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Abstract: In the present paper, MHD non-aligned stagnation-point flow has been found to be interesting and innovative 
in the analysis of viscous nanofluids over a stretching surface with a convective boundary condition in presence of the 
porous medium. Due to its many engineering and industrial uses, such as cooling nuclear reactors during an emergency 
shutdown, soft sheet extrusion, metal spinning, and solar central receivers exposed to wind current, the study of 
oblique stagnation point flow is important. The suitable similarity transformation is utilized for the reduction of a set of 
governing equations, which are solved by using the Differential Transformation Method (DTM) with Maple software. 
The Nusselt number (Nux), skin friction (Cf), and Sherwood number (Shx) are tabulated. A strong agreement is seen, 
and the accuracy of the results tabulated using DTM and the numerical method (fourth-order Runge-Kutta-Fehlberg 
integration scheme) is illustrated. Further, velocity, temperature, and nanoparticle volume fraction profiles are shown 
graphically and studied various parameters. It is reported that the magnetic parameter reduces the axial and oblique 
velocity gradients while enhancing the temperature and volume fraction profiles. The porosity parameter reduces the 
axial and oblique velocity gradients while enhancing the temperature profile.  
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Nomenclature
ˆ̂u , ˆ̂v  Velocity components in the x- and y- axis, respectively (m·s-1)

x, y Cartesian coordinates measured along the stretching sheet (m)
ˆ̂

WC  Nanoparticle concentration at the stretching surface (mol·m-3)
Db Brownian diffusion coefficient
ˆ̂C∞  Nanoparticle concentration far from the sheet (mol·m-3)

DT Thermophoresis diffusion coefficient
f Dimensionless stream function
hf Convective heat transfer coefficient (W·m-2·K -1)
ˆ̂C  Nanoparticle concentration (mol·m-3) 
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ˆ̂T∞  Temperature of the fluid far away from the stretching sheet (K)
k Thermal conductivity of the nanofluids (W·m-1·K -1)
g Oblique stream function component
Rex Local Reynolds number
ˆ̂T  Fluid temperature (K)

qw Surface heat flux (W·m-2)
K Permeability coefficient of the porous medium (m2)
qm Surface mass flux (kg·s-1·m-2)
ˆ̂

fT  Temperature of the hot fluid (K)
B0 Magnetic field strength (T )

Greek symbols

fα  Thermal diffusivity (m2·s-1)
ψ  Stream function (m2·s-1)

fµ  Dynamic viscosity of the base fluid (kg·m-1·s-1)
fv  Kinematic viscosity (m2·s-1)
fρ  Density of the fluid (kg·m-3)

τ  The ratio of the nanoparticle heat capacity and the base fluid heat capacity
p  Pressure (N·m-2)
φ  Dimensionless nanoparticle volume fraction
β  Volumetric coefficient of thermal expansion

pρ  Density of the nanoparticle (kg·m-3)
*β  Volumetric concentration coefficient

1. Introduction
In several industrial and engineering processes, the prominent importance of flow and heat transfer over stretching 

sheets can be seen. For instance, in polymer sheets extrusion, production of glass-fiber and paper, wire drawing, metal-
spinning, etc. Because the final product’s quality depends on how quickly heat is transported from the fluid to the 
stretching surface during cooling or heating. As a result, selecting an appropriate cooling or heating liquid is crucial 
because it directly affects the rate of heat transfer. The theory of flow over a stretching plate was coined by Crane 
[1]. While in certain circumstances a solid wall will stop the flow, in others a free stagnation point or line will be 
found inside the fluid domain. The entire horizontal axis of a stagnation point is covered by a solid or stretched wall 
in stagnation point flow, and the fluid’s domain is y > 0. This simple model of an oblique stagnation point assists us 
to know how a boundary layer forms. As a result, the position of the stagnation point is essential for understanding 
boundary layer behavior. Due to its many engineering and industrial applications, such as cooling nuclear reactors 
during an emergency shutdown, soft sheet extrusion, metal spinning, and solar central receivers exposed to wind current, 
the study of this oblique stagnation point flow has attracted researchers’ interest [2]. Stuart [3] originally investigated the 
flow approaching a fixed rigid surface at its oblique stagnation point. Later, Tamada [4] and Dorrepaal [5] independently 
examined this problem. Reza and Gupta [6] expanded Chiam’s [7] work on sheets with oblique stagnation point flow. 
Recently some considerable investigations on oblique stagnation-point flows can be seen in [8]-[13].

