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Abstract: In the present work, the improved shear-lag model based on a linear shear stress distribution in the substrates’ 
thickness of a mixed-adhesive double-lap joint (MADLJ) has been developed to establish the shear stress profile along 
the joint length. A closed-form solution has been obtained and numerically validated by a 2D finite element simulation 
carried out on ABAQUS CAE commercial software. The analytical model has been then employed to conduct a 
parametric study where the influences of the stiff and soft adhesives Young moduli, their lengths as well as the joint’s 
thickness on the maximum shear stress in the joint have been examined, and this for seven different substrate’s 
thicknesses. Many key values of those parameters defining the transition of maximum shear stress from stiff to a soft 
region or defining an optimum stress or a limit value where the pure joint becomes advantageous along with their 
evolution with the adherents’ thicknesses have been determined.
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Abbreviation
SLJ		 Single Lap Joint
DLJ	 Double Lap Joint
MAJ	 Mixed-Adhesive Joint
MADLJ	 Mixed-Ad hesive Double Lap Joint
CFHO	 Closed-Form High Order
FEM	 Finite Element Method

Symbol
a		  Length of the soft adhesive in region (1)
b		  Length of the stiff adhesive in region (2)
c		  Length of the soft adhesive in region (3)
to		  Thickness of the outer adherent

http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/EST/
https://orcid.org/0000-0002-9402-8420
https://orcid.org/0000-0002-3181-3210
mailto:georges.challita@ul.edu.lb


Engineering Science & Technology 118 | Georges Challita, et al.

ti		  Thickness of the inner adherent
ta		  Thickness of the adhesive layer
Eo		  Young’s modulus of the outer adherent
Ei		  Young’s modulus of the inner adherent
Go		  Shear modulus of the outer adherent
Gi		  Shear modulus of the inner adherent
Ga1		  Shear modulus of the adhesive layer in region (1)
Ga2		  Shear modulus of the adhesive layer in region (2)
Ga3		  Shear modulus of the adhesive layer in region (3)
uo(1)	 Axial displacement in region (1) of the outer adherent
ui(1)		 Axial displacement in region (1) of the inner adherent
<uo(1)>	 Average axial displacement in region (1) of the outer adherent
<ui(1)>	 Average axial displacement in region (1) of the inner adherent
<uo(2)>	 Average axial displacement in region (2) of the outer adherent
<ui(2)>	 Average axial displacement in region (2) of the inner adherent
<uo(3)>	 Average axial displacement in region (3) of the outer adherent
<ui(3)>	 Average axial displacement in region (3) of the inner adherent
uio(1)	 Interfacial axial displacement in region (1) outer adherent-adhesive
uii(1)	 Interfacial axial displacement in region (1) inner adherent-adhesive
uto(1)	 Axial displacement in region (1) at the top surface of the outer adherent
σo(1)	 Axial normal stress in region (1) of the outer adherent
σi(1)		 Axial normal stress in region (1) of the inner adherent
τo(1)		 Through-thickness shear stress in region (1) of the outer adherent
τi(1)		 Through-thickness shear stress in region (1) of the inner adherent
τa(1)		 Adhesive shear stress in region (1)
τa(2)		 Adhesive shear stress in region (2)
τa(3)		 Adhesive shear stress in region (3)
γo(1)	 Through-thickness shear strain in region (1) of the outer adherent
γi(1)		 Through-thickness shear strain in region (1) of the inner adherent
γa(1)		 Adhesive shear strain in region (1)
To(1)	 Axial force per unit width in region (1) of the outer adherent
Ti(1)	 Axial force per unit width in region (1) of the inner adherent
To(2)	 Axial force per unit width in region (2) of the outer adherent
Ti(2)	 Axial force per unit width in region (2) of the inner adherent
To(3)	 Axial force per unit width in region (3) of the outer adherent
Ti(3)	 Axial force per unit width in region (3) of the inner adherent
P0		  External axial force applied at the right end of the inner adherent
α		  Homogeneity of shear stress
Smax	 Maximum normalized shear stress to average stress

1. Introduction
For a couple of decades, the adhesive bonding technique has been intended to replace traditional joining methods 

such as screwing, riveting, or welding as it provides lightness to structures, as well as the stress distribution along wider 
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surfaces and the absence of disruptions in the substrates. This has offered mainly a huge advantage for assemblies used 
in transportation means and above all to the bond core to skins in sandwich panels [1]-[3]. Different techniques have 
been applied by researchers to well understand the behavior of these joints relying either on numerical, experimental, 
and analytical approaches or any combination of them. Despite the numerous advantages offered by this joining 
technique, adhesive joints endure the existence of stress peaks at the neighborhood of the joint’s ends. Globally this 
aspect could be assessed through either numerical or analytical models.

Despite the fact that analytical solutions are laborious, they can be simply implemented and are considerably time-
saving particularly when investigating a wide range of parameters. Historically speaking, one of the first analytical 
models describing the behavior of a bonded lap joint was established by Volkersen [4] who proposed a closed-form 
solution of the shear stress developed in a single lap joint (SLJ) based on the classical shear-lag model (differential 
shear). The non-linear geometric deformation of an SLJ was analyzed by Goland and Reissner [5] where a closed-form 
solution for shear and peel stress distribution along the overlap was found; this latter has been improved by the model of 
Hart-Smith [6] considering elasto-plastic behavior of the adhesive for both SLJ and DLJ geometries. Allman [7] adopted 
the elastic theory through which the effect of bending, stretching, and shearing of adherent (isotropic and composite) 
and the shearing and tearing of adhesive were studied on SLJ as well as DLJ. He spotted the location of the peak of 
stress in the joint and its dependency on the relative stiffness between the adhesive and the adherents. One of the most 
interesting models has been developed by Bigwood and Crocombe [8] who started initially from linear elastic analysis 
where a sandwich assembly was subjected to combined loading. They succeeded to establish closed-form equations 
for shear and peel stresses; those were assumed to be constant through the thickness of the joint. They improved 
their work and studied the nonlinearity of the adhesive using a hyperbolic tangent approximation, numerical results 
were obtained by using a finite-difference method. However, the hydrostatic stress tensor was disregarded for sake of 
simplicity [9]. In a separate work [10], the same authors extended the previous study for a full analysis to include also 
the non-linearity of the adherent. This latter work was also extended by Wang et al. [11] where the shear deformation 
in the substrates was considered in the adhesive failure study. They established a system of six first-order non-linear 
differential equations; those could be accurately solved by applying the finite difference method. Adams and Mallick [12] 
also reported the plastic behavior as either they applied successive loads until failure was reached or the full load was 
totally implemented. Thus they introduced a new method called linear effective modulus. In the same context, Adams 
et al. [13] tackled also the non-linear behavior of adhesive and adherents in a closed-form simple analytical model. 
However, it is applicable for non-yielding substrates with exclusively ductile adhesives and for yielding adherents or not 
with any type of adhesive. Tsai et al. [14] developed an improved version of the shear-lag model where the shear stress 
distribution along the adherent’s thickness was considered to be linear; they concluded a closed-form analytical solution 
for the shear stress distribution for both SLJ and DLJ; the results brought were certainly more accurate than the classical 
shear-lag model. This latter approach was applied by Challita [15] to investigate the shear stress profile within a voided 
DLJ where a parametric study based on the void’s size and position was included. Single-strap butt joint analytical 
investigation was the main concern of Li [16] who established closed-form solutions for both shear and peel stresses for 
both similar and dissimilar substrates. The model was validated by a 2D finite element simulation.

