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Abstract: Coastal bridges may be strongly affected by extreme flood actions (mainly tsunamis), which may be caused 
by earthquakes, volcanic eruptions, and other underwater explosions (including detonations, landslides, glaciers 
calvings, meteorite impacts, and other disturbances) above or below water. A simple mathematical model for analysis, 
processing, and easy yet effective mathematical manipulation is proposed and studied with the aid of simple principles 
of hydraulics, for investigating the aforementioned effects, in order to avoid rigorous analyses using ocean and 
coastal engineering. The main idea is based on the investigation of a water vein squirted from a height with a constant 
horizontal initial velocity, and the analysis of the critical wave in water veins. The results obtained, including the 
dynamics of deck superstructures and safety issues, reveal the critical situation for avoiding the devastating phenomena 
of rocking, overturning, and shifting in exemplary small and large coastal bridges. It is found that larger (longer) bridges 
exhibit acceptable deformations, contrary to smaller ones, while the overturning phenomenon seems to be the most 
critical one for both types of bridges. 

Keywords: coastal bridges, rocking, overturning shifting, flood actions, dynamics of bridges

1. Introduction
Coastal bridges near shores of shallow waters or bridges connecting the mainland with islands are constructions 

common today. These bridges are usually designed for normal conditions. However, there are cases of extreme waves 
due to tsunamis, which are generated by the displacement of water by a large event, and race across the sea at up to 500 
miles (805 kilometers) an hour - about as fast as a jet airplane. At that pace, they can cross the entire expanse of the 
Pacific Ocean in less than a day. Their long wavelengths mean that they lose very little energy along the way.

So, in order not to impede navigation, long-span bridges that connect the mainland coast with islands have a deck 
built quite high above sea level. Therefore, the tsunami waves cannot affect the deck of the bridge but probably the 
pylons, which usually have the strength to resist the applied forces. Coastal bridges, on the other hand, have decks that 
are constructed a short distance from the water level. This distance under special conditions, for example, storms, can be 
decreased, allowing water to approach the bottom or top surface of the deck.

The usual protection of bridge decks against external load forces is by making use and benefiting from their dead 

Engineering Science & Technology
http://ojs.wiserpub.com/index.php/EST/

Copyright ©2022 George T. Michaltsos, et al. 
DOI: https://doi.org/10.37256/est.3220221316
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3710-6944
https://orcid.org/0000-0002-4504-1565
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/EST/
http://ojs.wiserpub.com/index.php/EST/


Engineering Science & TechnologyVolume 3 Issue 2|2022| 241

weight and the application of some rather weak connections. The above are incapable of withstanding the loads due to 
strong storms or tsunamis.

The following two examples are characteristic:
After the earthquake of March 27, 1964, in the Gulf of Alaska, and the developed extreme floods, the steel trusses 

of the Copper River and Northwestern Railroad Bridge near Round Island were shifted from one-third to two-thirds of a 
meter (Figure 1a).

In the earthquake of February 4, 1976, in Guatemala, three central spans of the Agua Caliente Bridge collapsed on 
the road to the Atlantic Ocean. Both ground shaking and extreme floods contributed to this collapse (Figure 1b).

Several papers have been reported in the literature, dealing with the rocking, overturning, and shifting problems 
in bridges due mainly to earthquake and extreme flood actions. Zerva [1] evaluated the response of continuous two- 
and three-span beams of various lengths subjected to spatially varying seismic ground motion. Using a stochastic 
representation of this motion as input at the supports, sensitivity analyses of the response with respect to the degree of 
correlation between the support motions were performed. It was found that the commonly used assumption of equal 
support motion is questionable. Moreover, the effect of non-uniform seismic excitation on short bridges was studied 
by Price and Eberhard [2]; the authors developed a method that relies on the modification of the modal participation 
factor, in order to incorporate the effects of multi-support excitation into coherent response calculations. Also, the 
work by Michaltsos and Raftoyiannis must be quoted [3], which offered a theoretical approach for dealing with the 
aforementioned problems in bridges, subjected to near-source or long-distance earthquake motions. They developed a 
simple mathematical model for studying the phenomena as well as the conditions under which these may occur, while 
relevant safety indicators were derived.

Figure 1. Damaged Bridges: (a) Support damage of the Copper River bridge due to rocking, Alaska 1964 (from USGS Earthquake Hazards Program),
and (b) Overturning of three spans of the Agua Caliente Bridge, Guatemala, 1976

(from Public Roads 40(3), pp.101-107, by J.D. Cooper) - reproduced from reference [3]

The modeling of overturning collapse and safety assessment of bridges supported on single-column piers, under 
multi-load patterns was investigated by Xiong et al. [4], applying 3D simulations (including superstructures, bearings, 
and pylons) and accounting for geometric and material nonlinearities. It was concluded that the specification-based 
methods greatly overrate the safety level, whereas the safety indicator provides more reasonable results up to the final 
collapse. Additionally, the anti-overturning stability of curved bridges under seismic action was studied by Deng et al. [5], 
and the effect on various parameters was evaluated.

The characteristics of extreme flood events (for example, the hurricane Ivan in the Gulf of Mexico [6]) and their 
impact on coastal bridges and other structures were and continue to be the subject of numerous publications and studies. 
Kosa [7] performed a damage analysis of bridges affected by the tsunami in the Great East Japan (Tohocu) Earthquake 
of March 11, 2011. The outflow conditions of 37 bridges were evaluated using the ratio of resistance to the tsunami force 
β. Two analytical approaches (video and numerical analyses) were conducted to evaluate the tsunami characteristics 
and outflow mechanisms of the girders. For each bridge, useful conclusions were drawn, regarding the tsunami action 
parameters. Furthermore, Yim et al. [8] developed an analytical plan for better understanding the tsunami loads on 

(a) (b)
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structures, which include immediate, specific deterministic analysis, and experiments required to calculate the tsunami 
inundation models for the built environment as well as a comprehensive probability-based tsunami load estimation 
procedure. Azadbakht and Yim [9] examined the estimated tsunami loads of five California coastal bridges. The 
quantities of interest in their investigation were the horizontal forces, the vertical ones, and the overturning moments. 
Their simulation and analysis were conducted in two stages: (1) initial and overtopping, (2) full inundation, and a design 
procedure was proposed to compute the maximum forces on bridge superstructures. Good agreement between numerical 
predictions and formula estimations of the tsunami forces was observed.