A solid matrix with a continuous network of pores is referred to as a porous medium. Natural materials such as 
sand, wood, human lungs, etc. are examples of porous media that permit fluid flow. Flowing through a porous media 
became the focus of some researches over the past few decades due to its multiple physical and industrial uses. In 
material processing, fuel cell equipment, and geothermal energy, among other applications, the flow over a porous 
medium is especially important. Interest in this subject has been greatly sparked by the fact that thermally driven flows 
in porous media have several applications in chemical and mechanical engineering, including food processing and 
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storage, geophysical systems, underground disposal of nuclear, etc. Raptis and Takhar [14] were among the first to 
investigate the flow through a porous medium. Seddeek [15] investigated the heat and mass transfer on a sheet through 
the porous medium. Rehman et al. [16] studied the flow of nanofluids over an exponential sheet. Some other interesting 
papers on a porous medium in various geometries and effects can be seen in [17]-[21].

The analysis of the MHD flow of an electrically conducting fluid due to a stretching surface is essential in current 
metallurgy and metal-working processes. Such types of flows also occur in industrial equipment like MHD generators, 
pumps, gas turbines, power generators, the regulation of boundary layers in aerodynamics, crystal formation, etc. 
Examples of these fields include the cooling of the first wall within a nuclear reactor containment vessel, where the 
magnetic field is used to shield the hot plasma from the wall, and the magnetic field-assisted metal fusion process in 
an electrical furnace [22]. Mahapatra and Gupta [23] and Ishak [24] both looked at MHD stagnation point flow in the 
direction of a surface. Furthermore, Rajendar et al. [25] studied MHD flow due to nanofluid over an exponential sheet. 
Some other works regarding the magnetic effect can be seen in [26]-[29].

Nanofluid is said to be a composite of a solid-liquid mixture of nanoparticles of sizes 1-100 nm. It consists of a 
liquid called base fluid such as ethyl glycol, water, oil, etc., and solid particles known as nanoparticles. Nanofluids can 
significantly improve the base fluid’s capacity for heat transfer. Because heat transfer is an essential step in both physics 
and engineering, improvements in its properties will raise the performance of a variety of operations. As a result, 
nanofluids have numerous industrial uses, including as lubricants, coolants, heat exchangers, and micro-channel heat 
sinks. According to these applications, the term “nanofluids” was first investigated by Choi [30]. The use of nanofluids 
is essential due to their high thermal conductivity properties. Some studies on nanofluids can be seen in [31]-[35].

The Differential Transform Approach (DTM), a powerful semi-exact method, is used in the current paper. Zhou 
[36], who addressed linear and non-linear issues in electrical circuit issues, was the first to propose this approach. DTM 
has expanded over the years. This technique was created in 1999 by Chen and Ho [37] for PDE’s with two independent 
variables. The two-dimensional DTM was expanded into the three-dimensional DTM by Ayaz [38] in 2004. In 2005, 
Arikoglu and Ozkol [39] used the DTM for integrodifferential equations. Fractional differential equations and Telegraph 
equations have both been solved using this method. This method for solving nonlinear ODEs has been employed by 
many writers recently [40]-[42]. DTM is therefore superior to other techniques in several ways. DTM is unaffected by 
small or large quantities. As a result, DTM can be directly used to solve nonlinear problems with governing equations 
and boundary/initial conditions. In the Homotopy Analysis Method (HAM), we compute auxiliary parameters by using 
h-curves but DTM does not need them. HAM needs initial guesses and an auxiliary linear operator to solve equations 
but DTM solves equations directly.