One may conclude from this brief historical overview that, despite the continuous improvement of the established 
models, all the aforementioned solutions have noticed the existence of the edge peak of stress without trying to reduce 
this effect, while in practical applications, the existence of such effect is the main reason of fracture of adhesively 
bonded assemblies.

Many authors have tried to reduce the stress concentrations at the joint’s edges. One of the proposed solutions 
has been the use of spew fillet; however, the investigations of this aspect were limited to numerical and experimental 
efforts. Analytically, one can cite only the model of Frostig et al. [17] who applied a Closed-form High Order (CFHO) 
approach. The spew fillet was modeled as an equivalent tensile bar. Results have shown that increasing the spew fillet 
size leads to a decrement in the peak stress level at the edge. 

The solution of variable thickness of the joint was developed analytically by Adams et al. [18]; they imposed a 
desired shear stress profile and searched for an adhesive thickness profile; they found a differential equation is solved for 
this variable thickness where thicker adhesive concentrate at the edges and thinner adhesive in the middle. Nevertheless, 
both proposed solutions seem very complex to be executed in practical joints since they suggest high geometric 
accuracy which is time-consuming in manufacturing and which increases the cost.
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The mixed adhesive approach has imposed itself as one of the promising solutions to the edge effect problem. 
Raphael [19] was the first who put mixed adhesive joints under the spot: restraining this peak effect was achieved 
by implementing flexible low-modulus adhesive at these regions sustaining a huge strain while in the middle a stiff 
adhesive must be used to provide strength. da Silva [20] has detailed many aspects related to the mixed adhesive 
joints such as their importance in the transportation sector, manufacturing, design, strength approach, and practical 
applications. He mentioned two advantages of this technique: strength improvement and extension of the interval of 
operational temperatures. Similarly, Broughton and Fitton [21] have presented a full analysis of this mixed adhesive 
technique by showing first experimental strength improvement for metallic and composite mixed bonded specimens; 
then a numerical discussion on the influence of the adhesives Young’s moduli and their lengths on the performance of 
the joint was presented. A pure experimental investigation on the shear strength of mixed adhesive metallic SLJ was 
carried out by da Silva and Lopes [22] where different types of adhesives were used; the joint’s strength was predicted 
by a simple calculation. As a combination of experimental and numerical simulation of mixed adhesive joints, one may 
cite the works of Pires et al. [23] and Fitton and Broughton [24]: in both works, a parametric investigation has been 
carried out using Finite Element modeling under linear elastic behavior assumption. The influence of the adhesives 
Young’s moduli and their lengths on shear and peel stresses was examined; this was accompanied by a couple of 
experimental tests on metallic SLJ specimens. However, all the cited works that are related to the mixed-adhesive 
technique are limited to either experimental or numerical analyses which do not offer general tendencies of behavior 
and are still dependent on the specific configuration of the assembly.

Purely analytical models tackling mixed adhesive joints aspect have been remarkably rare. Besides the work in [18], 
one should mention the model established by Srinivas [25] for both SLJ and DLJ cases. Nevertheless, the solution was 
calculated by numerical means. He concluded that assigning a short length of the overlap to the flexible adhesive and a 
longer length for the stiff one decreased the shear and peel stresses in both adhesives. In addition, increasing the length 
of the soft adhesive will increase stress concentration and thus the stiff adhesive must contribute more than the soft one 
in the overlap. Finally, the works of das Neves et al. [26], [27] have come to complete this short list of analytical models 
on mixed adhesive joints. This model was based on the work achieved in [17] for both SLJ and DLJ geometries and was 
validated numerically. They employed the established model to carry out a parametric study based mainly on the change 
of stiff and soft adhesive moduli, this was equivalent indeed to a temperature sweep. Both maximum shear and peel 
stresses were examined.

Besides the rare amount of works cited in the latter lines, there were no works tackling the aspect of mixed-
adhesive joints from an analytical point of view; in addition, the improved-shear lag model [14] has never been applied 
and the influence of many geometric and mechanical parameters on the shear stress peaks has not been carried out in 
depth. The main purpose of this paper is to establish a closed-form analytical solution for the shear stress profile along a 
mixed adhesive DLJ length using the improved shear-lag model presented in [14], which considers a linear shear stress 
distribution through substrates’ thickness. Then this model is to be validated using 2D FEM analysis on ABAQUS CAE 
software. Finally, a very detailed parametric study based on the change of the adhesives Young’s moduli, lengths, and 
thicknesses will be performed to investigate the peak of shear stresses.

2. Analytical formulation
2.1 Double lap geometry

DLJ geometry is advantageous over SLJ due to the symmetry which reduces peel stresses exhibited by the bending 
moment of the non-symmetric geometry of SLJ.

In addition, this symmetry allows considering either the upper or the lower half only for numerical simulations. 
DLJ model as shown in Figure 1 consists of three adherents, two outers (cantilevered at the left) and one inner (subjected 
to a static axial force P0 at the right) having a thickness twice of each of the outer substrates. They are assembled by two 
adhesive layers based on the mixed adhesive approach where the soft adhesive is applied at both joint ends (regions (1) 
& (3)) and stiff adhesive at the middle of the overlap (region (2)).
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       Adherents Soft Adhesive Stiff Adhesive

(1)

a b c

(2) (3)

x

P0

y

Figure 1. Double-lap joint assembly as used in this analysis

2.2 Improved shear-lag approach

The analytical model presented in this work is based on the improved shear-lag concept proposed in [14] for both 
SLJ and DLJ where the adherent shear stress distribution along the thickness is assumed to change linearly as illustrated 
in Figure 2, unlike other works where shear stress distribution was supposed to be constant. The shear stress along the 
adhesive thickness was assumed to be constant; the analysis has been conducted under the linear elastic behavior of 
materials where no plastic deformations were taken into consideration.

2.3 Equations

τa(1)·dx

τa(1)·dx

τa(1)·dx

τi

τa(1)·dx

τa(1)

τa(1)

ti/2

τo

to

yo

yi

dx

To(1)

To(1)

Ti(1)

To(1) + dTo(1)

To(1) + dTo(1)

Ti(1) + dTi(1)

Figure 2. Free body diagram of differential elements of region (1)
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The mathematical formulation is derived by applying Hooke’s law, equilibrium equations, and the first linear 
regression of the adherent modified shear-lag on the differential elements (Figure 2). In this section, only equations of 
region (1) (0 < x < a) are shown. Those for regions (2) (a < x < a + b) and (3) (a + b < x < a + b + c) are obtained by 
changing the index from 1 to 2 and 3.