Of great relevance to the content of the foregoing paper is the work by Xiang et al. [10]. There, representing a 
tsunami by a solitary wave, and through both large-scale experiments and numerical simulations, fluid impact forces 
on a representative coastal bridge deck (in the horizontal and vertical directions) due to inundation were investigated. 
A numerical parametric study (for determining the effects of bridge elevation variation and the wave height leads to an 
efficient and improved simplified procedure.

More experimental results combined with numerical simulations were reported in the work by Riggs et al. [11]. 
These are supplemented by the experimental results of Araki and Deguchi [12] on the bridge across the Narrow River, 
concerning tsunami fluid forces. The horizontal and vertical components of the tsunami fluid force acting on a bridge 
beam were measured through hydraulic experiments. The wave pressure on the bridge beam was also measured. The 
authors showed that the vertical component of the tsunami fluid force is as large as the horizontal component of the 
tsunami fluid force in several cases and that the wave pressure on a bridge beam is larger in the cases where the crest 
of larger incident waves hits the bridge. Noticeable is also the experimental study of tsunami-induced scour around a 
monopole foundation by Larsen et al. [13].

Of great interest is the research by Istrati et al. [14], in which deciphering the tsunami wave impact and associated 
connection forces in open-girder coastal bridges were reported and discussed. The paper was associated with the 
analysis of large-scale hydrodynamic experiments of tsunami wave impact on a bridge with open girders conducted in 
the Large Wave Flume at Oregon State University, based on the damage to coastal bridges during the tsunami in the 
Indian Ocean in 2004 and Japan in 2011. This analysis revealed that:

(a) tsunami bores introduce significant slamming forces, both horizontal (Fh) and uplift (Fv), during impact on the 
offshore girder and overhang; these can govern the uplift demand in connections,

(b) maxFh and maxFv do not always occur at the same time and contrary to the recommended practice, the 
simultaneous application of them at the center of gravity of the deck does not yield conservative estimates of the uplift 
demand in individual connections,

(c) the offshore connections must withstand the largest percentage of the total induced deck uplift among all 
connections,

(e) the generation of a significant overturning moment (OTM) at the initial impact when the slamming forces are 
maximized, which is the main reason for the increased uplift in the offshore connections, and 

(f) neither maxFv nor maxOTM always coincide with the maximum demand in each connection, suggesting the 
need to consider multiple combinations of forces with corresponding moments or with corresponding locations of 
application in order to identify the governing scenario for each structural component.

The findings suggested the need for a paradigm shift in the assessment of tsunami risk to coastal bridges to include 
not just the estimation of the total tsunami load on a bridge but also the distribution of this load to individual structural 
components necessary for the survival of the bridge.

Synolakis [15] showed that linear theory suffices for estimating the maximum runup height on plane beaches, while 
a very good review of this runup was also published [16]. The contents of these last two citations may be considered 
marginal, but provide a better overall insight.

Since a wide gap has separated studies by engineers and geologists on the characteristics of earthquakes and 
tsunamis, a symposium entitled “Frontiers of Earthquake/Tsunami Sedimentology and Disaster Mitigation” was 
organized at the Annual Meeting of the Geological Society of Japan (2008). Six very interesting papers were presented, 
bridging this gap [17]. Five years later (2013), Bricker and Nakayama published a case study [18] that dealt with the 
contribution of trapped air, deck superelevation, and nearby structures to bridge deck failure during a tsunami. Their 
work, based on two models, showed that factors contributing to failure included the presence of seawall near the bridge, 
an inclination of the deck upward toward the ocean, sediment entrained in the water, and the air trapped between girders.
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Greco, Lonetti and Nevone Blasi [19] conducted vulnerability analyses of bridge structures acted upon by extreme 
flood or tsunami loads, in view of loading variability and structural and fluid characteristics. Using a sophisticated 
numerical model based on phase field theory and 3D solid simulation, the authors quantified the Dynamic Amplification 
Effects (DAEs) produced by external loads with respect to conventional static analyses and discussed the influences of 
bridge deformations on the hydrodynamic loads and vice versa.

The same investigators [20] in a similar perspective quantified the aforementioned DAEs on the basis of the 
formulations proposed by existing codes and discussed protection and mitigation measures.

There are also several verification studies by FEM and other numerical approaches dealing with fluid-structure 
interaction problems [21]-[26]. Finally, one may refer to an investigation dealing with the behavior of specific bridges 
[27]-[32].

The current codes [33]-[35] offer, a description of the tsunami phenomenon, some instructions, and in some cases 
diagrams of the developed waves and their intensity in relation to the depth and slope of the sea bottom.

In May 2021, the Pacific Earthquake Engineering Research Center (PEER) released the “Tsunami Design 
Guidelines for New Bridges”, based on reports FHWA-OR-RD-21-12 [36] and FHWA-OR-RD-21-13 [37] by D. Istrati 
and I.G. Buckle.

As the long bridges (suspension or cable-stayed ones) due to navigation reasons have a deck built quite high above 
the sea level, this paper deals with short- or medium-sized bridges having a height above the sea level that allows the 
action of tsunami waves.

