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Abstract: This work presents a new efficient approach to the simulation-based sensitivity analysis (SBSA) of building 
performance. To this end, through a new initiative, the whole building energy simulation program EnergyPlus is 
combined with the local sensitivity analysis (LSA) and global sensitivity analysis (GSA) through the C++ programming 
language. The developed method is applied to a dwelling house in the hot semi-arid climate region of Iran. Hereupon, 
the building design parameters including BR, WWR, DSH, CSPT, HSPT, SAIN_W, SAEx_W, ThEx_W, STwin, VTwin, Thwin, 
and Thgas-win are adopted as input variables. Moreover, four major building criteria including annual heating energy 
consumption (AHC), annual cooling energy consumption (ACC), annual lighting energy consumption (ALC), and 
predicted percentage of dissatisfied (PPD) index are adopted as output variables. The one-parameter-at-a-time (OPAT) 
as the LSA and Sobol’s analysis as the GSA are carried out to explore the behavior of outputs versus inputs changes 
and to quantify the total sensitivity of outputs-to-inputs (ST). In the LSA approach, a new sensitivity indicator called 
the Dispersion Index (DI) is proposed to define the influence of inputs on outputs. The results demonstrate that for our 
typical building under study, AHC is most sensitive to the HSPT and SAEx_W, with ST of respectively 80% and 79%. 
While ACC is most sensitive to the CSPT and SAEx_W with ST of respectively 72% and 63%. Besides, WWR, VTwin, 
and BR with ST of respectively 33%, 25%, and 21% are the most influential inputs on the ALC. Furthermore, CSPT, 
HSPT, SAEx_W, and WWR with ST of respectively 81%, 40%, 36%, and 21% are the most influential inputs on the PPD. 
ALC has no dependence on the CSPT and HSPT of VAV and thermo-physical traits of wall and window. Besides, the 
sensitivity results obtained by the proposed DI in OPAT-based LSA are in good accordance with the Sobol-based GSA 
ones.

Keywords: simulation-based sensitivity analysis, coupling framework, OPAT analysis, Sobol’s analysis, building 
efficiency, thermal comfort

Nomenclature

ACC Annual cooling energy consumption OPAT One-parameter-at-a-time

AHC Annual heating energy consumption PCM Phase change material
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ALC Annual lighting energy consumption PMV Predicted mean vote

ATC Annual total energy consumption PPD Predicted percentage of dissatisfied

BEMT Building Energy Modeling Tool SA Sensitivity analysis

BF Building facade SAEx_W Solar absorptance of the exterior wall

BPA Building Performance Analysis SAIN_W Solar absorptance of the interior wall

BR Building rotation SALib Sensitivity analysis library

BTO Building Technologies Office DSH Depth of shading device

CDD Cooling degree-day SI Sensitivity index

CSPT Cooling setpoint temperature SBSA Simulation-based sensitivity analysis

DI Dispersion Index ST Total-order sensitivity index

DOE Department of Energy STwin Solar transmittance of window glass

GSA Global sensitivity analysis ThEx_W Thickness of wall

HDD Heating degree-day Thgas-win Thickness of gas in window

HSPT Heating setpoint temperature Thwin Thickness of window glass

HVAC Heating, ventilation, and air conditioning VAV Variable air volume

LSA Local sensitivity analysis VTwin Visible transmittance of window glass

MIP Mixed-integer programming WWR Window-to-wall ratio

1. Introduction
In Iran, the buildings are responsible for about 38% of total energy consumption and 33% of total CO2 emissions 

as a result of the burning fossil fuels for the production of heat and power as well as the production of materials such 
as cement, steel, and aluminum utilized for construction of buildings [1], [2]. According to the Ministry of Energy of 
Iran [3], the share of energy use in the building sector is 3 to 5 times larger than the world average. Further, the energy 
intensity per capita in Iran is about 2 times larger than the global rates [4]. Increasing costs and demand for energy in 
the building sector have caused building designers and energy engineers to invent and implement innovative approaches 
to get energy-efficient building designs [5], [6].

In addition to the significance of building design based on optimal energy consumption, the comfort of occupants 
is another essential issue in building design [7], [8]. Thermal comfort is a state of mind that demonstrates satisfaction 
with the thermal conditions of the environment [9], [10]. Among the well-known thermal comfort models, the predicted 
mean vote (PMV) and predicted percentage of dissatisfied (PPD) models are the most widely used [11], [12]. Fanger 
[13] initially expressed PMV and PPD models. The PMV model prognosticates the mean value of the votes of a large 
group of persons on the seven-point thermal sensation scale (+3 for hot, +2 for warm, +1 for slightly warm, 0 for 
neutral, -1 for slightly cool, -2 for cool, and -3 for cold). In addition, the PPD model establishes a quantitative prediction 
of the percentage of thermally dissatisfied people determined by PMV. The PPD model is based on the assumption 
that even when the thermal conditions are optimal for a majority, there will always be a percentage of people who feel 
thermal discomfort. The relationship between PMV and PPD is non-linear and has been empirically determined through 
extensive human subject studies. The PPD gives an estimate of the percentage of people who are likely to feel too warm 
or too cold in a given environment, not accounting for those who are neutral or satisfied. As per ASHRAE 55 [11], the 
admissible thermal environment for general comfort is recommended as PPD < 10% or -0.5 < PMV < +0.5. As the state 
of thermal comfort is often controlled using an air conditioning system, maintaining the standard of thermal comfort for 
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building occupants is one of the important goals of HVAC design engineers.
Energy efficiency in buildings will be acceptable when the thermal comfort of the occupants is also prepared. In 

this regard, to acquire an optimal building design, the energy-comfort criteria shall be taken into consideration in the 
design phases of the building, concomitantly.

As the decision-making process for adoption of the design specifications of buildings is made in the early stages 
of design and the building projects are complex multivariate problems, the building engineers and decision-makers 
encounter many feasible combinations for the configuration of building specifications [14], [15]. If the design principles 
are not paid attention to in the early stages, it may cause the wrong choice of building materials and equipment, and as 
a result, a building with low performance will be obtained. Accordingly, to get a building with the highest performance, 
the adoption of the best design parameters shall be carefully carried out.