Due to the symmetry provided by the DLJ, the lower half part of the central substrate and the whole lower adherent 
with their corresponding adhesive bond line have been discarded during this analysis.

Transversal shear stress distribution of the upper (Eq. 1) and central (Eq. 2) adherents are written applying linear 
regression:

(1)
(1)

( )
( , ) a

o o o
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τ τ
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Applying static equilibrium on the differential elements of the upper (Eq. 3) and central (Eq. 4) adherents one gets:
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a
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Applying Hooke’s law on the substrates, one gets the shear strain equation for the upper adherent (Eq. 5) and 
central one (Eq. 6):
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However, the latter equations can be written in their differential forms respectively, thus:
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Axial displacement of the outer adherent is obtained by replacing equations (1) and (5) in (7) and integrating along 
its thickness:
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The displacement at the top surface of the upper substrate could be found in terms of the interfacial displacement 
uio(1) between the adhesive and the upper adherent; it is calculated by replacing yo with to in uo(1):
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Hence the axial displacement of the outer adherent becomes:
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Again the axial displacement of the inner adherent is expressed by substituting equations (2) and (6) in (8) and 
integrating along the thickness:
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The next step consists in applying Hooke’s law for axial stress as both adherents are subjected to a longitudinal 
force, obtaining equation (11) for the upper adherent and (12) for the central one:
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Axial forces along the adherent’s length are expressed per unit width of the upper adherent by combining equations 
(9) and (11):
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And for the central adherent, equation (10) is combined with equation (12):
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Applying now Hooke’s law for the shear behavior of the adhesive leads to the following:
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Then, (1) (1)( ) ( )
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 are respectively extracted from equations (13) and (14). Replacing those latter 

quantities in equation (15) after differentiating it with respect to x, gives:
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Differentiating the previous equation with respect to x and then using equations (3) and (4) to replace (1)odT
dx

 

and (1)idT
dx

, the purpose to establish an equation of ta(1) exclusively will be reached. This will provide a second-order 

differential equation:
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Solving (16), gives the mathematical expression of the adhesive shear stress:

(17)(1) 1 1 1 1( ) sinh( ) cosh( )a x A x B xτ β β= ⋅ + ⋅

where A1 and B1 are two integration constants calculated by applying the appropriate boundary and continuity 
conditions.

However, boundary and continuity conditions apply to axial forces and axial displacements of the substrates; in 
other words, one must develop the expressions of the axial displacements relying on equations (9) and (10) and the axial 
forces relying on equations (13) and (14). Those are dependent on the adhesive shear stress and the displacements at the 
interfaces. Since the expression of the adhesive shear is already established in equation (17), the coming task consists in 
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determining the interfacial displacements and axial forces in the substrates.
Replacing equation (17) in (15) and inverting, the following equation (18) is obtained:
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one gets:
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By differentiating again this latter equation along the variable x and then combining it with equations (3), (4), and 
(17), all the second members will be converted into an expression in terms of the variable x as follows:
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By integrating twice this latter equation along x, equation (19) is obtained where two additional integration 
constants, C1 and D1 will appear:
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The two interfacial displacements in equations (18) and (19) are unknowns; since the system is linear, the 
interfacial displacement could be easily found:
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To keep x as the lone variable in the displacement of the adherent, one calculates the average axial displacement 
through the thickness of the outer adherent by applying the following equation:
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Replacing equation (9) in the previous integral, one gets equation (22):
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Repeating the calculation of the average displacement for the inner substrate and then replacing equation (10) in 
the integral, one gets equation (23):
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Combining equations (17) and (21) with (22) on one side, and (17) and (20) with (23) on the other side, the final 
expressions of the average axial displacements, numbered by equations (24) and (25) are determined as follows:
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Combining equations (17) and (21) with (13) on one side, and (17) and (20) with (14) on the other side, the final 
expressions of the axial forces per unit width, numbered by (26) and (27) are determined as follows:
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As stated earlier, since the free body diagrams in regions (2) and (3) are identical to the one in region (1) as a 
sketch but in different amounts, one can take inspiration from the expressions established for region (1) by changing the 
appropriate indexes as follows:

Region 2: a < x < a + b

(28)(2) 2 2 2 2( ) sinh( ) cosh( )a x A x B xτ β β= ⋅ + ⋅

(29)[ ](2) 2 2 2 2 2 2 2 2
1( ) sinh( ) cosh( )
2ou x A x B x C x Dµ β µ β= ⋅ + ⋅ + ⋅ +

(30)[ ](2) 2 2 2 2 2 2 2 2
1( ) sinh( ) cosh( )
2iu x A x B x C x Dλ β λ β= ⋅ + ⋅ + ⋅ +

(31)[ ](2) 2 2 2 2 2 2 2 2 2( ) cosh( ) sinh( )
2

o o
o

E t
T x A x B x Cβ µ β β µ β

⋅
= ⋅ + ⋅ +

(32)[ ](2) 2 2 2 2 2 2 2 2 2( ) cosh( ) sinh( )
2
i i

i
E t

T x A x B x Cβ λ β β λ β
⋅

= ⋅ + ⋅ +

It should be noticed that b2, m2, and l2 have the same expressions as b1, m1, and l1 respectively, by replacing 
exclusively Ga1 with Ga2.

Region 3: a + b < x < a + b + c

(33)(3) 3 3 3 3( ) sinh( ) cosh( )a x A x B xτ β β= ⋅ + ⋅

(34)[ ](3) 3 3 3 3 3 3 3 3
1( ) sinh( ) cosh( )
2ou x A x B x C x Dµ β µ β= ⋅ + ⋅ + ⋅ +

(35)[ ](3) 3 3 3 3 3 3 3 3
1( ) sinh( ) cosh( )
2iu x A x B x C x Dλ β λ β= ⋅ + ⋅ + ⋅ +

(36)[ ](3) 3 3 3 3 3 3 3 3 3( ) cosh( ) sinh( )
2

o o
o

E t
T x A x B x Cβ µ β β µ β

⋅
= ⋅ + ⋅ +

(37)[ ](3) 3 3 3 3 3 3 3 3 3( ) cosh( ) sinh( )
2
i i

i
E t

T x A x B x Cβ λ β β λ β
⋅

= ⋅ + ⋅ +

It should be noticed that b3, m3, and l3 have the same expressions as b1, m1, and l1 respectively, by replacing 
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exclusively Ga1 with Ga3.
To find the three expressions of the adhesive shear stresses, one must calculate A1, B1, A2, B2, A3, and B3 

according to equations (17), (28), and (33). This calculation relies on continuity and boundary conditions of the axial 
displacements and forces applied at both ends of the overlap and at the interface of two adjacent regions.