Based on the scarcity and excessive complexity of existing models, as described above, in this work, a simplified 
continuum approach is proposed, in order to establish extreme flood actions (acting wave and impact ones) on 
superstructures of bridges. This approach, based on relations stemming from the principles of hydraulics, allows for the 
determination of horizontal and vertical forces, as well as of drag forces and overturning moments. In special cases, one 
should also consider buoyancy forces, which can often have a particular influence.

Namely, in Section 5, we suppose that the reactions of the bearings are satisfactory. Thus, the bridge remains in 
place deformed by the external dynamic actions. Contrarily, in Section 6, we assume that the bearings are incapable 
of withstanding the acting forces. Thus, we study the safety of the bridge against rocking, shifting, and overturning 
phenomena, taking into account the realistic bearing conditions of the deck. It would also be useful to provide some 
basic information about the generation and propagation of tsunami waves. Two kinds of bridges have been studied. The 
high bridge is affected by impact forces only and the relatively low bridge where, in addition, buoyancy forces also act.

Finally, in Section 8, a comparison between the results obtained here and the ones from FE and other numerical 
approaches is performed, leading to the conclusion that the former is of acceptable accuracy for practice and has 
minimal computational and time costs, as compared to other sophisticated simulations. Section 9 summarizes the main 
findings of this work.

2. The tsunamis
The sinking or lifting of a suddenly activated fault at the sea bed causes the water to recede or swell. In both cases, 

the produced disturbance causes the birth of a small, medium, or very strong tsunami, whose energy is transmitted 
throughout the water column regardless of the ocean’s depth. A series of very long waves travel outward on the surface 
of the ocean. Their wavelengths and periods depend on the dimensions of the event source and vary with the depth of 
the water according to Figure 2. As the waves approach the coast, the wavelength decreases, and their height increases. 
Finally, the wave velocity depends on the water depth according to Eq.1 of [38], which satisfactorily estimates the 
magnitude of the velocity.

( )0 in m/s  for 0.05 of wavelength( )  ssg h hv h = ⋅ <

The changes in wavelength and wave velocity are shown in Figure 3.

(1)
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Figure 2. Wavelengths in relation to water depth (from National Geographic, slightly retouched)

Figure 3. (a) Wavelength vs seawater depth, (b) velocity vs seawater depth, and (c) velocity vs small seawater depth

The above graphs are based on the contents of Table 1, where some characteristic values for a strong tsunami can 
be found.
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Table 1. Characteristic values of measured/observed tsunamis’ properties
 

Depth (m) Velocity (km/h) Wavelength (km)

7,000 943 282

4,000 713 213

2,000 504 151

200 159 48

50 79 23

10 36 10.6

The height of waves impacting the coast does not obey the laws of classical wave engineering. For example, the 
tsunami in the Indian Ocean (2004) gave waves 30 m in height in Indonesia, 13 m in Sri Lanka, and 10 m in Somalia. In 
any case, the highest recorded waves were in Krakatoa (1893), h = 40 m, and Japan (2011), h = 41 m.

For the study of coastal waves, many theories have been developed so far. The most known are the 2nd and 3rd-
degree theory of Stokes, the Gerstner theory, the Cnoidal theory, and the theory of Solitary Waves. The latter is of 
particular interest since it significantly approaches tsunami waves. In this theory, each wave is studied separately. The 
wave propagates on the free surface of the sea like a bulge without the presence of an abdomen. The water molecules 
are motionless and as soon as the wave passes over them, they move forward, following an arc path if they are on the 
surface, and a straight path when they are at the bottom of the sea.

The following relation gives the velocity of the solitary wave:

( )o sv g h h= ⋅ +

In practice, these waves are to be considered solitary ones, appearing in very shallow waters, while their peaks are 
larger than distance s (Figure 4), where

2
3

s
s

h
s π h

h
≥ ⋅ ⋅ ⋅

⋅

Figure 4. Solitary waves

In Figure 5, the comparison of Eqs. (1) and (2), for different values of depth, hs is illustrated, from which it is 
observed that for hs > 30 m, the formulae practically converge.

(2)

(3)

s

h

hs
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Figure 5. Comparison of relation (1)-black curve and (2), for hs = 2 m (blue), hs = 4 m (red), and hs = 6 m (green)

3. Loads and loading models
3.1 The geometry of the wave

Let us now consider the random wave in Figure 6, approaching the coast and caused by a tsunami. For easier 
mathematical processing, we reshape the form of the wave as close as possible to its real one, as shown by a dashed line 
in the aforementioned Figure.

Figure 6. The geometry of the wave

From observations and laboratory results [11-14], the main dimensions of the oncoming wave are its height h, its 
width L, and the height of the sea level rise ht.

It has also been observed that L varies from 0.5 h to h, ht from zero to 0.4 h, and L2 from L1 to 1.5 L1. The most 
critical factor is the velocity υo of the wave approaching the bridge, which is given as a function of depth hs by Eqs. (1) 
or (2). Finally, no one can prescribe the ratio h/L.
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3.2 The possible loading models - scenarios

There is a critical height hcr of the oncoming wave. For h > hcr, the wave falls on the entire deck of the bridge; 

otherwise, it falls on a part of the deck. Setting s = 2α in the contents of Appendix A3, we determine 
2

2
2

eff
o

gh
v
α⋅ ⋅

=  and 

finally one may write that

2

2
2

cr o
o

gh h b
v
α⋅ ⋅

= + +

The critical height of a wave, required for it to land on the entire deck, is determined by inserting υο from Eq. (2) 

into Eq. (4). This leads to 
22

( )r o
cr s

gh h b
g h h

α⋅ ⋅
= + +

⋅ +
, and hence, the following algebraic equation is reached: h2

cr + (hs − 

ho − b) . hs − 2 . α2 = 0; its solution is given by

2 2( ) ( ) 4 [( ) 2 ]
2

o s o s o s
cr

h b h h b h h b h
h

α+ − + + − + ⋅ + ⋅ + ⋅
=

There are several possible models - scenarios for tsunami impact, on which the acting forces depend. The most 
characteristic ones, according to the authors’ opinion, are the four shown in Figure 7.