From the above-mentioned literature, the problem of MHD non-aligned stagnation point flow of nanofluids over 
a stretching surface is discussed. But, how the porous medium influences the MHD non-aligned stagnation point flow 
towards a stretching sheet in nanofluids with convective boundary conditions using DTM is not yet studied. This work 
aims to close the perceived research gaps in nanofluids. The numerical method (fourth-order Runge-Kutta-Fehlberg 
integration scheme with shooting technique) and DTM are used to tabulate the findings. A good agreement is obtained. 
Here, equations are solved using DTM.

2. Mathematical formulation
A steady, incompressible, two-dimensional flow of a nanofluid through a porous medium in a boundary layer over a 

convectively heated stretched sheet at y = 0 is shown in Figure 1. Two equal and opposing forces stretch the sheet across 
the x-axis while keeping the origin stationary with velocity ˆ̂ ( )WU x cx= . Let ˆ̂ ( )U x ax by∞ = +  be the fluid’s speed 
beyond the boundary layer. B0 is supposed to equally cover the stretched surface. The induced magnetic and electric 
fields are disregarded since the magnetic Reynolds number is so low.
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Figure 1. Physical model

The governing equations are given below [10], [11], [12], [16], [22], [25]
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The boundary conditions are as follows [10], [16], [20], [22], [31], [33]

( )
ˆ̂ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ,  0,  ,   at 0,W f f W

Tu U cx v k h T T C C y
y

∂
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∂

ˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ,  ,   as .u U ax by T T C C y∞ ∞ ∞= = + → → →∞

Non-dimensional similarity variables are as follows:

[ ],  ,  ,  ( ),f f
f f
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v v
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The normal and tangential parts of flow are represented here by f(η) and g(η).
Equation (1) is satisfied using (8) and equations (2) to (4) are reduced into ordinary equations as given below:

( ) ( )( )2 2
1 1 0,pf ff f M K f Grt Grcλ λ θ φ′′′ ′′ ′ ′+ − + + − + + + =

( )( )2 2 0,pg fg f g M K g Sλ η λ′′′ ′′ ′ ′ ′+ − + + − + =

( ){ }2Pr 0,f Nb Ntθ θ φ θ θ′′ ′ ′ ′ ′+ + + =

Pr 0.NtLef
Nb

φ φ θ′′ ′ ′′+ + =

Boundary conditions (5) and (6) are transformed as follows:

[ ]0,  1,  0,  1 ( ) ,  1 at 0,f f g Biθ θ η φ η′ ′ ′= = = = − − = =

1 2,  ,  0,  0 as .f gλ λ θ φ η′ ′′= = → → →∞

From equation (14), it can be easily seen that 1( )f Sη λη= +  as .η →∞

1
2 ( ).Let g Gλ η=

Substituting equation (15) into equations (10), (13), and (14):

( )( )( ) ( ) ( ) ( ) 0,pG fG f G M K G Sη η η η η′′ ′ ′+ − + + − + =

[ ]0,  1,  0,  1 ( ) ,  1 at 0,f f G Biθ θ η φ η′ ′= = = = − − = =

1, 1, 1, .   0 as f G Gλ ηφ′ ′ ′= = = →∞→

The parameters are defined as:

(7)

(8)

(9)

(10)

(11)
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(15)

(16)

(17)

(18)
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Where Cf , Nux, and Shx are given below:
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Using equation (23) in equation (22), we obtain

( )(0) (0) ,  (0),  and (0).f x xC Xf g Nu Shθ φ′′ ′′ ′ ′= + = − = −

3. Method of solution
The differential transform of the derivative of jth function u(η) is,
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Here, u(η) gives the original and U( j) is transformed functions. Inverse differential transform is,
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In real-world problems, we represent u(η) in finite series and given below,

0
0
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j
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Here, m is calculated by the convergence in this study.
The reduced governing equations (9), (11), (12), and (16) with the boundary conditions (17) and (18) are resolved 

by using the DTM method and we get the following equations (26) to (29).
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(25)
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Transformed boundary conditions are:
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Differential transform of f (η), θ(η), φ(η), G(η) are F(i), T(i), P(i), H(i) and with the help of boundary conditions (17) 
and (18), we can find constants b, c, d, and e. By using transformed boundary conditions (30) and equations (26) to (29), 
we obtain the closed form of solution.