Sensitivity analysis (SA) is a crucial step in the design and assessment of buildings, aiming to identify how 
variations in input parameters influence the output of a model. This understanding can guide the optimization of building 
performance, from energy efficiency to cost-effectiveness. To peruse and prognosticate the building performance, 
building designers mostly employ Building Energy Modeling Tools (BEMTs) including EnergyPlus, TRACE, Carrier 
HAP, DesignBuilder, eQUEST, and TRNSYS [16]-[19]. BEMTs take as input building specifications including 
geometry, orientation, construction materials, lighting, HVAC, refrigeration, water heating, renewable generation system 
configurations, component efficiencies, control strategies, schedules for occupancy, plug-loads, thermostat settings, 
information of weather, etc.; and prepare users with key indicators such as thermal loads, energy costs, temperature 
trends, thermal comfort indicators, air pollutants, ecological impact, etc. [20], [21].

BEMTs generally run the model of buildings scenario-by-scenario, which is an extremely time-consuming process 
and impractical to calculate all possible scenarios [22]. Coupling BEMTs with SA algorithms is a powerful approach 
that drives smarter, more efficient, and resilient building designs. It leverages the power of data and analytics to ensure 
that every decision made in the design, construction, and operation of buildings is informed, strategic, and geared 
towards sustainability and efficiency. This method leverages the strengths of both simulation and SA to explore and 
understand the impact of various parameters on building performance, without the need to manually simulate each 
possible scenario. Integrating BEMTs with SA algorithms offers a comprehensive approach to understanding and 
optimizing building performance. This integration not only enhances the predictive accuracy of energy models but 
also provides valuable insights for decision-making in the design and operation of buildings [23], [24]. There are many 
methods for SA of the systems, which are generally classified into two main categories, which include local sensitivity 
analysis (LSA) and global sensitivity analysis (GSA) [25], [26]. The LSA evaluates the local influence of changes in 
inputs on the system response [27]. The one-parameter-at-a-time (OPAT) analysis is one of the well-known LSA, in 
which the influence of one parameter on the outputs is apprised at a time, while other parameters of the system are kept 
constant at their nominal (central or baseline) values. Then, this process is repeated for other parameters similarly [28], 
[29]. In this regard, the SA index is measured by observing the changes in the outputs because of the single parameter 
changes within their specific range. Although the OPAT is easy to implement and efficient in terms of computational 
time, the simultaneous influence and interactions of all the inputs on outputs are not considered. As a result, it may 
provide inaccurate and confusing results regarding the prioritization of design parameters as per the degree of influence 
on the system, especially for non-linear and complex models such as building systems. On the other hand, GSA is a 
method in which all the input parameters are changed in their specific range concomitantly and the system sensitivity is 
appraised [30]. Consequently, GSA takes into account the interaction and mutual influence of the inputs on each other 
and demonstrates the system sensitivity to each input more accurately contrasted to LSA [31]. However, the calculation 
time in the GSA methods is much more than that of the LSA ones, especially for complex models with a large number 
of inputs [26]. Many methods have been introduced for the GSA in buildings so far including regression-based, Morris, 
variance-based, and metamodeling-based methods [32]. Among them, the variance-based has gained more popularity 
[33]-[35]. Sobol’s method [36] is one of the well-known and most common variance-based GSA methods that are very 
practical and suitable for complex non-linear models [37]. Sobol’s method considers complex and nonlinear interactions 
of inputs and uses more complicated sampling models to calculate the sensitivity indicators [38], [39]. In the past 
decade, because of the very valuable information that SA provides in the initial stages of building design, the attention 
of many researchers and decision-makers has been focused on the field of SA of building performance. Pang et al. [40] 
reviewed the application of SA in the building performance analysis (BPA) and summarized the major information 
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concerning the SA implementation in BPA. Shen et al. [41] performed scaled Morris-based SA of building energy-
structure performance based on Python to connect with EnergyPlus and Abaqus. Similarly, Maučec et al. [42] performed 
Morris-based SA of a prefabricated timber building using SimLab and jEPlus tools. In addition, Sproul et al. [43] use 
TRNSYS to perform an LSA to clarify the correlation between building energy use and thermal comfort. Similarly, Huo 
et al. [44] performed regression-based SA for cooling demand and shading performance of nearly zero-energy buildings 
in China using SimLab. Besides, Goffart et al. [45] performed a comparative analysis of the random balance design 
Fourier amplitude sensitivity test (RBD-FAST) and the Morris screening using the Python sensitivity analysis library 
(SALib). They showed the EASI RBD-FAST is more powerful and easy to implement compared to Morris screening for 
building performance simulations. Additionally, Chambers et al. [46] carried out Saltelli sampling and Sobol SA for a 
geospatial model of cost-optimal heat electrification in buildings in Switzerland through SALib. Yip et al. [47] analyzed 
the effects of courtyards, passive and active design performance, and building-integrated photovoltaic and thermal (BIPV/
T) integration on total building energy use in net zero energy buildings via TRNSYS, Python, and modeFRONTIER 
multidisciplinary design optimization platform. In another research, Zeferina et al. [48] used Morris and Sobol indices 
techniques to perform the SA of the cooling needs of an office building through jEplus. Naji et al. [49] performed the 
regression-based SA on energy performance, and thermal and visual discomfort of a prefabricated house in Australia 
using TRNSYS, jEPlus, and SimLab. In a similar study, Delgarm et al. [5] performed the variance-based GSA on the 
energy performance of a building using EnergyPlus, jEPlus, and MatLab. Bozzhigitov et al. [50] performed an SA of 
building energy performance to the selection of phase change materials (PCM) melting temperature in temperate oceanic 
climate using Design. Zhu et al. [51] performed the regression-based SA on building thermal loads for energy planning 
via EnergyPlus and R statistical computing and graphics software. Moreover, Zhang et al. [52] performed an SA for 
determining key parameters of net-zero energy buildings to optimize grid interaction using TRNSYS and MATLAB. 
Mukkavaara et al. [53] performed an SA considering the embodied and operational energy trade-off to minimize the 
energy use of the building’s life cycle through SALib and EnergyPlus.