If h ≤ hs + ho + b, scenario (a) occurs; if hs + ho + b ≤ h ≤ hcr, scenario (b) occurs; if hcr ≤ h, then scenario (c) occurs; 
and finally, when relations ht = ho and tar > (L1 + L2)/vo are valid (where tar is the time required for the arrival of the 
second wave, which usually has a height smaller than h/2), scenario (d) is in order.

Figure 7. The possible models/scenarios

3.3 The acting generalized forces

We assume that the water falling on the deck produces only impact forces and then recedes. We divide the lengths 
L1 and L2 of the wave into n1 and n2 water columns, respectively, as shown in Figure 8a, while

1 2,n n →∞

(4)

(5)

(a)

(c)

(b)

(d)

(6)
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Figure 8. The water columns (a) and the forces acting on the deck (b)

When the ith infinitesimal water column L1/n1 of the critical wave reaches the bridge, the water of the front AB starts 
falling on the deck at times ti = (i − 1)L1/n1vo with the same initial horizontal velocity vo, but at different time instances, 
depending on the height h. For a loading model-scenario such as the one in Figure 7b, the applied forces on a deck of 
dimensions 2α . b due to a random water column are illustrated in Figure 8b.

According to the contents of Appendices A2 and A3, the applied distributed forces Fw, Fs, and Fo caused by the 
water volume unit 1

1
1

1 1Lf dV
n

= = ⋅ ⋅  are:

2 2 2
1 1 1,  ,  w s o oF f v sin F f v cos F f v

g g g
γ γ γϕ ϕ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

2 2 2
1 1 1,  ,  w s o oF f v sin F f v cos F f v

g g g
γ γ γϕ ϕ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

2 2 2
1 1 1,  ,  w s o oF f v sin F f v cos F f v

g g g
γ γ γϕ ϕ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

For the random water vein of Figure A3 sinφ = vh/v and cosφ = vo/v and therefore, expressions (7-9) take the 
following form:

2
1 1 1,  ,  w h s o o oF f v v F f v v F f v

g g g
γ γ γ

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

2
1 1 1,  ,  w h s o o oF f v v F f v v F f v

g g g
γ γ γ

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

A

(a) (b)

vo

vo
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vo

vo Fh
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h
h q
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y = vot

e

α α

s
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L2 L1

vh1

vh2

(7)

(8)
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(10)

(11)
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2
1 1 1,  ,  w h s o o oF f v v F f v v F f v

g g g
γ γ γ

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

where

2 2 2,  ,  o h ov constant v g t v v g t= = ⋅ = + ⋅

2 2 2,  ,  o h ov constant v g t v v g t= = ⋅ = + ⋅

2 2 2,  ,  o h ov constant v g t v v g t= = ⋅ = + ⋅

4. The loadings
The loadings due to the falling water up to time t, corresponding to the acting forces given above, are as follows:

4.1 Vertical loading

1 1
1 0

1
( , ) ,  0

t
z w

o

L Lq x t F dt t
n v

= ⋅ ≤ ≤∫

2 1 1 2
2 0

2
( , ) ,  

t
z w

o o

L L L Lq x t F dt t
n v v

+
= ⋅ ≤ ≤∫

4.2 Lateral loading

1 1
1 0

1
( , ) ,  0

t
y s o

o

L Lq x t F dt b F t
n v

= − ⋅ − ⋅ ≤ ≤∫

2 1 1 2
2 0

2
( , ) ,  

t
y s o

o o

L L L Lq x t F dt b F t
n v v

+
= − ⋅ − ⋅ ≤ ≤∫

4.3 Torsional loading

1 1
1 0 0

1
( , ) ( ) ,  0

2
t t

x o w s
o

L Lbm x t v t F dt F dt t
n v

α = ⋅ − ⋅ ⋅ − ⋅ ≤ ≤ 
 ∫ ∫

2 1 1 2
2 0 0

2
( , ) ( ) ,  

2
t t

x o w s
o o

L L L Lbm x t v t F dt F dt t
n v v

α
+ = ⋅ − ⋅ ⋅ − ⋅ ≤ ≤ 

 ∫ ∫

5. The motion of the bridge
5.1 Governing equations

The following relations give the equations governing the dynamic behavior of a single-span bridge, as the one in 

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Figure 9a:

'''' ( , ) ( ) ( )y z z zEI w cw mw Q x t Q x f t+ + = = ⋅ 

'''' '''' '' ( , ) ( ) ( )z z M D y y yEI EI z GI c m Q x t Q x f tυ θ θ υ υ− − + + = = ⋅ 

'''' '''' '' ( , ) ( ) ( )z M D px x x xEI EI z GI c I M x t M x f tωθ υ θ θ θ− − + + = = ⋅ 

where EIy, EIz, GID, and EIω are the bending, the torsional, and the warping rigidities of the bridge cross-section 
respectively, m is the mass per unit length, and Ipx is the rotational inertia of the bridge, c is the damping coefficient, zM is 
the distance between the center of gravity and the shear center, and Qy, Qz, and Mx are the external loads.

Noting that Eq. (22) is independent of the remaining two, we are seeking a solution of the form

( , ) ( ) ( )n nn
w x t W x P t= ⋅∑

( , ) ( ) ( )n nn
x t V x T tυ = ⋅∑

( , ) ( ) ( )n nn
x t x T tθ = Φ ⋅∑

Figure 9. (a) Single-span bridge, (b) closed cross-section, (c) open cross-section, (d), (e) buoyancy forces

When zM = 0, Eqs. (23) and (24) become independent of each other and can be easily solved as Eq. (22).