By using equation (30), we get the following iterations:
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Putting these iterations in equation (25), we obtain the closed form of solutions.

(26)

(27)

(28)

(29)

(30)
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4. Result and discussion
The results are shown in Figures 2 to 20 and explored in detail to demonstrate the characteristics of the problem.

Shx, Nux , and Cf , are all tabulated. The accuracy of the acquired results are checked and an excellent agreement is found, 
which are mentioned in Table 1 and Table 2.

Table 1. Coefficient of f '(0) with M = 0, Kp = 0, β = 0

λ1
S

Present
f ''(0)

Present
G'(0)

Present
S

Makindeet al. [10]
f''(0)

Makindeet al. [10]
G'(0)

Makindeet al. [10]

0.1 -0.791705 -0.969386 0.26332 -0.791705 -0.969386 0.26332

0.2 - -0.919209 - - - -

0.3 -0.519499 -0.849420 0.60631 -0.519499 - 0.849420 0.60631

0.8 - - - -0.114527 -0.299388 0.93472

2 0.410407 2.017502 1.16521 0.410407 2.017502 1.16521

3 0.693053 4.729282 - 0.693053 4.729282 1.23465

Table 2. Comparison with Makinde et al. [10] with λ1 = β = Nr = M = Kp = 0, Pr = 10, Le = 10, Bi = 0.1 

Nt
-θ'(0)

Nb = 0.1
Present

-φ '(0)
Nb = 0.1
Present

-θ'(0)
Nb = 0.5
Present

-φ '(0)
Nb = 0.5
Present

-θ'(0)
Nb = 0.1

Makinde et al. [10]

-φ '(0)
Nb = 0.1

Makinde et al. [10]

-θ'(0)
Nb = 0.5

Makinde et al. [10]

-φ '(0)
Nb = 0.5

Makinde et al. [10]

0.1 0.092135 2.277412 0.038331 2.356031 0.0921 2.27741 0.03833 2.35603

0.2 0.092551 2.222812 0.026901 2.457621 0.09255 2.22281 0.02690 2.45762

0.3 0.092121 2.178343 0.018001 2.543524 0.09212 2.17834 0.01800 2.54352

4.1 Velocity profile

The impact of magnetic parameter M on the axial and oblique velocity gradient profiles (i.e., f '(η) and G'(η)) in 
the boundary layer is seen in Figures 2 and 7. The Lorentz force is a resistive-type force that occurs when a transverse 
magnetic field is applied to an electrically conducting fluid and has the propensity to slow down the fluid in the 
boundary layer. As a result, f '(η) and G'(η) both drop. Figures 3 and 8 show that the axial velocity, as well as oblique 
velocity gradient profiles, diminishes as the values of the porosity parameter Kp increases. Because increasing Kp 
amplifies the porous layer and thereby reduces the thickness of the momentum boundary layer. In Figures 4 and 5, as the 
values of the thermal Grashof number Grt and the solutal Grashof number Grc rise,  f '(η) and G'(η) also rise. The ratio 
of the buoyant force to the viscous force is known as Grt. It is noted that the flow is accelerated due to the increase in 
the buoyant force in accordance with the rising thermal Grt for fluids. The buoyant force to viscous hydrodynamic force 
ratio is known as Grc. Thus, as hydrodynamic force increases and buoyancy force remains constant, the thickness of 
the momentum boundary layer decreases. The result of the velocity ratio parameter λ1 on  f '(η) and G'(η) is depicted in 
Figures 6 and 9. When Ue(x) exceeds Uw(x), the flow velocity rises, and the thickness of the boundary layer reduces as 
λ1 rises. Furthermore, when Ue(x) < Uw(x), the flow field velocity reduces. The flow exhibits an inverted boundary layer 
structure when λ1 < 1.



Engineering Science & TechnologyVolume 4 Issue 1|2023| 43

4.2 Temperature and nanoparticles volume fraction Profiles

The effect of M on θ(η) and φ (η) in the boundary layer is demonstrated in Figures 10 and 19. The Lorentz force is a 
resistive-type force that is produced when a transverse magnetic field is applied to an electrically conducting fluid. This 
force tends to raise its temperature in the boundary layer and create a higher concentration of nanoparticles in the fluid. 
In addition, when the magnetic field intensity increases, the impacts on flow and heat fields become more prominent. As 
shown in Figure 11, the temperature profile rises when Kp rises.

