806 .053 .779 .500

N 5 5 5 5 5 4 5 5 5 5 3 5

C28H58 Correlation -.880* -.575 -.222 -.348 .827 -.458 -.073 -.153 1 .086 .136 .962**

Sig. (2-tailed) .049 .311 .719 .566 .084 .542 .908 .806 .890 .913 .009

N 5 5 5 5 5 4 5 5 5 5 3 5

C29H60 Correlation .041 -.769 .852 -.453 -.370 .616 -.324 .873 .086 1 .573 -.117

Sig. (2-tailed) .948 .129 .067 .444 .540 .384 .595 .053 .890 .612 .851

N 5 5 5 5 5 4 5 5 5 5 3 5

C30H62 Correlation .995 -.791 .372 -.899 .300 -.324 .981 .340 .136 .573 1 .014

Sig. (2-tailed) .062 .419 .757 .289 .806 .790 .126 .779 .913 .612 .991

N 3 3 3 3 3 3 3 3 3 3 3 3

C31H64 Correlation -.911* -.477 -.466 -.380 .924* -.681 -.070 -.404 .962** -.117 .014 1

Sig. (2-tailed) .031 .416 .429 .528 .025 .319 .911 .500 .009 .851 .991

N 5 5 5 5 5 4 5 5 5 5 3 5

*. Significant correlation at 0.05 level (2-tailed)
**. Significant correlation at 0.01 level (2-tailed)

C12H26 = Dodecane, C13H28 = Tridecane, C14H30 = Tetradecane, C26H54 = Tetracosane, 3-ethyl-, C31H64 = Heneicosane, 11-decyl-, C19H40 = Pentadecane 
2,6,10,14…, C19H40 = Pristane, C18H38 = Octadecane, C28H58 = Octacosane, C29H60 = Nonacosane, C30H62 = Triacontane, C31H64 = Hentriacontane
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Table 5. Matrix of Pearson correlation among OCPs in the sediment samples 

A B C D E F G H I J K L M N O

A Correlation 1 .a -.068 .a .a -.789 -.196 .064 .623 -.213 .090 -.801 -.295 -.140 .971**

Sig. . .913 . . .113 .752 .919 .262 .730 .885 .103 .630 .823 .006

B Correlation .a .a .a .a .a .a .a .a .a .a .a .a .a .a .a

Sig. . . . . . . . . . . . . . .

C Correlation -.068 .a 1 .a .a -.277 .797 -.456 .251 .443 .486 .407 -.543 .189 .085

Sig. .913 . . . .652 .107 .440 .684 .455 .407 .497 .345 .760 .892

D Correlation .a .a .a .a .a .a .a .a .a .a .a .a .a .a .a

Sig. . . . . . . . . . . . . . .

E Correlation .a .a .a .a .a .a .a .a .a .a .a .a .a .a .a

Sig. 
(2-tailed)

. . . . . . . . . . . . . .

F Correlation -.789 .a -.277 .a .a 1 .029 -.328 -.489 .154 -.185 .272 .059 -.436 -.723

Sig. 
(2-tailed)

.113 . .652 . . .963 .590 .404 .805 .766 .658 .925 .463 .168

G Correlation -.196 .a .797 .a .a .029 1 -.410 -.209 .887* .847 .249 -.391 .060 -.042

Sig. 
(2-tailed)

.752 . .107 . . .963 .493 .735 .045 .070 .686 .515 .923 .946

H Correlation .064 .a -.456 .a .a -.328 -.410 1 -.482 -.135 -.015 .137 .921* .770 -.166

Sig. 
(2-tailed)

.919 . .440 . . .590 .493 .411 .828 .981 .826 .026 .128 .789

I Correlation .623 .a .251 .a .a -.489 -.209 -.482 1 -.548 -.381 -.402 -.716 -.395 .707

Sig. 
(2-tailed)