The background expresses that although several investigations have been carried out on the SA of building 
performance, most of them are focused on the LSA because of ease of use and low computing time. Moreover, building 
designers have either often used the existing SA software such as jEPlus, SimLab, SALib, modeFRONTIER, or 
manually made several runs from BEMTs and evaluated the outputs, which has many limitations. The adoption of the 
type and number of inputs to solve mixed-integer programming (MIP) problems concomitantly, the type and number 
of outputs, the method of SA as per the type of inputs and outputs, boundary conditions, and constraints are among 
the most important disadvantages and limitations of existing SA software. In addition to the fact that the existing SA 
software is developed based on different programming languages and needs to be coupled with the simulation engines, 
consequently, the computation time will be very long. In this regard, studies have suffered from a large amount of time 
spent on the SA process. Adding that, because of the complexity and difficulty of programming development, very few 
research have been focused on the numerical development of SBSA of building systems.

The current study introduces a new effective and efficient approach for the SBSA of building systems that not 
only helps building engineers to prognosticate and monitor the behavior of the building performance with respect to the 
variations in design parameters but also causes an increase in building productivity because of the accurate adoptions 
at the conceptual design phase. For this purpose, in a new idea, EnergyPlus is directly integrated with LSA and GSA 
algorithms through the C++ programming language. The developed method never depends on the type of design. It only 
deals with the (.txt) file. Thus, the proposed method can work for any model designed by EnergyPlus including smart 
buildings, zero energy buildings (ZEB), greenhouses, schools, and so on in any climate condition without difficulty. In 
this regard, a dwelling house located in Bushehr (Iran) with a hot semi-arid climate is used as a case study to examine 
the sufficiency of the proposed approach. The building rotation, window-to-wall ratio, depth of shading device, cooling 
and heating setpoint VAV system, the solar absorptance of the building interior walls and exterior walls, the thickness 
of building wall, solar and visible transmittance of window glass, the thickness of window glass, and thickness of gas 
in the window are selected as inputs. Further, the influences of inputs are fully scrutinized on the building energy loads 
and thermal comfort of occupants through OPAT and Sobol’s analyses. In the OPAT approach, an innovative index is 
introduced to determine the sensitivity of outputs-to-inputs. To the best of the authors’ knowledge, no similar article was 
found that deals with preparing a practical approach for SBSA of building performance through direct coupling of high-
level object-oriented programming language with EnergyPlus to add its features and capabilities to EnergyPlus so as 
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to straightly perform SA without the use of other plugins and third parties. Because of the high importance of SBSA of 
efficacy-comfort criteria in the buildings, the background shows a lot of weakness, and therefore, studying them is not 
adequate and seems essential.

2. Methodology
2.1 LSA approach

In general, derivative-based LSA methods are based on the derivative of the outputs on the inputs. In this regard, 
the sensitivity index (SI) of the system due to the ith input (Xi) is expressed as [39], [54]: 

0

SIi
i X

Y
X
∂

=
∂

(1)

Here, Y and X0 respectively signify the system output and nominal value. Derivative-based approaches are just 
enlightening at the nominal point because it does not search the rest of the input space. In addition, OPAT is in the LSA 
class and is highly suitable when Y(Xi) is not available and the system behaves as a black box function. As per the OPAT 
technique, one of the inputs is changed in the entire permissible range one at a time and the values of the outputs are 
measured, while the other inputs are fixed in their nominal values. Since the OPAT provides a graph of the output versus 
the input changes, therefore, the authors introduced an indicator called Dispersion Index (DI) to define the sensitivity 
of outputs to each input (DIi). DI is the ratio of the standard deviation of outputs (σ) to the average of outputs (Ȳ), 
calculated as:
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The larger the DI, the greater the dispersion of the output, and therefore the input has a greater impact on the 
output. In other words, output is more sensitive to input.

2.2 GSA approach

Instead of evaluating the results of input changes on the system behavior through LSA at a time, the GSA 
evaluates the results of changing all possible inputs at the same time by considering the interactions of input variations 
concomitantly and reveals the relative contributions to the variability in the system output. In this paper, Sobol’s 
analysis is employed to classify the inputs according to their importance and contribution to the outputs. Imagine that 
the function Y =  f (X) determines the system behavior as per its inputs (X = [x1, x2, …, xm]). In this respect, the algorithm 
of Sobol’s analysis is implemented in three main steps as follows [39], [54]:

Step 1:
Decompose the total variance of the function Y =  f (X) with m inputs into conditional variances.
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In the above equation, V(Y) is the total variance of function Y, Di is the first order influence for each xi, and Dij to 
D1,2,3,…,m are the influences of inputs interaction, calculated as follows:
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and so on. Here, E and V represent the expected value and the variance, respectively. Moreover, E(Y |Xi) is the 
conditional expectation. The term V [E(Y | Xi)] is called the main influence of Xi on Y, and E [V(Y | X-i)] is the residual. 
Additionally, X-i signifies all inputs except for Xi. Accordingly, V [EX-i 

(Y | Xi)] is the expected reduction in output 
variance and EX-i 

[V (Y | X-i)] is the expected residual output variance that is obtained provided that Xi is fixed at the 
nominal value.