Due to the expansion of the fluid’s pores, Kp develops a resistance force that opposes the flow field and rises 
and thickens the thermal boundary layer. The effect of the Biot number Bi on the thermal boundary layer is depicted 
in Figure 12. Higher surface temperatures are caused by stronger convection, which increases the thermal effect to 
penetrate deeper into the static fluid, as predicted. The effect of the Brownian motion parameter Nb and thermophoresis 
parameter Nt on θ(η) is given in Figures 13 and 14. The random motion of nanoparticles increases, as  and  increases. 
More heat is generated by the nanoparticles’ random motion. As a result, θ(η) rises. According to Figure 15, as λ1 is 
increased, the dimensionless θ(η) decreases, reducing the thickness of the thermal boundary layer and subsequently 
the thermal resistance. Whereas, Figure 16 shows that as the Prandtl number Pr increases, θ(η) reduces. Larger viscous 
diffusivity and weaker thermal diffusivity can be seen in fluids having higher Pr. Because of this variation in fluids, 
thermal boundary layer thickness reduces. Hence, θ(η) reduces. Figure 17 shows that as the Lewis number Le rises, 
nanoparticle volume fraction profile (i.e., φ (η)) degrades. Le and Brownian diffusion coefficient are of opposite behavior. 
As Le raises Brownian diffusion coefficient reduces. φ (η) grows as Nt increases, as shown in Figure 18. In reality, as Nt  
rises, the variation in temperature between the wall and the free surface also rises, which improves the concentration of 
the nanofluid.

4.3 Streamlines

Figures 20 to 22 show streamlined patterns for oblique flow. The streamlines are inclined left for positive values of 
λ2 as shown in Figure 19 and right for negative values of the velocity ratio parameter λ2 in Figure 22, as expected. When 
λ2 = 0, the streamlines are found to be normal to the surface in Figure 21. This is because rising λ2 enhances shearing 
motion, which causes the flow to become increasingly obliquity towards the stretched surface.

1 0.1,  0.1,  0.5,  0.2,  0.5,  0.5,  0.2,  5,  Pr 2pBi Nb Grt Nt K Grc Leλ = = = = = = = = =

Figure 2. Variation of f '(η) on M
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λ1 = 0.1, Bi = 0.1, Nb = 0.5, Grt = 0.2, M = 0.3, Nt = 0.5, Grc = 0.2, Le = 5, Pr = 2

Figure 3. Variation of  f '(η) on Kp

λ1 = 0.1, Bi = 0.1, Nb = 0.5, Kp = 0.3, M = 0.3, Nt = 0.5, Grc = 0.2, Le = 5, Pr = 2

Figure 4. Variation of  f '(η) on Grt

λ1 = 0.1, Bi = 0.1, Nb = 0.5, Kp = 0.3, M = 0.3, Nt = 0.5, Grt = 0.2, Le = 5, Pr = 2

Figure 5. Variation of  f '(η) on Grc
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Grc = 0.2, Bi = 0.1, Nb = 0.5, Kp = 0.3, M = 0.3, Nt = 0.5, Grt = 0.2, Le = 5, Pr = 2

Figure 6. Variation of  f '(η) on λ1

Grc = 0.3, Bi = 0.2, Nb = 0.3, Kp = 0.7, Nt = 0.3, Grt = 0.3, Le = 100, Pr = 2, λ1 = 0.1, S = -0.45

Figure 7. Variation of  G' (η) on M

Grc = 0.3, Bi = 0.2, Nb = 0.3, M = 0.7, Nt = 0.3, Grt = 0.3, Le = 100, Pr = 2, λ1 = 0.1, S = -0.45

Figure 8. Variation of  G' (η) on Kp
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Grc = 0.3, Bi = 0.2, Nb = 0.3, M = 0.7, Nt = 0.3, Grt = 0.3, Le = 100, Pr = 2, Kp = 0.7, S = -0.45