5.2 Vertical motion
5.2.1 0 ≤ t ≤ 1

o

L
v

The equation of vertical motion of a simple-span bridge, as shown in Figure 10a, is given by Eq. (22). We are 
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searching for a solution in the form of Eq. (25). Following a well-known procedure of linearized dynamics, we obtain 
the formula (28), for the time function:

( )
1

0  ( )1
1 0 02

0

( ) ( ) ( ) [ ( )]

L
n

t t
n h znL

zn n

L W dx
g nP t v v d e sin t d
m W dx

τ β τ

γ

τ τ τ ω τ τ
ω

− ⋅ −

⋅ ⋅
= ⋅ ⋅ −
∫

∫ ∫
∫

for

1 1

1 1

( 1) ( 1) 2
bi

o o

i L i L ht t
n v n v g
− ⋅ − ⋅ ⋅

≤ ≤ + =
⋅ ⋅

where

2 2
zn znω ω β= −

For t > tbi, the bridge vibrates freely, and its dynamic flexural deflection is 

( ) 1 ( )f n x f nn
w W P t= ⋅∑

( ) ( )
1 ( ) [ ( )] [ ( )]bit t

f n n zn bi n zn biP t e A sin t t B sin t tβ ω ω− ⋅ −= ⋅ − + −

Using the initial conditions P1n(tbi) = Pf 1n(tbi) and 1 1( ) ( )n bi f n biP t P t=  , we determine the expressions of constants An 
and Bn, given by
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The total produced vertical deformation due to the wave part L1 yields:
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5.2.2 t > 1

o

L
v

Via a similar procedure, as the one described above, we determine that
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5.3 Lateral motion

We assume, without loss of generality, that zM = 0. Thus, Eqs. (26) and (27) become uncoupled, and therefore, we 
are searching for a solution to the form:

( , ) ( ) ( )n nn
x t V x T tυ = ⋅∑

The acting forces Fs and Fo are given by expressions (11) and (12), while the corresponding loadings are equal to:

1 1y y a ybq q q= +

2 2y y a ybq q q= +

where
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yb oq b F= − ⋅

Deformation υ1(x, t), due to the loading of (43) and (44), is given by the expressions of §5.2.1 and §5.2.2, where V 
and T are placed instead of W and P, respectively, and ωyn instead of ωzn.

Deformation υ2(x, t), due to loading of (45) is given by the following relations:
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where Vn are the shape functions, while
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5.4 Torsional motion

The acting forces Fw and Fs are given by expressions (10) and (11), while the corresponding loadings are equal to

1 0
( , ) ( )

t
x o wm x t v t F dtα= − ⋅ ⋅∫

2 0
( , )

2
t

x s
bm x t F dt= − ⋅ ∫

Again, we are seeking a solution of the form

( , ) ( ) ( )n nn
x t x R tθ Φ= ⋅∑

Deformation θ1(x, t), due to loading (53), is given by the expressions of §5.2.1 and §5.2.2, where Φ and R are 
placed instead of W and P, respectively, and ωθn instead of ωzn.

Deformation θ2(x, t), due to loading (54), is given by the following relations, where Φn are the related shape 
functions:
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6. Bridge safety
In the previous section, the motion and deformations of the bridge deck were studied, provided that it is adequately 

anchored to the pylons or the bearings of the bridge. However, these conditions are not always met. In this section, 
we will study the safety of a bridge under the action of a tsunami, accounting for rocking, shifting, and overturning 
phenomena and the realistic bearing conditions of the deck.

6.1 Acting generalized forces

The generalized forces causing the aforementioned phenomena are the ones shown in Figure 9b.

6.1.1 Buoyancy forces Fb

For a closed cross-section, these are equal to:

2bF b Lα γ= ⋅ ⋅ ⋅ ⋅

while for an open cross-section, if the water can escape, buoyancy forces do not appear. When the water has no way to 
escape, then the bridge behaves as a diving bell; this is shown in Figure 9e.

We consider that before the tsunami, the bridge is under atmospheric pressure po, while the volume of the bridge 
part that will act as a diving bell is 2

2o
bV bα α= = . Additionally, we assume that the bridge is covered by water to a 

height equal to H, while the water rises inside the bridge to a height h (see Figure 9e). Therefore, the pressure inside the 

bell will be p = po + (H − h) . γ (with γ the specific weight of the water). The volume of the trapped air will be V = 2α2
2
bV hα  = − 

 
.
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According to the law of Boyle-Marriot, we obtain poVo = pV or [ ( ) ] 2
2o o
bp b p H h hα γ α  ⋅ ⋅ = + − ⋅ ⋅ ⋅ − 

 
, leading to 

the equation: 2 0
2 2

op b H bh H h
γ

  ⋅
− + + ⋅ + = 
 

, which possesses the following solution:
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γ γ
   

+ + − + + −   
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Hence, the buoyancy forces are given by:

2
2b
bF h Lα γ = ⋅ ⋅ − ⋅ ⋅ 

 

6.1.2 Forces Fh

These, due to models-scenarios (a) or (b) of Figure 8, are equal to:

2
h oF b L

g
γ υ= ⋅ ⋅ ⋅

6.1.3 Moment mb

Finally, moment mb, acting about the right bearings of the bridge is:

1 1
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∫ ∫

6.2 Reacting forces

The generalized forces that react to those of catastrophe are depicted in Figure 10.

Figure 10. Reacting generalized forces
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In particular, the reacting forces come from (a) the weight of the deck, (b) the bearings, (c) friction, and (d) inertia 
actions.