Step 2:
Determine the values of V(Y), V [EX-i 

(Y | Xi)], and EX-i 
[V (Y | X-i)] through the quasi-Monte Carlo estimators. To 

do this, two independent sampling matrices A and B are made by Sobol quasi-random sequences with M rows and m 
columns. M and m are respectively the sample size of Sobol quasi-random sequences and the number of inputs. Matrix 
Ci is made from matrices A and B in such a way that all the columns of matrix A are placed in matrix C, but only the ith 
column of matrix B is placed in matrix C. In this regard, the system outputs are YA

(m), YB
(m), and YC

(m) with the values of 
matrices A, B, and C as inputs. Accordingly, V(Y), V [EX-i 

(Y | Xi)], and EX-i 
[V (Y | X-i)] are determined as [55]:
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In the present paper, M of 2,000 and m of 12 columns are adopted to compute the above formulas.
Step 3:
Calculate the total-order SI (STi): 

(10)( )
( )

iX i
Ti

E V Y X
S

V Y
- -  =

The larger the STi, the more sensitive the output is to the input. The STi index expresses the whole impact of an input 
on the system outputs considering all of its interactions with other inputs and discloses the expected portion of variance 
that remains if uncertainty is removed in all inputs but Xi. The STi is the overall best SI of outputs-to-inputs since it 
covers the full individual and interactive influences of system inputs, concomitantly.
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2.3 Integration framework

Figure 1 demonstrates the proposed integration framework for SBSA of building performance via coupling 
EnergyPlus with algorithms of OPAT and Sobol’s analyses. EnergyPlus is a whole-building energy simulation software 
developed by the U.S. Department of Energy’s (DOE) Building Technologies Office (BTO) and was first released 
in 2001 and an updated version 23.1.0 was released in 2023 [56]. EnergyPlus supports for calculating the building 
energy efficiency of heating, cooling, ventilation, lighting, and other energy flows, and consists of many creative and 
useful capabilities in simulation including multi-zone airflow, thermal and visual comfort, solar-based systems, etc. As 
demonstrated in Figure 1, the inputs of the proposed SBSA approach are the weather data, building design parameters, 
output variables, input variables whose influences on the output variables are to be studied, and the range of input 
variables (constraints). As EnergyPlus only relies on input/output data that reads input and writes output to text files, 
through a new initiative, coupling functions (command lines) were developed via C++ programming language to launch 
EnergyPlus and make it run based on the randomly produced inputs [(Xi)] as per the Sobol quasi-random sequences, 
weather data, and basic model of the building. After that, the EnergyPlus simulation outputs ([F(Xi)]) are assembled for 
post-processing. The algorithm of OPAT and Sobol’s analyses are programmed through C++ programming language to 
analyze [F(Xi)]. The OPAT analysis yields the trend of the outputs versus input changes and DI of each output to input, 
regardless of the interaction of the other inputs. In addition, Sobol’s analysis yields the total-order SI (STi) of each output 
to input considering the interactions of inputs changes concomitantly. Consequently, the presented paper introduces 
an innovation, in which adding SA to EnergyPlus is directly accomplished without the use of other plugins and third 
parties that dramatically increase the speed of computation. While many studies have investigated the SA of building 
performance, authors have not come across a similar paper that deals with preparing a practical and structured approach 
for SBSA of building performance by using direct coupling of a high-level programming language with building 
simulation software. In this regard, through a new initiative, the LSA and GSA are directly combined with EnergyPlus 
via C++ as an object-oriented programming language, and accordingly, the features of C++ are added to EnergyPlus. As 
a result, any kind of SA algorithm, any number and type of inputs, any number of outputs, and any constraints can be 
utilized through the introduced approach. In addition, as the proposed method only deals with the (.txt) file, thus, it can 
work for any model designed by EnergyPlus in any climate condition without limitation.

OPAT analysis 
&

 Sobol's analysis

Outputs trend vs inputs 
&

Sensitivity index

Coupling functions 

via C++ programming

Coupling functions 

via C++ programming

E+ simulation 

outputs (.csv)

Generate E+ 

building model

Output values ([F(xi)])

Design parameters (.txt)

Outputs (.txt)

Inputs (.txt)

Weather data (.epw)
Constraints

Sensitivity setup

Input values ([xi])

[F(xi)] and [xi] Read

Write

Figure 1. Integration framework

2.4 Case study
2.4.1 Building characteristics

The developed SBSA approach is implemented on a dwelling house located in the hot semi-arid climate of Iran 
to examine its capabilities and potential. Figure 2 demonstrates the schematic view of the basic model of the building 
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under investigation, which is created in SketchUp 3D design software [57]. The building is a five-person dwelling 
house with a height of 3 m, length of 10 m, and width of 10 m. The initial building facade (BF) is to the north, and the 
direction of building rotation is counterclockwise. The building has an east-facing fixed double-glazed window (3 mm 
clear glazing with an argon 6 mm gas gap) with a width of 1.5 m and a length of 4 m (WWR of 20%), and a wooden 
door on the eastern side with a height of 1.5 m and a width of 2 m. The window has a flat shading surface with a length 
of 4 m and a depth of 1 m, but no curtains are prepared for it. Further, the height above the window, as well as the left 
and right extension from the window of the flat shading surface remain zero, while the tilt angle from the window is 
kept at 90°. Table 1 demonstrates the specifications of the materials employed for the building under investigation.

North

4 m

4 m

1 m

2 m

3 m

10 m
10 m

1.5 m

1.5 m

Figure 2. SketchUp 3D model of the basic building model under investigation

A 500 Watts fluorescent artificial lighting system is used in working hours whose power can be dimmed by a 
daylight sensor with an activation threshold of 500 lux to control the room luminance automatically when the natural 
light of the sun is not sufficient. The sensor is located in the middle of the room and at 1 m above the floor. In addition, 
a variable air volume (VAV) system with an outdoor airflow rate of 9.5 l/s per person is installed for the building 
whose capacity is automatically perused as per the warmest and the coldest days of the year. As per the United States 
Environmental Protection Agency (EPA) [58], the optimal cooling and heating setpoint temperatures to balance energy 
saving and comfort, and provide appropriate thermal comfort to 80% of building occupants is respectively close to 24.5 
°C and 21 °C. Accordingly, the cooling and heating setpoints of VAV were respectively set at 24.5 °C and 21 °C for the 
zone thermostat control. The illuminance threshold of 500 lux was set as recommended by EN 12464-1 for office space 
[59]. Moreover, the schedules for clothing, lighting, occupancy, air velocity, and infiltration are arranged as per the 
EnergyPlus data set [56].
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Table 1. Specifications of the building envelope under investigation