Figure 9. Variation of  G' (η) on λ1

Grc = 0.1, Nt = 0.1, Grt = 0.1, Le = 100, Pr = 1, Kp = 0.3, λ1 = 0.1, Nb = 0.1

Figure 10. Variation of  θ(η) on M

Grc = 0.1, Nt = 0.1, Grt = 0.1, Le = 100, Pr = 1, λ1 = 0.1, Nb = 0.1

Figure 11. Variation of  θ(η) on Kp
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Grc = 0.1, Nb = 0.1, M = 0.3, Nt = 0.1, Grt = 0.1, Le = 100, Pr = 1, Kp = 0.3, λ1 = 0.1

Figure 12. Variation of  θ(η) on Bi

Grc = 0.1, Bi = 1, M = 0.3, Nt = 0.1, Grt = 0.1, Le = 100, Pr = 1, Kp = 0.3, λ1 = 0.1

Figure 13. Variation of  θ(η) on Nb

Grc = 0.1, Bi = 1, M = 0.3, Nb = 0.1, Grt = 0.1, Le = 100, Pr = 1, Kp = 0.3, λ1 = 0.1

Figure 14. Variation of  θ(η) on Nt
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Grc = 0.1, Bi = 1, M = 0.3, Nb = 0.1, Grt = 0.1, Le = 100, Nt = 0.1, Kp = 0.3, Pr = 1

Figure 15. Variation of  θ(η) on λ1

Grc = 0.1, Bi = 1, M = 0.3, Nb = 0.1, Grt = 0.1, Le = 100, Nt = 0.1, Kp = 0.3, λ1 = 0.1

Figure 16. Variation of  θ(η) on Pr

Grc = 0.1, Bi = 0.1, M = 0.3, Nb = 0.1, Grt = 0.1, Nt = 0.1, Kp = 0.3, Pr = 1

Figure 17. Variation of  φ (η) on Le
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Grc = 0.1, Bi = 0.1, M = 0.3, Nb = 0.1, Grt = 0.1, λ1 = 0.1, Kp = 0.3, Pr = 1

Figure 18. Variation of  φ (η) on Nt

Grc = 0.1, Bi = 0.1, Nt = 0.1, Nb = 0.1, Grt = 0.1, λ1 = 0.1, Kp = 0.3, Pr = 1

Figure 19. Variation of  φ (η) on M

5. Conclusions
MHD Non-aligned stagnation-point flow of nanofluids over a stretching surface in a porous medium with a 

convective boundary condition has been studied by using DTM. The following is an overview of our findings:
• The axial velocity and oblique velocity gradient profiles exhibit similar behavior with M, but θ(η) and φ (η) exhibit 

the opposite tendency.
• As Kp values rise, the temperature profile rises, while the axial velocity and oblique velocity gradient profiles 

exhibit the opposite trend.
• The oblique velocity gradient and temperature profiles demonstrate similar patterns as λ1 values rise.
• As Bi increases the temperature profile increases.
• The volume fraction profile of nanoparticles and temperature both increase as Nt increases.
• Streamline patterns for the oblique flow for varying λ2 can be seen. This is because an increase in λ2 increases the 

shearing action, which in turn causes the flow toward the stretched surface to be more, inclined.
• In Tables 1 and 2, the current findings are matched and validated against the information found in the literature. 

There is considerable agreement between our findings.
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Grc = 0.1, Bi = 0.1, Grt = 0.1, Kp = 0.5, Pr = 6, M = 0.5, λ1 = 0.1, λ2 = 2.5

Figure 20. Streamline patterns for the oblique flow for the above condition

Grc = 0.1, Bi = 0.1, Grt = 0.1, Kp = 0.5, Pr = 6, M = 0.5, λ1 = 0.1, λ2 = 0

Figure 21. Streamline patterns for the oblique flow for the above condition
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Grc = 0.1, Bi = 0.1, Grt = 0.1, Kp = 0.5, Pr = 6, M = 0.5, λ1 = 0.1, λ2 = -2.5

Figure 22. Streamline patterns for the oblique flow for the above condition
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