The mathematical expressions of these equations are listed as follows:

(1)(C1) (0) 0ou =

(1)(C2) (0) 0iT =

(1) (2)(C3) ( ) ( )o oT a T a=

(1) (2)(C4) ( ) ( )o ou a u a=

(1) (2)(C5) ( ) ( )i iT a T a=

(1) (2)(C6) ( ) ( )i iu a u a=

(2) (3)(C7) ( ) ( )o oT a b T a b+ = +

(2) (3)(C8) ( ) ( )o ou a b u a b+ = +

(2) (3)(C9) ( ) ( )i iT a b T a b+ = +

(2) (3)(C10) ( ) ( )i iu a b u a b+ = +

(3)(C11) ( ) 0oT a b c+ + =

(3) 0(C12) ( )iT a b c P+ + =

By expanding and arranging the equation delivered from each condition, a symbolic linear system of 12 equations 
with 12 unknowns will be generated. The constants that are multiplying the unknowns are complicated. For the sake of 
clarity and simplicity, each group of constants was unified by a single constant such as:

1 1cosh( )K aβ= ⋅

2 2cosh( )K aβ= ⋅

3 2cosh( ( ))K a bβ= ⋅ +

4 3cosh( ( ))K a bβ= ⋅ +

5 3cosh( ( ))K a b cβ= ⋅ + +

1 1sinh( )S aβ= ⋅

2 2sinh( )S aβ= ⋅

3 2sinh( ( ))S a bβ= ⋅ +

4 3sinh( ( ))S a bβ= ⋅ +
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5 3sinh( ( ))S a b cβ= ⋅ + +

The matrix form of the 12-equations-system is:

(38)[ ]k X P⋅ =

Where:

1

1 1

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 2 2 2 2

2 2 3 2 2

0 01 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0

10 1 0 0 0 0 0
1 1 0 0 0 0

10 1 0 0 0 0 0
1 1 0 0 0 0

[ ]
0 0 00

K S K S
S K a S K a

K S K S
S K a S K a

k
K

µ
β λ

β µ β µ β µ β µ
µ µ µ µ

β λ β λ β λ β λ
λ λ λ λ

β µ β µ

⋅
⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ −
⋅ ⋅ − ⋅ − ⋅ − −

⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ −
⋅ ⋅ − ⋅ − ⋅ − −

=
⋅ ⋅ ⋅ 3 3 3 4 3 3 4

2 3 2 3 3 4 3 4

2 2 3 2 2 3 3 3 4 3 3 4

2 3 2 3 3 4 3 4

3 3 5 3 3 5

3 3 5 3 3 5

1 0 1 0
0 0 00 ( ) 1 ( ) 1
0 0 00 1 0 1 0
0 0 00 ( ) 1 ( ) 1
0 0 00 0 0 0 0 1 0
0 0 00 0 0 0 0

S K S
S K a b S SK a b

K S K S
S K a b S K a b

K S
K K

β µ β µ
µ µ µ µ

β λ β λ β λ β λ
λ λ λ λ

β µ β µ
β λ β λ

⋅ − ⋅ ⋅ − ⋅ ⋅ −
⋅ ⋅ + − ⋅ − ⋅ − + −

⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ −
⋅ ⋅ + − ⋅ − ⋅ − + −

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 0

 
 
 
 
 
 
 
 
 
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0
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i i
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X P
C
D
A
B
C

P
D

E t
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Applying the symbolic solver module in MATLAB, the unknown vector X, and thus the integration constants could 
be calculated by inverting equation (38):

(39)1[ ]X k P−= ⋅

3. Numerical validation
Numerical simulation is the tool adopted in this study to validate the analytical expression of the adhesive shear 

stress established in the previous section. This has been executed through a 2D finite element analysis using the 
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commercial software ABAQUS CAE. As stated earlier, due to the symmetry of the DLJ only the upper half of the joint 
has been simulated under appropriate boundary conditions.

3.1 Parameters

The geometrical and mechanical parameters used for this model have been inspired by previous work [21] on 
mixed adhesive joints. They are summarized in Table 1.

Table 1. Parameters of the 2D FEA

Parameter Symbol Value

Region (1) soft adhesive length a 10 mm

Region (2) stiff adhesive length b 30 mm

Region (3) soft adhesive length c 10 mm

Thickness of the outer adherent to 1.4 mm

Length of outer adherent Lo 50 mm

Young’s modulus of the outer adherent Eo 169 GPa

Thickness of the inner adherent ti 2.8 mm

Length of inner adherent Li 50 mm

Young’s modulus of the inner adherent Ei 169 GPa

Poisson ratio of the adherents νo,i 0.3

Thickness of the adhesive bondline ta 0.25 mm

Young’s modulus of the adhesive (1) Ea1 0.37 GPa

Young’s modulus of the adhesive (2) Ea2 2.7 GPa

Young’s modulus of the adhesive (3) Ea3 0.37 GPa

Poisson ratio of adhesives (1), (2), & (3) νa 0.34

Axial static pressure per unit width P0 1,000 N/mm

3.2 Modeling

The model consists of three isotropic parts: adherent plates, and soft and stiff adhesives having the geometrical and 
mechanical properties listed in Table 1.

The overlap is meshed using CPE4R element type as described in Figure 3 where its length is divided into 
225 elements (45 elements per 10 mm) with a double bias toward the edges in each region, 15 elements single bias 
towards the adhesive interface for the thickness of adherents. This configuration was derived from the numerical work 
in [23]. Concerning the adhesive bond line thickness meshing, a convergence study has been performed to adopt the 
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suitable choice. The starting trial was consisting of 6 elements where the shear stress profile through the joint length 
was measured. Then the number of elements was increased to 12; the relative difference of the results (i.e., shear 
stress profile) with respect to the previous trial was found to be 1.87%. In the third trial, the number of elements was 
incremented to 15 which gave a relative difference with respect to the preceding trial (i.e., 12 elements) 0.24%. This 
iterative process has continued until the relative difference has relatively stabilized and at a low percentage. In addition, 
for each trial, the calculation time was also reported. All this study is summarized in Table 2. Referring to this latter 
table, 30 elements were adopted to plot the final shear stress distribution profile along the overlap as it accords between 
results accuracy and time required to realize the calculations.

Table 2. Convergence study of adhesive meshing along its thickness

Adhesive thickness elements’ number Max. error of two consecutive mesh (%) Time of calculation (s)

6 Control mesh 171

12 1.87 191

20 0.24 218

30 0.065 252

40 0.021 286

As mentioned in Section 2.1, only the upper half of the structure has been analyzed. The left side of the upper 
adherent is cantilevered while the bottom line of the central adherent (line of symmetry) is blocked from transverse 
displacement in pursuit to simulate the whole DLJ with minimum exertion and complexity. The external axial load of 
1,000 N/mm has been implemented in the software in terms of pressure applied at the right end of the central substrate.

Adhesive 
bondline

X

Y

Z

Figure 3. Overlap meshing illustration
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3.3 Results

According to the error percentage calculated between both analytical and numerical values as illustrated in Figure 
4, it is obvious that the highest deviation (3-3.9% error) between both models shows the lowest contribution (0.48%) 
throughout the joint; while the greatest convergence (< 1% error), exhibits the highest occurrence (52.41%).