Envelope Specification Value

Wall

Exterior layer (brick)

Conductivity (W/mK) 0.89

Thickness (m) 0.1016

Specific heat (J/kgK) 790

Density (kg/m3) 1,920

Interior layer (Wood shingles)

Conductivity (W/mK) 0.04

Thickness (m) 0.0064

Specific heat (J/kgK) 1,300

Density (kg/m3) 592

Floor

Exterior layer (heavyweight 
concrete)

Conductivity (W/mK) 1.95

Thickness (m) 0.3048

Specific heat (J/kgK) 900

Density (kg/m3) 2,240

Interior layer (Terrazzo)

Conductivity (W/mK) 1.8

Thickness (m) 0.0254

Specific heat (J/kgK) 790

Density (kg/m3) 2,560

Roof

Exterior layer (lightweight 
concrete block)

Conductivity (W/mK) 0.49

Thickness (m) 0.1524

Specific heat (J/kgK) 800

Density (kg/m3) 512

Middle layer (gypsum)

Conductivity (W/mK) 0.16

Thickness (m) 0.0159

Specific heat (J/kgK) 1,090

Density (kg/m3) 800

Interior layer (Wood shingles)

Conductivity (W/mK) 0.04

Thickness (m) 0.0064

Specific heat (J/kgK) 1,300

Density (kg/m3) 592



Engineering Science & TechnologyVolume 5 Issue 2|2024| 235

Table 1. (cont.)

Envelope Specification Value

Door Exterior layer (Wood)

Conductivity (W/mK) 0.15

Thickness (m) 0.0127

Specific heat (J/kgK) 1,630

Density (kg/m3) 608

window Double 2.5 mm clear glazing

Solar transmittance 0.85

Visible transmittance 0.901

Conductivity (W/mK) 0.9

Thickness (m) 0.0025

2.4.2 Climate region

Iran is situated in Western Asia with an area of about 1.65 million km2 along the coastline of the Sea of Oman and 
the Persian Gulf to the south [60], [61]. Iran has a hot-dry climate characterized by long hot-dry summers and short 
cool winters [62]. Bushehr is a port city situated on the Persian Gulf coast in southern Iran with a hot semi-arid climate 
whose temperature alters from 12 °C to 37 °C and rarely reaches below 9 °C or above 39 °C during the year [63], [64]. 
It has a latitude of 28.9036N and a longitude of 50.8208E, respectively. The annual heating degree-days (HDDs) and 
cooling degree-days (CDDs), with a base temperature of 18.3 °C, are respectively 217 and 2,847 [65], [66]. In this 
research, Bushehr is adopted as a representative city for the studied climate, whose weather information in epw format 
prepared by the DOE BTO [56] is employed for the EnergyPlus simulations.

2.4.3 Inputs, outputs, and constraints

In this paper, four output variables including annual heating energy use (AHC), annual cooling energy use (ACC), 
annual lighting energy use (ALC), and predicted percentage of dissatisfied (PPD) index as a measure of the occupant 
thermal comfort level were adopted. All four outputs are calculated directly by the EnergyPlus. In addition, the building 
rotation (BR) from the north axis, window-to-wall ratio (WWR), depth of shading device (DSH), cooling and heating 
setpoints (CSPT and HSPT), solar absorptance of the building walls including interior walls (SAIN_W) and exterior walls 
(SAEx_W), thickness of building wall (ThEx_W), solar transmittance of window glass (STwin), visible transmittance of 
window glass (VTwin), thickness of window glass (Thwin), thickness of gas in window (Thgas-win) with iteration step of 
400 for each variable were adopted as inputs. The characteristics of the input variables are detailed in Table 2.



Engineering Science & Technology 236 | Masoud Nasouri, et al.

Table 2. Characteristics of the input variables

Item Input Unit Initial value Range Type

x1 BR ° 0 [0, 360) Continues

x2 WWR - 0.2 (0, 1) Continues 

x3 DSH m 1 (0, 1.5] Continues

x4 CSPT °C 24.5 (22, 30] Continues

x5 HSPT °C 21 [13, 22] Continues

x6 SAIN_W - 0.505 [0, 1] Continues

x7 SAEx_W - 0.311 [0, 1] Continues

x8 ThEx_W m 0.1 [0.1, 0.4] Continues

x9 STwin - 0.837 [0, 1] Continues

x10 VTwin - 0.898 [0, 1] Continues

x11 Thwin mm 3 [1, 16] Continues

x12 Thgas-win mm 6 [1, 14] Continues

4. Results and discussion
In this section, the results of the implementation of the introduced method on the building under study in Bushehr 

(Iran) with a hot semi-arid climate are presented. First, the OPAT analysis as the LSA is performed to determine the 
behavior of outputs versus inputs and find out how the outputs are affected due to input changes. In addition, the DI of 
each output to input is appraised, regardless of the interaction of the other inputs. Then, Sobol’s analysis as the GSA is 
performed to quantify and prioritize the sensitivity of outputs-to-inputs.

4.1 Results of OPAT analysis

This part of the investigation explores the influence of BR, WWR, DSH, CSPT, HSPT, SAIN_W, SAEx_W, ThEx_W, 
STwin, VTwin, Thwin, Thgas-win on the AHC, ACC, ALC, and PPD employing the OPAT approach. To this end, one input is 
changed over its boundary one at a time and the other inputs are kept fixed at their nominal values (as given in Table 1 
and Table 2) and the response of the outputs is measured. 

