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Abstract: In this investigation, we considered the effect of triple diffusive convection on peristaltic flow through a non-
uniform Channel. We also considered the incompressible non-Newtonian Jeffrey nanofluid. On the assumption of a long 
wavelength and low Reynolds number, the governing equations were transformed into a non-dimensional form. The 
reduced non-dimensional highly nonlinear partial differential equations are solved using the Homotopy Perturbation 
Sumudu transformation method (HPSTM). The influence of different physical parameters on dimensionless velocity, 
pressure gradient, temperature, the concentration of salt 1 and salt 2, and volume fraction was graphically represented. 
The Dufour solutal Lewis number of salt 1 and salt 2 on the velocity profile increases. The Dufour solutal Lewis number 
and modified Dufour parameter of salt 1 rises on nanoparticle volume fraction profile. It is found that the presence of 
the triple diffusing components with small diffusivity can change the convection in the system. The change in density 
in a triple diffusive is caused by the thermal and solutal diffusivities of two separate chemical species. So this study is 
applicable in engineering and scientific fields like geology, astrophysics, disposal of nuclear waste, deoxyribonucleic 
acid (DNA), and chemical engineering. This work is compared with the exact solution, and it is in good agreement with 
this method.

Keywords: triple diffusion, peristaltic flow, Jeffrey nanofluid, non-uniform channel, HPSTM

Nomenclature
U', V'	 velocity components
ρf	 	 fluid density
g		  gravitational acceleration
βT		  volumetric thermal expansion coefficient
βc1

, βc2
	 volumetric solutal expansion coefficient of salt 1, 2

ρp		  density of the particles
T		  temperature of the fluid
C1, C2	 solutal concentration of salt 1, 2
DB		  Brownian diffusion coefficient
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DT		  thermophoretic diffusion coefficient
DTC, DCT	 Dufour and Soret type diffusivity
Ds	 	 solutal diffusivity
Pr		  Prandtl number
GrF		 nanoparticle Grashof number
Tm		  fluid mean temperature (K)
GrT		 thermal Grashof number
NCT		 Soret parameter
Nb		  Brownian motion parameter
GrC1

	 solutal Grashof number of salt 1
GrC2

	 solutal Grashof number of salt 2

1. Introduction
The study of the convection problem of multi-diffusivity (that is in the fluid more than one salt is present) is of 

great importance because of its usefulness in describing natural phenomena. The result of multi-diffusive convection 
was first studied by Griffiths [1]. Suppose the instability in a liquid is caused by three different diffusivities, then the 
mathematical and physical problems are termed three component convection or triple diffusive convection. Three 
constituents with different diffusivities result in triple diffusion. The use of triple diffusive convection can be seen in 
the modeling of a medical airing tool for the study of fatty acid anomalies, which includes various constituents such as 
saturated fat and triglycerides, molten alloy solidification, geothermally heated lakes, seawater, contaminant transport, 
underground water flow, and acid rain effects. Later, researchers [2]-[6] continue the study of triple diffusion in different 
flow geometric configurations.

Peristalsis pumping is a unique mechanism, and it is well known to physiologists as a natural mechanism for 
pumping materials. It is a form of fluid material transport induced by a progressive wave of area, either by contraction 
or expansion along the length of a distensible tube. It is known as peristaltic pumping. The peristaltic pump was first 
coined by Latham [7] and further research work on peristaltic flow was studied by Shapiro et al. [8], and Jaffrin et al. 
[9]. Further theoretic and experimental studies have been conducted on the various types of fluid flow in channels for 
peristalsis motion. The natural heat and mass transfer problem has become an interesting topic to study for researchers 
in industrial and biomedical areas. Some other studies are [10], [11]. The phenomenon of peristaltic transport in non-
uniform ducts may be of considerable research interest. It is noted that many physiological problems are of the non-
uniform cross-section. Gupta et al. [12] and Srivastava et al. [13] have considered peristaltic transport in non-uniform 
channels. It is seen in many physiological structures that the ducts are either in uniform or non-uniform cross-sections. 
It is well known that the human body is made up of several non-uniform ducts. Some other theoretical studies of 
peristalsis of biological fluids in non-uniform cross-sections are given in [14], [15].

Most of the physiological fluids behave as non-Newtonian fluids. The study of the Jeffrey fluid model is one of the 
most complex fluid models compared to other fluid models. Perhaps the first to bring this aspect into consideration were 
Raju and Devanathan [16]. The peristaltic flow of Jeffrey nanofluid is useful in physiology and industry with numerous 
applications and in mathematics due to its geometry and solutions to nonlinear equations. The Jeffrey fluid model, 
which acts as a Newtonian and non-Newtonian fluid depending on the nub region and perimetric region, was studied by 
Jyothi et al. [17] and Akbar et al. [18].