.262 . .684 . . .404 .735 .411 .339 .526 .502 .174 .510 .181

J Correlation -.213 .a .443 .a .a .154 .887* -.135 -.548 1 .940* .107 -.071 .093 -.126

Sig. 
(2-tailed)

.730 . .455 . . .805 .045 .828 .339 .017 .864 .910 .882 .840

K Correlation .090 .a .486 .a .a -.185 .847 -.015 -.381 .940* 1 -.046 -.086 .208 .151

Sig. 
(2-tailed)

.885 . .407 . . .766 .070 .981 .526 .017 .942 .891 .738 .809

L Correlation -.801 .a .407 .a .a .272 .249 .137 -.402 .107 -.046 1 .323 .585 -.805

Sig. 
(2-tailed)

.103 . .497 . . .658 .686 .826 .502 .864 .942 .595 .300 .100

M Correlation -.295 .a -.543 .a .a .059 -.391 .921* -.716 -.071 -.086 .323 1 .679 -.508

Sig. 
(2-tailed)

.630 . .345 . . .925 .515 .026 .174 .910 .891 .595 .208 .382

N Correlation -.140 .a .189 .a .a -.436 .060 .770 -.395 .093 .208 .585 .679 1 -.286

Sig. 
(2-tailed)

.823 . .760 . . .463 .923 .128 .510 .882 .738 .300 .208 .641

O Correlation .971** .a .085 .a .a -.723 -.042 -.166 .707 -.126 .151 -.805 -.508 -.286 1

Sig. 
(2-tailed)

.006 . .892 . . .168 .946 .789 .181 .840 .809 .100 .382 .641

**. Significant correlation at 0.01 level (2-tailed)
*. Significant correlation at 0.05 level (2-tailed)
.a Incomputable because of one or more constant variables

A = Etridiazole, B = Chloroneb, C = a-BHC, D = Simazine, E = Atrazine, F = b-BHC, G = g-BHC, H = d-BHC I = Chlorothalonil, J = Alachlor, K = 
Aldrin, L = Dacthal, M = Heptachlor epoxide, N = g-chlordane, O = trans-nonachlor 
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The correlation among the OCPs and PAHs informs the interrelationship and interdependence of each on 
others in the environment. The values derived agreed with a more sophisticated statistical examination of PAHs in 
sediments in a previous study [50]. Unlike OCPs, where some sort of correlation among the members was observed, 
the interrelationships of three PAHs, i.e., chloroneb (B), simazine (D), and atrazine (E), could not be established due 
to constant variables shared with themselves and others. Generally, correlation trend and magnitude vary widely 
from negative to positive and from insignificant to significant for both OCPs and PAHs. A more comprehensive 
statistical assessment approach was provided in our previous studies, carried out on environmental samples in the same 
geopolitical zone of the country [51, 52].

3.4 Principal component analysis (PCA) 

This study adopted PCA to examine correlations between chlorinated pesticide concentrations and sampling sites. 
It also examined the relationship between TPHs and the sampling sites to discern the underlying contributing factors. 
The results were visualized using Origin Pro v9.9 software.

3.4.1 OCPs

As seen in the PCA plot (Figure 3a), Idiogba Subu had high principal component (PC) loadings for both PC1 and 
PC2 (> 0.5), while Idiogba Police had a high loading for PC1 (> 1) and a low loading for PC2 (< -1). Eyunona fell 
within > 0.5 - < 1 for both PC loadings. Together, these two PCs explained 66.09% of the variation in the sampling 
locations, with PC1 accounting for 36.06% and PC2 for 30.03%. In the 2D biplot (Figure 3b), smaller angles between 
lines and the coordinate axis indicated stronger correlations. In contrast, the shorter distances between sampling sites and 
the lines reflected a more significant influence of the factor on those sites. On the positive side of PC2, g-BHC appeared 
as a unique potential factor linked to Idiogba Subu and Ayetoro. A smaller angle was observed between the negative and 
positive halves of PC2, involving trans-nonachlor, chlorothalonil, and etridiazole [53]. The shorter distances between 
Ayetoro and Igbokoda and the lines indicated a more substantial trans-nonachlor, chlorothalonil, and etridiazole impact 
on these sampling sites. Lastly, the large angle between trans-nonachlor and dacthal signified a negative correlation.
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Figure 3. Scores plot (a) and 2D biplot (b) of the OCP data set