4.1.1 Influence of BR

Figure 3 indicates the influence of BR on the AHC, ACC, ALC, and PPD. As observed, the lowest amount of AHC, 
ACC, ALC, and PPD was obtained at an angle of 90 (BF to the east), 272 (BF to the west), 128 (BF to the southwest), 
and 298 (BF to the northeast), respectively. Accordingly, the building system had a completely non-linear and complex 
behavior about the BR. Hence, a Pareto optimization is needed to find the optimum BR in such a way that both annual 
total energy consumption (ATC) and PPD criteria have their optimal values. Overall, the DI of AHC, ACC, ALC, and 
PPD were respectively 12%, 3%, 8%, and 1%, which means that the BR has the most influence on the AHC and the 
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least influence on the PPD, without considering the influence of other inputs. Without defining the DI index, it was not 
possible to understand the sensitivity of outputs to BR.
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Figure 3. Influence of BR on the AHC, ACC, ALC, and PPD

4.1.2 Influence of WWR

Figure 4 indicates the influence of WWR on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
WWR from 0% to 100%, the AHC and ALC decreased while ACC and PPD increased because of the increase in 
receiving lighting and heating energy from the outside environment into the building. Accordingly, a Pareto optimization 
is needed to find the optimum WWR in such a way that both ATC and PPD criteria have their optimal values. In 
addition, AHC and ACC changes were linear while PPD and ALC changes were exponentially contrasted to WWR 
changes. With the increase in window size, the annual cooling energy use increased compared to the initial model due to 
the excessive rise of the solar energy into the room model, which led to a decrease in the annual heating energy demand. 
Besides, the lighting energy demands decreased compared to the initial model because of the increment of the lighting 
energy from the outside into the building model. The DI of AHC, ACC, ALC, and PPD were respectively 27%, 18%, 
28%, and 7%, which shows that the WWR has the most influence on the AHC and ALC and the least influence on the 
PPD.
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Figure 4. Influence of WWR on the AHC, ACC, ALC, and PPD

4.1.3 Influence of DSH
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Figure 5. Influence of DSH on the AHC, ACC, ALC, and PPD

Figure 5 indicates the influence of DSH on the AHC, ACC, ALC, and PPD. As observed, with the increase in DSH 
from 0 m to 1.5 m, the AHC and ALC increased while PPD and ACC decreased because of the decrease in receiving 
lighting and heating energy from the outside environment into the building. With the increase in DSH, the annual 
cooling energy demand decreased. The annual heating and lighting increase because of the gradual decline of the solar 
energy entrance into the building model with the increase in DSH. Accordingly, a Pareto optimization is needed to find 
the optimum DSH in such a way that both ATC and PPD criteria have their optimal values. In addition, AHC, ACC, 
ALC, and PPD changes were almost exponentially contrasted to DSH changes. Hence, the DI of AHC, ACC, ALC, and 
PPD were respectively 2%, 2%, 2%, and 1%, which expresses that DSH has a small influence on AHC, ACC, ALC, and 
PPD.

4.1.4 Influence of CSPT

Figure 6 indicates the influence of CSPT on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
CSPT from 22 °C to 33 °C, the AHC and ACC decreased while it did not affect the ALC, which shows the ALC is 
not dependent on CSPT. In addition, with the increase in CSPT, the PPD first decreased, but above the temperature of 
24 °C, it sharply increased. The reason is that as the CSPT increases, the conditions of thermal comfort of occupants 
become favorable as per the Fanger model [13], but above the temperature of 24 °C because the VAV system does not 
start operating until it reaches the high value of CSPT, which leads to the feeling of high heat and discomfort in the 
occupants. Accordingly, despite the reduction of ATC due to the non-starting of the VAV system until it reaches the high 
CSPT, the thermal comfort conditions become unfavorable and the PPD deviates from the sweet spot. Additionally, the 
PPD trend versus CSPT is in accordance with the CSPT value recommended by the EPA [58]. Accordingly, a Pareto 
optimization is needed to find the optimum CSPT in such a way that both ATC and PPD criteria have their optimal 
values. Further, the ACC changes were almost linear while AHC and PPD changes were respectively exponential and 
parabolic in contrast to CSPT changes. Overall, the DI of AHC, ACC, ALC, and PPD were respectively 1%, 54%, 0%, 
and 64%, which means that the CSPT has the most influence on the PPD and ACC while has the least influence on the 
AHC and ALC.



Engineering Science & Technology 240 | Masoud Nasouri, et al.

A
H

C
 (G

J)

A
C

C
 (G

J)
PP

D
 (%

)

0

40

20

60

-1

0

-0.5

0.5

1

1.5

A
LC

 (G
J)

CSPT (°C)

22 24 3026 3228 33

CSPT (°C)

22 24 3026 3228 33

CSPT (°C)

22 24 3026 3228 33

CSPT (°C)

22 24 3026 3228 33

7.95

8.05

8

8.1

8.15

8.2

0

20

10

50

30

40

Figure 6. Influence of CSPT on the AHC, ACC, ALC, and PPD

4.1.5 Influence of HSPT
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Figure 7. Influence of HSPT on the AHC, ACC, ALC, and PPD

Figure 7 indicates the influence of HSPT on the AHC, ACC, ALC, and PPD. As observed, unlike the influence 
of CSPT on AHC and ACC, with the increase in HSPT from 13 °C to 22 °C, the AHC and ACC increased. However, 
similar to the influence of CSPT on ALC, the HSPT did not affect the ALC. In addition, with the increase in HSPT 
from very cold to moderate temperature, the PPD decreased as the thermal comfort conditions of occupants became 
favorable as per the Fanger model [13] and the PPD approached the sweet spot. Additionally, the PPD trend versus 
HSPT is in accordance with the HSPT value recommended by the EPA [58]. In addition, the AHC and ACC changes 
were exponential while PPD changes were parabolic in contrast to HSPT changes. Accordingly, a Pareto optimization is 
needed to find the optimum HSPT in such a way that both ATC and PPD criteria have their optimal values. Overall, the 
DI of AHC, ACC, ALC, and PPD were respectively 92%, 1%, 0%, and 22%, which indicates that HSPT has the most 
influence on the AHC and the least influence on the ACC and ALC.