The weight of the deck is usually the main reacting force and is equal to:

brF m g L= ⋅ ⋅

The bearings in practice however are not equipped with elements capable of developing satisfactory lateral or 
torsional reacting forces. Assuming that each bearing has n bolts of diameter d, we will have:

2

2

Tensile reaction: 
4

Shear reaction: 
4

bt f

bs f

dF n

dF n

π σ

π τ

⋅
= ⋅ ⋅ 


⋅ = ⋅ ⋅ 

where σf and τf  are the tensile and shear yield strengths, respectively.
Moreover, supposing that there is some connection between the bridge and pedestal, the friction forces can react to 

horizontal actions. If μ is the friction coefficient between steel elements ( ≅  0.015), then

bfF m g Lµ= ⋅ ⋅ ⋅

Finally, the inertia actions Fbir, Fbis, mbio against rocking, shifting, and overturning, respectively, due to the sudden 
elastic deformation of the deck at time Δt → 0, which can be obtained from Section 5.

6.3 The rocking phenomenon

This can only occur if

( ) 0b br bt birF F F F− + + ≥

Inertia forces Fbir may develop or not, depending on the sudden or not appearance of the buoyancy forces. In the 
former case, these usually act simultaneously with shifting and overturning forces.

6.4 The shifting phenomenon

This occurs under the following condition:

( ) 0h bs bf bisF F F F− + + ≥

6.5 The overturning phenomenon

Assuming that the bridge will rotate about the axis of the right bearings, this phenomenon occurs when:

(2 ) 0b bt br biom F F Fα α− ⋅ ⋅ + ⋅ + ≥

7. Numerical examples and discussion
7.1 The bridge

Let us consider two simply supported bridges with lengths L = 16 m, and L = 70 m, having a doubly symmetric 

(68)

(69)

(70)

(71)

(72)

(73)
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cross-section (zM = 0) and dimensions 2α × b = 10 × 1 and 2α × b = 10 × 3.
Respectively, as depicted in Figure 11, they are made from structural steel (isotropic and homogeneous material) 

with a modulus of elasticity E = 2.1 × 108 kN/m2, and shear modulus G = 0.8 × 108 kN/m2.
The bridge of length 16 m has moments of inertia Iy = 0.007 m4, Iz = 0.08 m4, torsional constant Id = 0.2 × 10-3 m4, 

warping constant Iw = 0.08 m6, mass per unit length m = 300 kg/m and rotational inertia Ipx = 500 kgm2. The one of 70 
m has moments of inertia Iy = 0.80 m4, Iz = 8.50 m4, torsional constant Id = 0.50 m4, warping constant Iw = 0.10 m6, mass 
per unit length m = 800 kg/m and rotational inertia Ipx = 2,500 kgm2.

Figure 11. The cross-sectional geometry of a simply supported bridge

Thus, their calculated natural frequencies are:
a. Bridge of 16 m
For bending parallel to z-axis: ωz1 = 26.99, ωz2 = 107.95, ωz3 = 242.88 (s-1)
For bending parallel to y-axis: ωy1 = 91.23, ωz2 = 364.93, ωz3 = 821.10 (s-1)
For rotation about x-axis: ωθ1 = 71.54, ωθ2 = 283.55, ωθ3 = 636.89 (s-1)
b. Bridge of 70 m
For bending parallel to z-axis: ωz1 = 9.23, ωz2 = 36.82, ωz3 = 83.07 (s-1) 
For bending parallel to y-axis: ωy1 = 30.08, ωz2 = 120.35, ωz3 = 270.73 (s-1)
For rotation about x-axis: ωθ1 = 56.80, ωθ2 = 113.78, ωθ3 = 171.12 (s-1)
For both cases, we consider that each bearing is usually anchored by two M20 Grade 5.8 bolts (σ f = 5,000 dN/cm2, 

τ f = 4,000 dN/cm2).

7.2 The wave

In this section, we examine the influence of some parameters on the wave characteristics and the magnitude of 
loadings.

7.2.1 The influence of a

In the plots of Figure 12, we perceive the relationship between the critical height h and the half-width a of the deck 
for three values of the distance ho of the deck from the water level. These elements strongly affect the critical height of 
the upcoming wave.

7.2.2 The change of υ0

In the curves of Figure 13, we observe the relationship between the velocity υο of the upcoming wave and the 
height h of the wave for three values of the water depth hs. The above parameters strongly affect the velocity of the 
upcoming wave.
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Figure 12. The influence of α on hcr for ho = 6 m (red), 4 m (green), and 2 m (blue)

Figure 13. The influence of h and hs on the velocity υο for hs=2 m (red), 4 m (green), and 6 m (blue)

Figure 14. The influence of velocity υο on the vertical loading qz: red curve υο = 11 m/s, green curve υο = 9 m/s, and blue curve υο = 7 m/s, for hcr = 12 m
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7.2.3 Velocity and loads

In Figure 14, the influence of velocity υο on the developing vertical loading qz for constant hcr = 12 m is shown. We 
observe that for a lower velocity, the loading decreases while the influence time increases.

7.3 The motion of the deck

For the results that follow, and in order to study the deck’s motion, we use the following data: ho = 6 m, hs = 2 m, 
b = 3 m and a = 5 m; from Eq. (5) we find that hcr = 12.45 m, while from Eq. (2) we get υo = 12.02 m/s. We also assume 
that the form of the wave is expressed by L1 = L2 = 4 m.

7.3.1 Bridge of L = 16 m
(a) Vertical motion

Applying the relations of subsection 5.2, we obtain the plot in Figure 16. The maximum deformation found is max 
w = 0.0972 m at t = 0.89 s, i.e., 

164 250
L L

>  = 0.064 m. This deformation is unacceptable. 