35.10%

64.37%

0.53%
0.00%

40.00%

20.00%

60.00%

10.00%

50.00%

30.00%

70.00%

2-2.99% 1-1.99% 0-0.99%

Figure 4. Distribution of calculated percent error values along the joint overlap

Consequently, the inaccuracy at the shear peaks which form the most critical part of the joint and where this work 
is almost all based, does not exceed 2.1%. Thus one can state that the proposed analytical model fits with high accuracy 
the numerical one with a maximum error of 3.9%. Figure 5 shows the coincidence of the two shear stress profiles.
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Figure 5. Analytical and numerical adhesive shear stress curves

In addition, Table 3 identifies the respective intervals of validity of the established analytical model related to the 
three studied parameters respecting the model of [24]. The table displays also the maximum error manifested between 
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the analytical and numerical profiles. Therefore, the analytical model is applicable for Ea1/Ea2 ranging from 0.0037 to 0.74 
that is E1 can be any value between 0.01 and 2 GPa respectively. The same applies for a/b varying from 0 to infinity 
where the overlap can be modified between totally stiff to totally soft. Concerning the adhesive thickness, the analytical 
model is able to accurately estimate the shear stress distribution as it does not go below 40 µm and above 1,000 µm.

Table 3. Analytical model validation range regarding [24] model

Parameter Value Max. Error

ta

40 µm 6%

1,000 µm 7%

Ea1/Ea2

0.0037 9%

0.74 13%

a/b
0 15.8%

Inf 5.7%

4. Parametric investigation-discussion
The validated analytical model will be employed to carry out a detailed parametric investigation where the 

influence on the maximum shear stress developed in the joint’s length will be put under the spot. Besides the reference 
model of [24] described in Table 1 where the substrates thickness configuration was 1.4-2.8-1.4, six additional 
configurations will be considered to examine the effect of the adherents’ thicknesses, and those are: 1-2-1, 2-4-2, 2.5-
5-2.5, 3-6-3, 3.5-7-3.5, and 4-8-4. For each of those latter configurations, three main parameters will be changed: the 
adhesives Young’s moduli ratio Ea1/Ea2 (Table 3), their lengths ratio a/b, and the adhesive layer thickness. It should be 
noticed that, in order to avoid the coupling effect, only one parameter will be changed per case, while all the remaining 
parameters keep their values as set in Table 1. Moreover, the soft adhesive lengths are kept all the time equal (a = c). 
Finally, all shear stress values along the adhesive length have been normalized with respect to the average shear stress in 
the joint; this was also adopted in [24].

4.1 Adhesives young’s moduli

Similarly to what has been done in [23], [24], [27], the variation of the ratio Ea1/Ea2 is based on keeping Ea2 
constant (2.7 GPa in that case) and changing Ea1 to reach the desired ratio value. Those latter have been inspired by [23], 
[24] and summarized in Table 4 below.

It should be reminded that the ratio a/b and the adhesive thickness are kept unchanged in this sub-section, and are 
equal to 1/3 and 250 mm respectively.

The normalized shear stress profiles along the length of the joint 1.4-2.8-1.4 for most of the moduli ratios (and not 
all values to avoid non-clarity of superimposed curves) are plotted in the graph of Figure 6. The maximum shear stress 
in the stiff adhesive region decreases when Ea1/Ea2 increases while the inverse is observed for the soft adhesive region. 
This means that, at a certain particular modulus ratio, the maximum stress in both regions is equal, this is known as the 
transition ratio. According to [20], the MADLJ is stronger than a pure adhesive joint when the stress level in the stiff 
region is higher than in the soft one, and thus useful values of Ea1/Ea2 must remain below the transition ratio.
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Table 4. List of Young’s modulus used in the parametric study

Ea1 (GPa) νa1 Ea1/Ea2

0.1 0.34 0.037

0.27 0.34 0.1

0.37 0.34 0.137

0.6 0.34 0.222

0.75 0.34 0.278

1 0.34 0.37

1.2 0.34 0.444

1.5 0.34 0.555

1.8 0.34 0.667

Moreover, in Figure 6, the normalized stress profile of a joint made from a pure stiff adhesive (Ea1/Ea2 = 1) is 
shown. In the range of values considered in Table 4, the highest stress level in the MADLJ (Ea1/Ea2 = 0.037; Smax 
= 3.97) remains less than the maximum stress for a pure stiff joint where Smax = 4.448. When Ea1/Ea2 continues to 
decrease downwards to the lowest level, Smax in the MADLJ continues to increase until reaching the Smax of a pure 
stiff joint. This ratio of Ea1/Ea2 is called the minimum ratio. Below this minimum, the maximum stress developed in 
the MADLJ exceeds the maximum stress in a pure stiff joint; consequently, the MADLJ technique is not advantageous 
anymore below this minimum ratio. All in all, the MADLJ technique is exclusively proper useful when the ratio Ea1/
Ea2 is between the interval [Ea1/Ea2)min; Ea1/Ea2)tr]. Those two boundaries of the interval change upon the geometrical 
parameters of the DLJ, this will be discussed sooner in this paper.

This aspect could be also illustrated in the graph of Figure 7 showing the variation of the maximum normalized 
shear stress as a function of Ea1/Ea2 for pure soft joint, pure stiff joint, and mixed adhesive joint.

A similar graph was established in [27] for temperature-sensitive MADLJ. The maximum stress in the MADLJ is 
a compound curve (split at the transition ratio) where the first portion shows that the maximum stress occurs in the stiff 
region while this maximum takes place in the soft region (useless practically) in the second portion. Those two sub-
curves intersect at the transition point, which for 1.4-2.8-1.4 configuration, measures about Ea1/Ea2)tr = 0.265, generating 
Smax_tr = 2.164 (Figure 7(a)). On another side, Ea1/Ea2)min represents the intersection between the MADLJ stress curve 
and the pure stiff joint curve (horizontal line Smax = 4.448). Since the range adopted in [24] does not go below 0.037, the 
intersection representing the minimum moduli ratio could not be detected on the graph. Further calculations for lower 
ratios using the validated analytical model have given Ea1/Ea2)min = 0.0039 hence the useful ratio for this configuration 
(Figure 7(a)) is [0.0039; 0.265] where the maximum normalized stress decreases from Smax_upper = 4.448 to Smax_tr 

= 2.164. Practically, this means that the soft adhesive Young’s modulus should belong to [0.0105; 0.716] GPa. One 
can remark that the lower boundary shows a very small value hence practically the options for selection are quite 
open. Figure 7(b) serves at visualizing graphically Ea1/Ea2)min for the configuration 4-8-4, since this value exists in the 
considered range of the tested moduli ratios (Table 4) displayed in [24].
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Figure 6. Evolution of normalized shear stress profile along the joint length for different ratios Ea1/Ea2 for 1.4-2.8-1.4 configuration
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Figure 7. Evolution of the maximum normalized shear stress in terms of Ea1/Ea2 in MADLJ, pure stiff and soft joints for (a) 1.4-2.8-1.4 and (b) 4-8-4 
configurations