4.1.6 Influence of SAIN_W
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Figure 8. Influence of SAIN_W on the AHC, ACC, ALC, and PPD

Figure 8 indicates the influence of SAIN_W on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
SAIN_W from 0 to 1, the ACC and PPD decreased while the AHC increased. However, SAIN_W did not affect the ALC. In 
other words, the darker the color of the interior wall, the lower the amount of ACC and PPD and the higher the amount 
of AHC. Accordingly, a Pareto optimization is needed to find the optimum SAIN_W in such a way that both ATC and PPD 
criteria have their optimal values. Inner walls with appropriate solar absorptance can absorb heat during the day and 
release it at night, contributing to a more stable and comfortable indoor temperature. This effect is particularly beneficial 
in spaces that experience significant temperature fluctuations, helping to maintain a consistent thermal environment that 
aligns with human comfort levels. In addition, the AHC, ACC, and PPD changes were exponential in contrast to SAIN_W
changes. Overall, the DI of AHC, ACC, ALC, and PPD were respectively 1%, 1%, 0%, and 1%, which means that 
SAIN_W has a small influence on AHC, ACC, ALC, and PPD.

4.1.7 Influence of SAEx_W
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Figure 9. Influence of SAEx_W on the AHC, ACC, ALC, and PPD

Figure 9 indicates the influence of SAEx_W on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
SAEx_W from 0 to 1, the AHC decreased while ACC and PPD increased. However, SAEx_W did not affect the ALC. In 
other words, the darker the color of the exterior wall, the lower the amount of AHC and the higher the amount of ACC 
and PPD. Accordingly, a Pareto optimization is needed to find the optimum SAEx_W in such a way that both ATC and 
PPD criteria have their optimal values. The external walls with high solar absorptance absorb more solar energy, leading 
to increased heat gain within the building. This can significantly increase the cooling demand, leading to higher energy 
consumption by air conditioning systems. Conversely, walls with lower solar absorptance reflect more solar radiation, 
helping to reduce cooling loads and energy consumption. In addition, the AHC and PPD changes were respectively 
exponential and parabolic; however, ACC linearly changed contrasted to SAEx_W changes. Overall, the DI of AHC, 
ACC, ALC, and PPD were respectively 63%, 44%, 0%, and 20%, which means that SAEx_W has the most influence on 
the AHC and the least influence on the ALC.

4.1.8 Influence of ThEx_W

Figure 10 indicates the influence of ThEx_W on the AHC, ACC, ALC, and PPD. As observed, with the increase 
in ThEx_W from 0.1 m to 0.4 m, the AHC, ACC, and PPD decreased almost parabolically. However, ThEx_W did not 
affect the ALC. Enhanced ThEx_W significantly improves insulation properties, effectively reducing thermal bridging 
and heat transfer between the building’s interior and the external environment. This reduction in heat transfer directly 
correlates with a decrease in annual cooling and heating energy demands, as less energy is required to maintain optimal 
indoor temperatures, irrespective of the external climatic conditions. Moreover, the increased thermal mass provided by 
thicker walls contributes to more stable indoor temperatures, mitigating the impact of daily and seasonal temperature 
fluctuations. This stability enhances occupant comfort by minimizing the variations in indoor thermal conditions, 
leading to environments that are naturally more consistent and comfortable. Consequently, optimizing the thickness of 
external walls presents a tangible strategy for achieving substantial energy savings while simultaneously enhancing the 
quality of indoor living spaces, making it a critical consideration for sustainable building design and construction. The 
strategic implementation of wall thickness adjustments, therefore, not only aligns with environmental sustainability 
goals but also significantly contributes to the health, well-being, and satisfaction of building occupants. As a result, a 
thicker wall provides extra insulation, making a home more energy-comfort efficient, comfortable, and soundproof, 
which is in agreement with the results obtained by Yu et al. [67]. However, thicker walls need more material, which 
adds costs and weight. In this regard, a cost-benefit analysis is needed for adopting the best ThEx_W. Overall, the DI of 
AHC, ACC, ALC, and PPD were respectively 10%, 6%, 0%, and 2%, which means that ThEx_W has the most influence 
on the AHC and the least influence on the ALC.
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Figure 10. Influence of ThEx_W on the AHC, ACC, ALC, and PPD

4.1.9 Influence of STwin
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Figure 11. Influence of STwin on the AHC, ACC, ALC, and PPD

Figure 11 indicates the influence of STwin on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
STwin from 0 to 1, the AHC decreased while the ACC and PPD increased because of the increase in solar heat entering 
the building through the window glass. However, STwin did not affect the ALC. High STwin allows for an abundance 
of solar heat energy, potentially elevating total cooling demands and decreasing total heating demands. Accordingly, 
a Pareto optimization is needed to find the optimum STwin in such a way that both ATC and PPD criteria have their 
optimal values. In addition, the AHC, ACC, and PPD changes were almost parabolic in contrast to STwin changes. 
Overall, the DI of AHC, ACC, ALC, and PPD were respectively 5%, 4%, 0%, and 1%, which means the STwin has the 
most influence on the AHC and ACC and the least influence on the ALC. However, it is observed that STwin has a small 
influence on AHC, ACC, ALC, and PPD.

4.1.10 Influence of VTwin
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Figure 12. Influence of VTwin on the AHC, ACC, ALC, and PPD

Figure 12 indicates the influence of VTwin on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
VTwin from 0 to 1, the AHC increased a little while the ACC, ALC, and PPD almost parabolically decreased because of 
the increase in lighting energy entering the building through the window glass. High VTwin promotes the penetration of 
natural daylight, significantly enhancing interior brightness and reducing the reliance on artificial lighting. This increase 
in natural light has been linked to improved mood, increased productivity, and even better physical health for occupants. 
Accordingly, a Pareto optimization is needed to find the optimum VTwin in such a way that both ATC and PPD criteria 
have their optimal values. Overall, the DI of AHC, ACC, ALC, and PPD were respectively 1%, 1%, 11%, and 1%, 
which means that VTwin has the most influence on the ALC and the least influence on the AHC, ACC, and PPD.