Figure 16. The vertical motion of the bridge of L = 16 m

(b) Lateral motion

Applying the relations of subsection 5.3, we obtain the plot in Figure 17. The maximum deformation is max υ = 
0.0404 m at t = 0.81 s, i.e., 

395 250
L L

<  = 0.0404 m. This deformation is acceptable.

(c) Torsional motion

The time series of this motion (θ, t) are depicted in Figure 18. The maximum deformation is max θ = 0.0198 rad at 
t = 0.862 s, i.e., θ = 1.15 °, or 0.07 °/m. The acceptable torsion per unit length is 0.25 °/m.

7.3.2 Bridge of L = 70 m

In the same manner as in the previous paragraph, we determine the dynamics of this particular bridge. The results 
for the vertical, lateral, and torsional motions are given in Figures 19, 20, and 21, respectively.
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Figure 17. The lateral motion of the bridge of L = 16 m

Figure 18. The torsional motion of the bridge of L = 16 m

Figure 19. The vertical motion of the bridge of L = 70 m
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Figure 20. The lateral motion of the bridge of L = 70 m

Figure 21. The torsional motion of the bridge of L = 70 m

For the vertical dynamics, the maximum deflection is max w = 0.272 m at t = 0.96 s, and since 
257 250
L L

<  = 0.28 m, 
this deformation is acceptable.

For the lateral motion, it is found that max υ = 0.188 m at t = 0.845 s, i.e., 
372 250
L L

<  = 0.28 m. This deformation is 

also acceptable.
As far as the torsional dynamics are concerned, the results obtained show that the maximum deformation is max θ 

= 0.045 m at t = 0.865 s, i.e., θ = 2.8° or 0.04 degrees/m. If the acceptable torsion per unit length is 0.25 degrees/m, then 
the deformation found is also acceptable.

7.4 Bridge safety
7.4.1 Bridge of L = 16 m
(a) The rocking phenomenon

For a closed cross-section the acting force is Fb = 2 × 5 × 1 × 16 × 1,000 = 160,000 daN. For an open cross-section 
(like the one in Figure 12) and with H = 4 m, we get:
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210,000 10,0000.5 4 0.5 4 2 4 1
1,000 1,000

0.139 m
2

h

   + + − + + − ⋅ ⋅   
   = =

Acting force: Fb = 2 × 5 × (0.5 − 0.139) × 1,000 × 16 = 59,200 daN
Reacting forces: Fbr = 300 × 10 × 16 = 48,000 daN
		        Fbt = 2 × 4 × π × 5,000 = 125,663 daN
Evidently, Fbr + Fbt > Fb, which means that the bridge is safe against the rocking phenomenon.

(b) The shifting phenomenon

Acting force: Fh = (1,000/10) × 1 × 122 × 16 = 230,400 daN
Reacting forces: Fbs = 2 × 4 × π × 4,000 = 100,530 daN
		        Fbf = 0.150 × 300 × 10 × 16 = 7,200 daN
The inertia reacting forces are determined by the relation 

0
 

L
biF m dxυ= ∫  , while the acting forces have a duration 

of at least (L1 + L2)/υο = 0.67 s. From the diagram in Figure 22, we observe that the inertia forces react up to t = 0.014 s. 
Therefore, in our opinion, all the reacting forces cannot prevent the shifting phenomenon.

Figure 22. The inertia forces of the bridge of L = 16 m

(c) The overturning phenomenon

Acting moments: 2 115,200 daNm
2 2b h o
b bm F b L

g
γ υ= × = × × × × =

Reacting moments: 1 300 10 16 5 240,000 daNmsm mgLa= = × × × =

		             
2

2
22 2 5,000 10 6  daNm

4
28,319sm π ⋅

= × × × × =

It is readily perceived that ms1 + ms2 > mb, i.e., the bridge is safe against the overturning phenomenon.

7.4.2 Bridge of L = 70 m
(a) The rocking phenomenon

For a closed cross - section the acting force is Fb = 2 × 5 × 3 × 70 × 1,000 = 2,100,000 daN. For an open cross-
section (like the one of Figure 12) and with H = 4 m, we get:
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210,000 10,0001.5 4 1.5 4 2 3 4
1,000 1

0.397
,000

 m
2

h

   + + − + + − ⋅ ⋅   
   = =

Acting force: Fb = 2 × 5 × (1.5 − 0.397) × 1,000 × 70 = 777,100 daN
Reacting forces: Fbr = 800 × 10 × 70 = 560,000 daN
		        Fbt = 2 × 4 × π × 5,000 = 125,663 daN
Here, Fbr + Fbt < Fb, which means that the reacting forces cannot prevent the rocking phenomenon.

(b) The shifting phenomenon

Acting force: Fh = (1,000/10) × 3 × 122 × 70 = 3,024,000 daN
Reacting forces: Fbs = 2 × 4 × π × 4,000 = 100,530 daN
		        Fbf = 0.150 × 800 × 10 × 70 = 84,000 daN
The inertia reacting forces are determined by the relation 

0
 

L
biF m dxυ= ∫   and shown in the plot in Figure 23. We 

observe that the reacting forces, even with the aid of the inertia ones, are smaller than the acting forces. Therefore, the 
shifting will occur.

Figure 23. The inertia forces of the bridge of L = 70 m

(c) The overturning phenomenon

Acting moments: 21,000 33 70 12 4,536,000 daNm
10 2bm    = × × × × =   
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Reacting moments: 
2

2
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4
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Here, ms1 + ms2 < mb, i.e., the bridge is not safe against the overturning phenomenon.
Overall, the various situations related to the safety of both bridges are summarized in the contents of Tables 2 and 3.