By extending this study to all the other configurations, results can be summarized in Table 5 below.
By observing the values in Table 5, one can deduce that both Ea1/Ea2)min and Ea1/Ea2)tr increase as the thickness of 

the substrate increases while the maximum stress level at the transition point decreases when the substrate’s thickness 
increases. Increasing the structure’s thickness from 1-2-1 to 4-8-4, the transition ratio increases by 79% while the 
maximum stress level decreases by 35%. The minimum modulus ratio on the other hand increases by 28% along with a 
52% decrease in the stress level.
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Table 5. Young’s modulus transition and minimum ratios for different adherents’ thicknesses

Configuration 1-2-1 1.4-2.8-1.4 2-4-2 2.5-5-2.5 3-6-3 3.5-7-3.5 4-8-4

Ea1/Ea2)tr 0.228 0.265 0.31 0.34 0.366 0.388 0.409

Smax_tr 2.403 2.164 1.936 1.805 1.706 1.625 1.564

Ea1/Ea2)min 0.0017 0.0039 0.0094 0.0167 0.0257 0.037 0.048

Smax_upper 5.293 4.448 3.69 3.278 2.974 2.739 2.551

Not only does Smax_tr decrease with the substrate’s thickness increment, but also all stress levels at all the other 
Ea1/Ea2 values lie within the useful interval as shown in the graph of Figure 8. At low ratio values, the stress levels are 
“discernible” showing clear differences where the stress order is inverse to the thickness ordered. As Ea1/Ea2 increases, 
the stress levels in all thicknesses decrease and the curves look like to “converge” to very close values. Moreover, the 
slope of the curves decreases with the increment of the thickness of the adherent, and thus the margin of variabilities of 
maximum stress levels within the useful intervals of the moduli ratio is reduced. For instance, for 1-2-1 configuration, 
the maximum normalized stress interval is [2.403, 5.293] while for 4-8-4 this interval becomes [1.564, 2.602].

3/6/3
3.5/7/3.5
4/8/4

1/2/1
1.4/2.8/1.4
2/4/2
2.5/5/2.5

Ea1/Ea2

0 0.05 0.15 0.25 0.35 0.450.1 0.2 0.3 0.4

3.5

0

4.5

2.5

4

5

2

3

5.5

M
ax

im
um

 n
or

m
al

iz
ed

 sh
ea

r s
tre

ss
 (S

m
ax

)

Figure 8. Evolution of the maximum normalized shear stress in the useful moduli ratio range for each adherent thickness

It should be noticed that the shear stress distribution could be affected by the values of Ea1 or Ea2 besides their 
ratio. A series of stiff and soft Young’s moduli values was tested through the analytical model keeping the ratio all the 
time equal to 0.137. The analytical model displayed different shear stress profiles which fall in the validity range.
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4.2 Adhesives lengths

Referring again to Table 1, Ea1/Ea2 is kept constant at equal to 0.137 while the adhesive thickness remains equal 
to 250 mm as in [24]. In that original model, the ratio a/b was equal to 1/3. Figure 9(a) shows the variation of the 
maximum normalized shear stress Smax in the stiff and the soft adhesives for a 1.4-2.8-1.4 MADLJ for many values of the 
ratio a/b: 0.05, 0.12, 0.21, 0.33, 0.5, 0.75, 1.16, 2, 2.83, 4.5, and 9.5. It is obvious that a ratio a/b = 0 means practically a 
pure stiff joint, while a/b = means a pure soft joint.
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Figure 9. Evolution of the maximum normalized shear stress in terms of a/b in MADLJ, pure stiff and soft joints for 1.4-2.8-1.4 configuration for (a) 
Ea1/Ea2 = 0.137, (b) Ea1/Ea2 = 0.037 and (c) Ea1/Ea2 = 0.667
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In Figure 9(a), one can remark that the maximum stress level in the stiff region passes through a minimum at a/b = 
2 while the same parameter in the soft region increases monotonically but with lower slopes as the ratio a/b increases; it 
converges at Smax = 1.816 corresponding to the maximum normalized stress in a pure soft joint. It should be noticed that 
for all a/b ratios, the maximum stress level in the MADLJ remains lower than the maximum level recorded in a pure 
stiff joint. However, by selecting a lower Ea1/Ea2 value, 0.037 (Figure 9(b)) but belonging to the useful range discussed 
earlier, one remark that the level of maximum stress increases in the stiff region and decreases in the soft region, but 
the curves tendencies are similar to those issued from the ratio of 0.137 (Figure 9(a)). In that case, the gap between the 
maximum stress level in a pure soft joint (Smax= 1.25) and the one in the soft region of the MADLJ increases, while, on 
the other hand, the corresponding curves for the stiff region intersect, as shown in Figure 9(b), defining a critical value 
of a/b, above which the pure stiff joint becomes more advantageous over MADLJ; this value is about 2.3; in addition, 
one remarks that, with the decrement of Ea1/Ea2, the optimal value of a/b generating the lowest Smax decreases, being 
about 0.75.

On another hand, by checking a higher value of Ea1/Ea2, out of the useful range, one observes a different trend 
of Smax in the MADLJ. Figure 9(c) shows this distribution for Ea1/Ea2 = 0.667; in that case, Smax in the stiff region 
decreases sharply for low a/b values, then the amount of decrement occurs at very low slopes as a/b increases; while 
the inverse occurs in the soft region; the maximum normalized stress converges to Smax occurring in the pure soft joint 
(here it is 3.69). It is obvious that, outside the useful range, Smax in the soft region is higher than Smax in the stiff region. 
It should be noticed, that similar tendencies of the evolution of the maximum shear stress in the MADLJ for different 
values of Ea1/Ea2 were also observed in [27].
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Figure 10. Evolution of the maximum normalized shear stress in terms of a/b in MADLJ for various adherent thicknesses for Ea1/Ea2 = 0.137 in (a) 
the stiff region and (b) in the soft region

The next step consists in exploring the effect of the substrate’s thickness by examining all the configurations cited 
in Table 5. As long as the substrate’s thickness increases, the gap between the maximum stress levels in the stiff and soft 
regions increases on one hand while the optimal ratio a/b in the stiff region decreases as the thickness of the adherent 
increases.

Those aspects could be observed in graphs of Figure 10 illustrating Smax in the stiff and soft regions in terms of a/b 
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for Ea1/Ea2 = 0.137. In Figure 10(a), for low values of a/b, the maximum stress level decreases with the increment of the 
adherent thickness; at a certain ratio a/b barely less than 1, the order is completely reversed and the stress increases as 
the adherent thickness increases. For 1-2-1 and 1.4-2.8-1.4 configurations, the optimal ratio a/b is around 2, while in 2-4-2 
and 2.5-5-2.5, this ratio becomes around 1.16. The optimal ratio in 3-6-3 and 3.5-7-3.5 is found to be approximately 0.75; 
finally, a/b optimal scores a value of 0.5 in 4-8-4 configuration.