The prime objective of this study is to show the combined effect of heat and mass diffusion on a convective fluid 
mixture of two concentrations of salt 1 and salt 2, respectively. The investigation was carried out in a peristaltic flow of 
Jeffrey nanofluid. To the best of the authors’ knowledge, no investigations have been reported on peristaltic pumping 
with a triple diffusivity fluid mixture of Jeffrey nanofluid in a non-uniform channel in the literature review. Especially, 
the investigation of triple diffusive fluid mixture is not given proper attention in the past. In the current world, such 
studies have substantial applications in improving scientific competence, developing new technologies, and contributing 
considerably to health. It also has uses in transportation, biomedical, and chemical engineering, as well as in industrial 
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processes. The mathematical formulation is made, and highly nonlinear partial differential equations are solved by 
HPSTM [19]-[21]. It’s worth noting that the HPSTM finds the solution without the use of an initial guess and restrictive 
assumptions. It can also reduce the volume of computational work while maintaining high numerical accuracy, resulting 
in an improvement in the approach’s performance. This approach has an obvious advantage over the decomposition 
method, in that it handles nonlinear problems without requiring Adomian’s polynomials.

2. Mathematical formulation
Considering peristaltic flow in a two-dimensional non-uniform channel with the sinusoidal waves of small 

amplitudes, which proliferate the speed of the channel walls. c' is the constant speed of the channel (See Figure 1).
The geometric model of the channel is [11]

2
( , ) sin ( ) ,π
ζ ζ

λ
′ ′ ′ ′ ′= + − 

  
h t a d c t (1)

where the channel half width is a' = a0 + kζ, c' is constant wave speed, λ is the wavelength, and t' and d are the time and 
the amplitude of the wave, respectively.

Y'
λ
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a'

ζ'

Figure 1. Geometry of the peristaltic transport through a non-uniform channel

U' and V' are the velocity components along the ζ' and y' directions, respectively, and the velocity field V is taken in 
the fixed frame as

(2)[ ( , , ), ( , , ), 0].ζ ζ′ ′ ′ ′ ′ ′ ′ ′=V U y t V y t

The basic governing equations are [10], [11], [17]
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where U' and V' are the velocity components along the ζ- and y-direction respectively, ρf is the fluid density, g is the 
gravitational acceleration, βT is the volumetric thermal expansion coefficient, βc1

, βc1
 and βc2

 are the volumetric solutal 
expansion coefficients of salt 1 and 2, respectively, ρP is the density of the particles, T is the temperature of the fluid, 
C1 and C2 are the solutal concentrations of salt 1 and 2, respectively, F is the nanoparticle concentration, DB is the 
Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, DTC and DCT are the Dufour and Soret 
type diffusivity, and Ds is the solutal diffusivity.

The equation for incompressible non-Newtonian Jeffrey nanofluid is given as follows:

(10)( )2
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λ
= +

+
 S

where γ· is the shear rate and dots denote the differentiation with respect to time, λ1 is the ratio of relaxation to retardation 
time, μ is the dynamic viscosity, S is the stress tensor, and λ2 is the retardation time.

The component form of equation (10) is defined as the following:
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The corresponding boundary conditions [11]
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Here δ is the wave number, θ is temperature, and γ is volume fraction, which are all in dimensionless form, and the 

stream function is taken as  and .ψ ψδ
ζ

∂ ∂
= − =
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The non-dimensional governing equations are
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Using equations (17) and (18), we get the velocity equation as follows
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A dimensionless boundary condition is as follows
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Where  f 
* is the wave frame and it is associated with the time-mean flow rate Θ which is dimensionless in the 

laboratory frame, as mentioned below:
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 are the time-mean flow rate in fixed and wave frames, respectively. The non-dimensional 

governing equations (17) to (23) using boundary condition (24) are solved using HPSTM.
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3. Methodology
The partial differential equations (17) to (23) are solved by HPSTM, which is an analytical technique. It is used to 

calculate a nonlinear problem that comprises large and small physical parameters (convergent series is obtained after 
solving).

To obtain an approximate analytical solution, we apply the HPSTM to the governing equations. We get the 
following equation after applying the Sumudu and inverse Sumudu transforms into the governing equations on both 
sides [19].
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Now applying HPM, and coefficients of like powers of P were compared using He’s polynomial, which is given 
below
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The required series solution is as follows,
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The volume flow rate is given by

(38)
0

.= ∫
h

Q udy

Integrating equation (34) and after manipulating, we obtain a pressure gradient.