3.4.2 TPHs

As depicted in the TPH PC plot (Figure 4), Idiogba Subu exhibited notably low PC loadings for both PC1 and PC2 
(< -1). Idiogba Police, Ayetoro, and Igbokoda displayed higher PC2 loadings in descending order: Ayetoro > Igbokoda > 
Idiogba Police. Eyunona, on the other hand, exhibited a notably higher loading towards the positive half of PC1 (> 1.5). 
These two principal components collectively elucidated a substantial 78.98% of the overall variances in the sampling 
locations, with PC1 contributing 35.87% and PC2 contributing 43.11%. On the negative half of PC2, octacosane 
emerged as a distinctive potential factor, closely associated with Idiogba Subu and Eyunona. Meanwhile, tridecane was 
identified as a possible factor in the positive half of PC1, as it exhibited higher concentrations in locations falling under 
the positive half of PC1. The significant angle between hentriacontaner and dodecane indicated a negative correlation 
[46].
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Figure 4. Scores plot (a) and 2D biplot (b) of the TPH data set

4. Conclusion
This work included extensive surveys and experimental investigations into TPHs and OCPs in the sediments of 

the Ondo coastal river, a typical developing coastal zone in Nigeria’s southern region of the Atlantic Ocean. TPH and 
OCP were found in large quantities in sediment from a coastal river. Most contaminants might have originated from 
agricultural and industrial activities, household wastewater, and stormwater runoff, as also observed in other related 
studies in Nigeria.

In this investigation, 15 organochlorine pesticides were identified in surface sediment from the Ondo coastal river, 
with g-BHC, d-BHC, chlorothalonil, alachlor, aldrin, dacthal, heptachlor epoxide, g-chlordane, and trans-nonachlor 
accounting for 98-99% of the studied chlorinated pesticides. The total chlorinated pesticide (dry weight) concentrations 
ranged from ND to 326.98 ng/g, averaging 15.49 ng/g. The jetty had the highest detected value of pesticides, indicating 
that river transport, domestic waste discharge, and anthropogenic activities were their principal distribution sources. 
The pesticide concentrations at the various measured locations decreased in the following order: Idiogba Police > 
Igbokoda > Idiogba Subu > Ayetoro > Eyunona. There are considerable negative and positive connections between the 
various components of OCPs investigated. The TPH values ranged from 5.42 to 22.53 ng/g on a dry weight basis. The 



Environmental Protection Research 72 | Adedeji A. Adelodun, et al

following is the order in which TPH concentrations in the sediment decrease: Eyunona > Idiogba Police > Idiogba Subu 
> Ayetoro > Igbokoda. The measured result for mineral oil in sediment was below the Nigerian guideline’s permissible 
limit of 50 mg/kg. The information suggests that the level of hydrocarbons detected in the sediment matrices is due to 
anthropogenic causes other than oil spillage, such as water transportation and residential waste discharge, storm waters, 
rural runoff, and other anthropogenic sources. Further PCA studies on the OCP data showed a more substantial trans-
nonachlor, chlorothalonil, and etridiazole impact between Aiyetoro and Igbokoda. Overall, the two principal components 
(PC1 and PC2) explained 66.09% (OCPs) and 78.98% (TPH) of the overall variances in the sampling sites.

Despite the quantitation of the OCPs and TPHs, this study failed to establish the bioaccumulation potential of the 
organics, relating the concentrations to potential ecological hazards. Therefore, future studies should first establish the 
bioavailability and toxicity of the organics and include a hybrid statistical model for determining the ecological risk 
posed by PAHs and OCPs in sediments, aquatic species, water, and air.
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