Table 6. Optimal and critical adhesive length ratios for Ea1 = 0.37 and 0.1 GPa respectively along all the adherent thicknesses

Configuration
Ea1/Ea2 = 0.137 Ea1/Ea2 = 0.037

a/b)opt a/b)cr a/b)opt a/b)cr

1-2-1 2 NA 1.16 4

1.4-2.8-1.4 2 NA 0.75 2.4

2-4-2 1.16 NA 0.5 1.4

2.5-5-2.5 1.16 6.5 0.33 1

3-6-3 0.75 3.7 0.33 0.65

3.5-7-3.5 0.75 2.6 0.21 0.33

4-8-4 0.5 1.8 0.12 0.05

Another interesting aspect to be put under spot is the critical ratio a/b above which Smax in the stiff region in 
MADLJ exceeds Smax in a pure stiff joint: for thinner adherents, MADLJ is advantageous for the whole range of a/b as 
shown in Figure 9(b) for 1.4-2.8-1.4 configuration. As the substrate thickness increases, the level of maximum stress in 
a pure stiff joint decreases, and thus the maximum stress in MADLJ gets closer to the pure stiff joint; mathematically 
this critical ratio represents the intersection between the Smax curve of the stiff MADLJ region and Smax = constant 
in the pure stiff joint. As the thickness of the substrate increases, the critical lengths ratio decreases, as well as this 
critical ratio, decreases when Ea1/Ea2 decreases as shown in Table 6. This observation comes in line with the previous 
sub-section’s discussion about the existence of Ea1/Ea2)min below which the MADLJ exhibits higher stresses than pure 
adhesive joint for a known lengths ratio a/b. This means that, upon the thickness of the substrates, one has the choice 
between selecting an appropriate modulus ratio Ea1/Ea2 within the useful range in case a/b is certainly pre-defined or 
selecting an appropriate a/b once the adhesives moduli are already set. Table 6 summarizes the optimal and critical 
values of a/b for two values of Ea1/Ea2.

4.3 Joint thickness

In this part, the influence of the adhesive thickness on the maximum stress level in the MADLJ will be discussed 
and this under Ea1/Ea2 = 0.137 and a/b = 1/3. Twelve adhesive thickness values are considered (in mm): 50, 60, 70, 80, 
90, 100, 150, 200, 250, 300, 400, and 500. It should be noticed that in the original model [21], the thickness was set at 
250 mm with a 1.4-2.8-1.4 configuration. Graph of Figure 11 illustrates the maximum normalized shear stress evolution 
along with the adhesive thickness. It could be observed that the maximum stress level in the stiff region increases to 
reach a maximum of 100 mm and then decreases for higher thicknesses, and for all times this maximum remains below 
the maximum in a pure stiff joint.
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Figure 12. Evolution of the maximum normalized shear stress in terms of adhesive thickness in MADLJ, pure stiff and soft joints for 1.4-2.8-1.4 
configuration for (a) Ea1/Ea2 = 0.037 and (b) Ea1/Ea2 = 0.667

On the other hand, Smax in the soft region decreases monotonically and remains slightly lower than Smax developed 
in a pure soft joint. At very low joint thicknesses Smax in the soft region is higher than in the stiff region and thus this 
group of thicknesses is to be avoided in order to obtain strong MADLJ. The transition adhesive thickness above which 
the maximum stress in the stiff region exceeds the soft region is about 67 mm (Figure 11). By decreasing Ea1/Ea2 to 
0.037, Figure 12(a) shows that the maximum stress level in the stiff region decreases monotonically with the adhesive 
thickness hence it does not pass anymore by a maximum. Also, the gap between the curves for stiff and soft regions 
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increases as Ea1/Ea2 decreases such that the transition adhesive thickness disappears completely as shown in Figure 
12(a). Comparing Smax developed in the stiff region of the MADLJ and in a pure stiff joint, the levels get closer as the 
adhesive thickness increases, however, they do not intersect yet in the range of the considered thicknesses.
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Figure 13. Evolution of the maximum normalized shear stress in terms of the adhesive thickness in MADLJ for a variety of adherent thicknesses for 
Ea1/Ea2 = 0.137 in (a) the stiff region and (b) the soft region

(a)

M
ax

im
um

 n
or

m
al

iz
ed

 sh
ea

r s
tre

ss
 (S

m
ax

)

MAJ, Soft regions (1) & (3)
MAJ, Stiff region (2)
Pure soft joint
Pure stiff joint

ta Optimal

0 500100 200 300 400

Adhesive thickness (ta [μm])

1

0

3

2

4

5
MAJ, Soft regions (1) & (3)
MAJ, Stiff region (2)
Pure soft joint
Pure stiff joint

(b)

M
ax

im
um

 n
or

m
al

iz
ed

 sh
ea

r s
tre

ss
 (S

m
ax

)

ta Critical

500100 200 300 400

Adhesive thickness (ta [μm])

1

0

3

2

4

6

5

Figure 14. Evolution of the maximum normalized shear stress in terms of adhesive thickness in MADLJ, pure stiff and soft joints for (a) 4-8-4 
configuration for Ea1/Ea2 = 0.137 and (b) 3-6-3 configuration for Ea1/Ea2 = 0.037



Engineering Science & Technology 142 | Georges Challita, et al.

When Ea1/Ea2 increases and gets the value of 0.667, the maximum shear stress level in the soft region becomes 
much higher than in the stiff region; this has been already observed in the previous sub-section (as in Figure 9(c)) since 
0.667 is out of useful interval of moduli ratio. This is illustrated in Figure 14(b). One can also remark from this latter 
graph that Smax curves of the MADLJ soft regions and of the pure soft joint are tightly closed.

The next step consists of exploring the effect of the substrate’s thickness by examining all the configurations 
starting with Ea1/Ea2 = 0.137 and a/b = 1/3. First of all, Figure 13 shows that the maximum normalized shear stress in 
both stiff and soft regions decreases when the adherents’ thickness increases. Moreover, when the substrate’s thickness 
increases, the adhesive thickness maximizing the normalized shear in the stiff region decreases; the same tendency for 
the transition adhesive thickness is observed. From configuration 2.5-5-2.5 and above, the adhesive transition thickness 
becomes less than 50 mm and thus is outside the considered range.