4. Results and discussion
Using HPSTM, we have solved the nonlinear partial differential equations. We have used the symbolic software 

Mathematica in this work. The velocity, pressure gradient, temperature, volume fraction of nanoparticles, and solutal 
(species) concentration profiles of salt 1 and salt 2 are solved through the codes of the software Mathematica and 
graphic outcomes are plotted in Origin Software. The obtained results of volume fraction and temperature are compared 
with the exact solution shown in Tables 1 and 2, respectively. It is in good agreement with the present method.
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Table 1. A comparison of the numerical values of the volume fraction profile by the exact solution with HPSTM. For the values of Nb = 0.01, Nt = 0.5, 
Ld1 = 0.0, Ld2 = 0.0, Nd1 = 0.0, Nd2 = 0.0, Pr = 1.

y Exact solution Present work

0.0 0.0 0.0

0.2 0.199968 0.19996

0.4 0.399936 0.39993

0.6 0.599904 0.5999

0.8 0.799871 0.79987

1.0 0.999836 1.0

Table 2. A comparison of the numerical values of the temperature profile by the exact solution with HPSTM. For the values of Nb = 0.1, Nt = 0.5, Ld1 
= 0.0, Ld2 = 0.0, Nd1 = 0.0, Nd2 = 0.0, Pr = 1.

y Exact solution Present work

0.0 0.0 0.0

0.2 0.333821 0.333821

0.4 0.592298 0.592294

0.6 0.784385 0.784381

0.8 0.917996 0.917994

1.0 1.0 1.0

4.1 Velocity distribution

From Figures 2, 3, 4, and 5, we can observe the effects of solutal Grashof number GrC1
, Jeffrey fluid parameter 

λ1, Dufour solutal Lewis number of salt 1 Ld1 and Dufour solutal Lewis number of salt 2 Ld2 respectively on velocity 
profile. It is observed in Figure 2 that as the solute Grashof number GrC1

 increases, the velocity profile also increases. 
This is because, GrC1

 is inversely proportion to the viscosity of the fluid, which increases the velocity of the fluid. The 
same result can be observed in Jeffrey fluid parameter λ1, which is shown in Figure 3. From Figures 4 and 5, we can 
observe that u increases with increasing values of Ld1 and Ld2. This is because Ld1 and Ld2 specify the impact of thermal 
gradient on concentration, the concentration gradient accelerates the flow, and thus the velocity profile increases.

4.2 Pressure gradient

The effects of solutal Grashof number GrC1
, and Dufour solutal Lewis number of salt 1 Ld1 on pressure gradient 

are represented in Figures 6 and 7. It is observed in Figure 6 that as solutal Grashof number GrC1
 increases, pressure 

gradient increases. This is because, as the concentration of nanoparticles in the fluid increases, pressure gradient 
increases. In Figure 7, we have observed that as Dufour solutal Lewis number of salt 1 Ld1 rises, pressure gradient also 
rises.
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4.3 Temperature profile

Through Figures 8-11, we can observe the effect of Nb, Nt, Nd1, and Ld1 respectively on θ. We can see that there 
is an enhancement in θ for different values of Nb, and Nt, which is shown in Figures 8 and 9, respectively. More heat is 
produced due to the arbitrary movement of fluid particles as the Brownian motion parameter increases, which is shown 
in Figure 8. By enhancing Nt, the θ rises as the fluid particles migrate from cold to a hot surface, shown in Figure 9. 
From Figure 10, we can observe that θ rises when the modified Dufour parameter of salt 1 Nd1 rises. As the value of Nd1 
grows larger, the temperature rises due to the increased thermal diffusivity. When the thermal diffusivity increases, the 
thermal conductivity increases, the molecular vibration increases, and therefore, the temperature increases. From Figure 
11, we can see that the Dufour solutal Lewis number of salt 1 Ld1 increases, respectively. This is due to the fact that Ld1 
specifies the impact of thermal gradient on concentration, and concentration gradient stimulates the flow along with the 
enhancement of thermal energy.

4.4 The concentration of salt 1

From Figures 12 and 13, we can observe the effects of Nb and Ld1 on the concentration of salt 1 respectively for 
different values. The concentration of salt 1 increases with increasing values of Nb, which is shown in Figure 12. That 
is, with an increment of Nb, a temperature gradient force is produced, which boosts the flow of concentration. In Figure 
13, we can observe that a significant increase in solutal concentration profile χ1 can be seen for increasing values of Ld1 
because of greater mass diffusivity. Higher mass diffusivity indicates a higher chance of molecular collision due to a 
major difference in solutal concentration. The difference in solutal concentration of molecules rises as the concentration 
gradient rises. Increased mass diffusivity enhances the solutal concentration gradient, resulting in increased solutal 
concentration and thickening of the associated boundary layer, as shown.