8. Quantitative comparison with existing results obtained from numerical simulations
From the contents of the relevant referenced works regarding numerical simulations of the extreme flood action 

(summarized in the Introduction), objective difficulties arise for such a comparison, due to the following two facts:
(a) The simulations of the cited papers are not all alike, and in some cases, they differ significantly from each other.
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(b) The characteristics of the exemplary bridge types (cross-section, material, height above sea level, length, and 
support conditions) used in this paper are by far different from the corresponding ones of the simulated bridge structures.

Hence, for a proper global quantitative comparison, all input and output data of the numerical simulations should 
be available, and those in return, should be adequately manipulated (calibration, scaling, etc.). This is rather impossible. 
Perhaps the use of the simulated bridge superstructures’ characteristics (if acquired) could be used for further analysis 
within this work, but this again relies beyond its scope.

However, one may perceive that the results obtained herein, as far as the order of magnitude of the wave loads 
agrees satisfactorily for typical practical needs, with those ones of [23].

Moreover, using the data of [20], the diagram of Figure 24 is plotted, which exhibits again an acceptable level of 
approximation -for practical applications- to the results of Figure 14, in terms of the maximum value of the wave load.

Table 2. Decks without or with weak connections

Bridge Length (m) 16 70

Phenomenon Safety Features

Rocking Not safe Not safe

Shifting Not safe Not safe

Overturning Safe Not safe

Table 3. Decks connected to bearings

Bridge Length (m) 16 70

Phenomenon Safety Features

Rocking Safe Not safe

Shifting Not safe Not safe

Overturning Safe Not safe

Figure 24. The wave load with data from reference [20]
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9. Conclusions
This study presents a simple mathematical model based on simple hydraulic principles for the preliminary design 

of bridges to be constructed in tsunami-prone locations, in order to avoid rigorous analysis using ocean and coastal 
engineering.

The results in terms of values and duration of the acting waves are in satisfactory agreement with existing 
experimental and theoretical studies. 

This study has two parts. One deals with the deformation of the deck and the other with the safety of the entire 
bridge. In the former, we test the deck’s ability to withstand loads from a tsunami provided that it is stably joined to the 
bearings.

Based on the representative small and long bridges’ models analyzed herein, the following conclusions can be 
drawn:

• From this first part, we observe that the vertical deformations of small bridges are not acceptable, while those of 
long bridges are close to or slightly larger than the acceptable limits of deformations. Both small and long bridges are 
safe concerning the lateral as well as the torsional deformations.

• Although decks are usually not connected to their bearings, only rest on them without any other connection, we 
assume that both small and long bridges are connected to their bearings by a couple of bolts.

• We note that, for small bridges with a smaller deck width, the reacting moments due to the dead weight of the 
deck and the reaction of the bolts are smaller and therefore, the bridge may not be able to prevent the overturning 
phenomenon.

• The proposed scheme, although based on certain simplifications and assumptions, manages to capture the salient 
features of the phenomena dealt with, in terms of tsunami actions, developing generalized forces, bridge dynamic 
response, and safety issues.
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Appendix
A1. Impact of a water vein on a flat vertical surface

Let us consider the water vein of Figure A1, which has a cross-section of area f and impacts on the flat surface of a 
plate S. The developed pressure F and the reaction P are:

2F P Q v f v
g
γρ= = ⋅ ⋅ = ⋅ ⋅

where v is the velocity of the vein and Q is the water supply. For a plate moving with a velocity vp in the same direction 
as the water vein, the volume of water impacting the plate is ( )p pQ f v v= ⋅ −  and the developed pressure becomes

2( )pF f v v
g
γ

= ⋅ ⋅ −

The produced work per unit time is

2
2( )p pз = F v f v v v

g
γ

⋅ = ⋅ ⋅ − ⋅

Becoming the maximum when  0
p

d
dv

= , leading to

 or 0
3p p
vv v= =

For vp = 0, there is no impact; hence, for 
3p
vv = ,we get

34
27max

vз
g

γ ⋅
= ⋅

Figure A1. Impact of a water vein on a vertical flat plate
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A2. Impact of a water vein on a flat inclined surface

We consider that the flat plate is inclined by an angle φ with respect to the direction of the water vein, as illustrated 
in Figure A2.

Figure A2. Impact of a water vein on an inclined flat plate

In the same manner as in Section A1, we may write that

2F f v
g
γ

= ⋅ ⋅

2
wF f v sin

g
γ ϕ= ⋅ ⋅ ⋅

2
sF f v cos

g
γ ϕ= ⋅ ⋅ ⋅

For a plate that moves with velocity vp, perpendicular to its surface, we determine that the volume of water 
impacting the plate is equal to ( )p pQ f v v sinϕ= ⋅ − ⋅  and the developed pressure will be 2( ) ( )p p pF Q v v sin v v sin

g g
γ γϕ ϕ= ⋅ ⋅ − ⋅ = ⋅ − ⋅ 

2( ) ( )p p pF Q v v sin v v sin
g g
γ γϕ ϕ= ⋅ ⋅ − ⋅ = ⋅ − ⋅ . Hence,

2( )w pF f v v sin sin
g
γ ϕ ϕ= ⋅ ⋅ − ⋅ ⋅

2( )s pF f v v sin cos
g
γ ϕ ϕ= ⋅ ⋅ − ⋅ ⋅

A3. Fall of a water vein

A water vein is launched from a height h with a horizontal velocity vo. The motion that occurs is that of an initially 
horizontal shot. According to the principle of independence of movements, the duration of the water drop until it reaches 
the ground depends on the height h. Evidently, the landing distance s of the vein, as shown in Figure A3, depends on 
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the launch velocity vo, i.e., 2
o

hs v
g
⋅

= ⋅ . Since the final vertical speed is easily calculated as 2hv g t h g= ⋅ = ⋅ ⋅ , the 

velocity of impact is 2 2ov v h g= + ⋅ ⋅ .

Figure A3. The drop of a water vein
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