In addition, for all configurations, the maximum stress level in a pure stiff joint remains always above this 
maximum developed in the stiff region of the MADLJ; the same applies to the soft case. However, as the substrate 
thickness increases, the gap between Smax in the soft region of the MADLJ and the pure soft joint increases along with 
the adhesive thickness. This gap decreases for the stiff case; they converge exactly in the 4-8-4 region at the highest 
adhesive thickness considered, which is 500 mm as shown in Figure 14(a). For Ea1/Ea2 = 0.037, similar tendencies have 
been observed for all configurations as those of the original one 1.4-2.8-1.4. However, under that low ratio of Ea1/Ea2 
critical adhesive thicknesses appear, above which Smax in the stiff MADLJ region exceeds Smax in a pure stiff joint; the 
values of the critical thickness decrease as the adherent thickness increases. Figure 14(b) shows, as an example, the 
critical adhesive thickness for the 3-6-3 configuration. All the remarkable values of adhesive thickness are summarized 
in Table 7. For Ea1/Ea2 = 0.667, similar tendencies have been observed for all configurations as those for the original one 
1.4-2.8-1.4.

Table 7. MADLJ critical and optimal adhesive thicknesses at low Young’s modulus ratios

Ea1/Ea2 = 0.137 Ea1/Ea2 = 0.037

Configuration ta,opt (mm) ta,tr (mm) ta,cr (mm)

1-2-1 150 81 NA

1.4-2.8-1.4 100 67 NA

2-4-2 100 51 446

2.5-5-2.5 90 NA 396

3-6-3 80 NA 300

3.5-7-3.5 80 NA 250

4-8-4 80 NA 220

4.4 Combined parametric analysis

Taking into account the results established in 4.2 and 4.3, one may reduce the range of values of the ratio a/b and 
adhesive thickness (Table 8) leading to a MADLJ advantageous technique. Then useful range consisting of Ea1/Ea2)min 
and Ea1/Ea2)tr will be determined for all adherent thicknesses’ configurations in order to deduce some tendencies. For 
each adhesive thickness stated in Table 8, the 6 values of the ratio a/b were varied such that results similar to those stated 
in Table 4 are obtained, and this is for all the adherents’ configurations. It should be noticed that a couple of calculated 
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values Ea1/Ea2)min might be theoretical (too low) meaning that the practical lower boundary of the useful moduli ratio is 
quite open in that case.

Table 8. MADLJ useful values of adhesive thicknesses and adhesive length ratios

ta (mm) 150 200 250 300 400 500

a/b 0.12 0.21 0.33 0.5 0.75 1.16

As a first observation, as seen also in Table 4, for a well-known adhesive thickness and lengths ratio a/b, both Ea1/
Ea2)min and Ea1/Ea2)tr increase with the increment of the substrate’s thickness while the maximum stress level at those 
ratios decreases. This evolution could be seen in a clearer manner in the graph of Figure 15(a).

Examining the effect of the adhesives lengths ratio a/b, for the original model (1.4-2.8-1.4; ta = 250 mm), it could 
be remarked that the increase of the ratio a/b leads to an increase of Ea1/Ea2)min, a decrease of Ea1/Ea2)tr and thus the 
range of useful Young’s moduli is also reduced, reaching a maximum reduction of 3 times approximately for the adopted 
values in this study. Furthermore, the maximum normalized stress at the transition point decreases when the ratio a/b 
increases where the largest drop reaches 34%. All those observations are illustrated in Figure 15(b).

The next analysis consists in exploring the effect of the adhesive thickness on the useful interval of Young’s 
moduli ratio, for configuration 1.4-2.8-1.4 and for a/b = 1/3. The results are depicted in the graph of Figure 15(c). 
Indeed, increasing the joint’s thickness leads to a simultaneous increase of Ea1/Ea2)min and Ea1/Ea2)tr, the latter reaching a 
maximum increment of 74%. The maximum normalized stress at transition follows the same trend and decreases as long 
as the joint gets thicker, the largest difference for the adopted values reaches 29%.

Following the trends of all the aforementioned observations, one can remark that those apply also to all the possible 
combinations of parameters. For the sake of brevity, one may illustrate, as examples, the evolution of Ea1/Ea2)min and 
Smax, upper in Figures 16 and 17 respectively, and this only for the thinnest (1-2-1) and the thickest (4-8-4) substrates.
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Figure 15. Evolution of the useful Young’s moduli ratio range and the corresponding maximum normalized shear stresses in MADLJ in terms of (a) 
adherents’ thicknesses for a/b = 1/3 and ta = 250 mm, (b) of a/b for 1.4-2.8-1.4 configuration and ta = 250 mm and (c) of adhesive thickness for 1.4-

2.8-1.4 configuration and a/b = 1/3
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Figure 16. Influence of both adhesive lengths ratio a/b and adhesive thickness on Ea1/Ea2)min for (a) 1-2-1 and (b) 4-8-4 configurations
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Figure 17. Influence of both adhesive lengths ratio a/b and adhesive thickness on Smax, upper for (a) 1-2-1 and (b) 4-8-4 configurations

5. Conclusion
A closed-form expression of adhesive shear stress in a MADLJ based on an improved shear lag model has been 

developed and validated. This has saved an enormous time to carry out the parametric study discussed in this work if it 
would have been performed experimentally or even through numerical simulations. However, it should be reminded that 
the behavior of the adhesive is considered elastic linear, and the shear stress was considered to be unchanged through 
the thickness of the adhesive. Many key points could be concluded from this work:

• The MADLJ technique is not advantageous over pure adhesive joints in absolute but just in a useful interval [Ea1/
Ea2)min; Ea1/Ea2)tr]. This useful interval varies considerably with the geometry of the structure; namely the adhesive and 
adherents’ thicknesses and the adhesives’ lengths ratio a/b.

• In the useful interval [Ea1/Ea2)min; Ea1/Ea2)tr], and for a determined adhesive and adherent thickness, the maximum 
shear in the stiff MADLJ region passes through a minimum at a certain optimal ratio a/b)opt.
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• When the adherent’s thickness increases, a critical value of a/b)cr is recorded, after which, the maximum stress in 
MADLJ exceeds the one in the pure stiff joint. This critical value decreases when the adherent thickness increases and 
Ea1/Ea2 decreases in the useful interval.

•For moderate values in [Ea1/Ea2)min; Ea1/Ea2)tr] and for a determined a/b, the maximum shear in the stiff MADLJ 
region passes through a maximum at an optimal thickness while in the soft region it decreases continuously. After a 
certain transition thickness, the maximum stress in the stiff region exceeds the one in the soft region.

•The optimal, transition, and critical adhesive thicknesses decrease with the increase of the adherent thickness.
•For a well-known adhesive and adherent thickness, Ea1/Ea2)min, Ea1/Ea2)tr, and Smax_tr decrease when a/b increases.
•For a well-known a/b and adherent thickness, Ea1/Ea2)min, Ea1/Ea2)tr increase while Smax_tr decreases as long as the 

joint’s thickness increases.
Finally, to select any mechanical and geometrical configuration of a MADLJ, one must not only look at the 

maximum stress level in each region, but also the strength of each adhesive. As stated in [24], one should compare the 
ratio Smax_stiff/Smax_soft developed in the mixed joint to the strengths ratio of stiff (brittle) to soft (ductile) adhesive in 
order to either prevent yielding failure of the mixed-adhesive joint or even to select a pure adhesive joint when it is more 
advantageous.
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