4.5 The concentration of salt 2

From Figures 14 and 15, we can observe the effects of Nb, and Ld2 on concentration of salt 2 respectively for 
different values. The concentration of salt 2 increases with increasing values of the Brownian motion parameter Nb, 
which is shown in Figure 14. That is, with an increment of the Nb, a temperature gradient force is produced, which 
boosts the flow of concentration. In Figure 15, we can observe that a significant increase in solutal concentration 
profile χ2 can be seen for increasing values of Dufour solutal Lewis number of salt 2 Ld2 because of greater mass 
diffusivity. Higher mass diffusivity indicates a higher chance of molecular collision due to a major difference in solutal 
concentration. The difference in solutal concentration of molecules rises as the concentration gradient rises. Increased 
mass diffusivity enhances the solutal concentration gradient, resulting in increased solutal concentration and thickening 
of the associated boundary layer, as shown.

4.6 Volume fraction

Figures 16 and 17 represent the effect of the Dufour solutal Lewis number of salt 1 Ld1 and modified Dufour 
parameter of salt 1 Nd1 on volume fraction. We can observe that as Ld1 increases, volume fraction profile also 
increases. Nanoparticle concentration and Ld1 are inversely proportional to the difference in the density of the fluid 
at the channel. As a result, the higher the Ld1, the higher the nanoparticle concentration will be. These measurements 
demonstrate a considerable rise in the nanoparticle’s volume fraction profile as a result of higher mass diffusivity. Due 
to a considerable difference in the density of the particles, the increased mass diffusivity indicates a greater chance of 
molecular collision. So, nanoparticle volume fraction profile increases with increases of Ld1, as shown in Figure 16, 
and Figure 17 depicts the effect of Nd1 on volume fraction profile. That is, as Nd1 increases, volume fraction profile also 
increases.
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Figure 4. Variation of Ld1 on u 
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Figure 5. Variation of Ld2 on u 
Nb = 0.8, Nt = 0.8, Ld1 = 0.8, Ld2 = 0.8, Nd1 = 0.8, Nd2 = 0.8, 
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Figure 8. Variation of Nb on θ 
Nb = 0.1, Nt = 0.1, Ld1 = 0.5, Ld2 = 0.5, Nd2 = 0.5, Pr = 1
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Figure 9. Variation of Nt on θ 
Nb = 0.1, Ld1 = 0.5, Ld2 = 0.5, Nd1 = 0.5, Nd2 = 0.5, Pr = 1
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Figure 10. Variation of Nd1 on θ 
Nb = 0.1, Nt = 0.1, Ld1 = 0.5, Ld2 = 0.5, Nd2 = 0.5, Pr = 1
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Figure 11. Variation of Ld1 on θ 
Nb = 0.1, Nt = 0.1, Ld2 = 0.5, Nd1 = 0.5, Nd2 = 0.5, Pr = 1
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Figure 12. Variation of Nb for χ1
Nt = 4.0, Ld1 = 1, Pr = 1
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Figure 13. Variation of Ld1 for χ1
Nb = 4.0, Nt = 1, Pr = 1
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Figure 14. Variation of Nb for χ2
Nt = 4.0, Ld1 = 1, Ld2 = 1, Pr = 1
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Figure 15. Variation of Ld2 for χ2
Nb = 4.0, Nt = 4.0, Ld2 = 1, Pr = 1
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Figure 16. Variation of Ld1 on γ 
Nb = 2.0, Nt = 2.0, Ld2 = 2.0, Nd1 = 2.0, Nd2 = 2.0, Pr = 7
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Figure 17. Variation of Nd1 on γ 
Nb = 2.0, Nt = 2.0, Ld1 = 2.0, Ld2 = 2.0, Nd2 = 2.0, Pr = 7

4. Conclusion
This article investigates the triple diffusive convection of the peristaltic flow of Jeffrey nanofluid through a non-

uniform channel. It’s worth noting that the HPSTM finds the solution without using an initial guess or auxiliary linear 
operator, and it avoids round-off errors. This study is applicable in engineering and scientific fields like geology, 
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astrophysics, disposals of nuclear waste, deoxyribonucleic acid (DNA), and chemical engineering. The present work is 
compared with the exact solution, and it is in good agreement with the present method. The major outcomes are listed 
below.

• The behavior of GrC1
 and Ld1 on velocity and pressure gradient is similar.

• Similar behavior of Nb, Nt, Ld1, Nd1 on temperature profile.
• Similar behavior of Nb, on the concentrations of salt 1 and salt 2.
• Ld1 and Ld2 increase as the concentrations of salt 1 and salt 2 increase respectively.
• Jeffrey fluid parameter λ1 and Dufour solutal Lewis number of salt 2 Ld2 have similar behavior on velocity 

profile.
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