4.1.11 Influence of Thwin

Figure 13 indicates the influence of Thwin on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
Thwin from 1 mm to 15 mm, the AHC, ACC, and PPD linearly decreased a little. However, Thwin did not affect the 
ALC. High Thwin offers improved thermal insulation, reducing the conductive heat transfer from the hot exterior to the 
cooler interior. This enhancement in insulation can significantly decrease the building’s cooling demands by limiting 
the amount of heat that enters, thereby contributing to a reduction in annual energy consumption for air conditioning. 
Moreover, the increased Thwin can also provide better acoustic insulation, contributing to a more comfortable and quieter 
indoor environment, an aspect particularly valuable in densely populated or urban areas. However, it is essential to 
balance these benefits with potential downsides, such as the increased weight and cost, which could affect the feasibility 
and economic viability of installing thicker glass in large-scale applications. In addition, high Thwin provides enhanced 
thermal insulation, reducing the rate of heat transfer from the warm interior to the colder external environment. This 
improved insulation capability can lead to substantial reductions in heating energy requirements. Overall, the DI of 
AHC, ACC, ALC, and PPD were respectively 1%, 1%, 0%, and 1%, which means that Thwin has a small influence on 
AHC, ACC, ALC, and PPD.
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Figure 13. Influence of Thwin on the AHC, ACC, ALC, and PPD

4.1.12 Influence of Thgas-win

Figure 14 indicates the influence of Thgas-win on the AHC, ACC, ALC, and PPD. As observed, with the increase in 
Thgas-win from 1 mm to 14 mm, the AHC, ACC, and PPD decreased exponentially. However, Thgas-win did not affect the 
ALC. Enhanced Thgas-win, typically achieved by increasing the space between panes and utilizing inert gases improves 
the thermal insulation of windows. This enhancement reduces thermal conductivity and heat transfer, leading to a 
notable decrease in cooling energy requirements by minimizing the intrusion of external heat into the building during hot 
periods. Concurrently, this insulation property helps in retaining interior warmth during cooler times, thereby reducing 
heating energy demands. High Thgas-win directly contributes to a more stable and comfortable indoor environment, 
as it minimizes the thermal exchange between the interior and exterior. In winter, the increased Thgas-win helps retain 
warmth within a room, preventing cold spots and reducing the chill effect near windows, thus ensuring a uniformly 
comfortable space. Conversely, during the warmer months, this enhanced insulation limits the ingress of external 
heat, keeping indoor spaces cooler and more comfortable without excessive reliance on air conditioning systems. 
Furthermore, the reduced need for heating and cooling to maintain thermal comfort not only lowers energy consumption 
but also mitigates fluctuations in indoor temperatures, leading to a more consistently comfortable environment. This 
stabilization of indoor temperatures is crucial for occupant well-being, as it prevents the discomfort associated with 
drastic temperature variations and enables individuals to enjoy their living or working spaces to the fullest. Therefore, 
the careful consideration of gas thickness in window design emerges as a critical factor in achieving superior thermal 
comfort, underscoring the importance of advanced glazing technologies in modern architectural practices. Consequently, 



Engineering Science & Technology 248 | Masoud Nasouri, et al.

the DI of AHC, ACC, ALC, and PPD were respectively 2%, 1%, 0%, and 1%, which means that Thgas-win has a small 
influence on AHC, ACC, ALC, and PPD.
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Figure 14. Influence of Thgas-win on the AHC, ACC, ALC, and PPD

4.2 Results of Sobol’s analysis

Table 3 indicates the total-order SI (ST) as per Sobol’s analysis and DI as per OPAT analysis of the AHC, ACC, 
ALC, and PPD. As observed, HSPT, SAEx_W, and WWR with the ST of respectively 80%, 79%, and 35% were the most 
influential inputs on the AHC while, DSH, CSPT, SAIN_W, STwin, VTwin, Thwin, and Thgas-win were the least influential 
inputs on the AHC. Also, BR and ThEx_W with the ST of respectively 16% and 13% had a moderate influence on the 
AHC. In addition, CSPT, SAEx_W, and WWR with the ST of respectively 72%, 63%, and 24% were the most influential 
inputs on the ACC. However, Thgas-win, SAIN_W, Thwin, and VTwin were respectively the least influential inputs on the 
ACC. Further, WWR, VTwin, and BR with the ST of respectively 33%, 25%, and 21% were the most influential inputs 
on the ALC, while CSPT, HSPT, SAIN_W, SAEx_W, ThEx_W, STwin, Thwin, and Thgas-win did not affect the ALC because 
of the non-dependence of the ALC on specifications of HVAC system and thermo-physical properties of wall and 
window glass. Additionally, CSPT, HSPT, SAEx_W, and WWR with the ST of respectively 81%, 40%, 36%, and 28% 
were respectively the most influential inputs on the PPD, while other parameters were the least influential inputs on the 
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PPD. Summery, as per the results of Sobol’s analysis, several conclusions were obtained for our building under study as 
follows:

1. BR had the most influence on the ALC and the least influence on the PPD.
2. WWR had the most influence on the AHC and ALC and the least influence on the ACC.
3. DSH had the most influence on the ALC and the least influence on the PPD.
4. CSPT had the most influence on the ACC and PPD and the least influence on the ALC and AHC.
5. HAPT had the most influence on the AHC and PPD and the least influence on the ALC and ACC.
6. SAEx_W had the most influence on the AHC and the least influence on the ALC.
7. ThEx_W had the most influence on the AHC and the least influence on the ALC.
8. STwin, SAIN_W, Thwin, and Thgas-win had no impact on the ALC and had very little influence on AHC, ACC, and 

PPD.
9. VTwin had the most influence on the ALC and had very little influence on AHC, ACC, and PPD.
10. AHC had a strong dependence on HSPT and SAEx_W.
11. had a strong dependence on CSPT and SAEx_W.
12. had a strong dependence on WWR and VTwin.
13. had a strong dependence on HSPT and CSPT.
14. ALC had no dependence on the CSPT, HSPT, SAIN_W, SAEx_W, ThEx_W, STwin, Thwin, and Thgas-win.

Table 3. Total-order SI (ST) as per Sobol’s analysis and DI as per OPAT analysis

Item Input
AHC ACC ALC PPD

ST (%) DI(%) ST (%) DI(%) ST (%) DI(%) ST (%) DI(%)

x1 BR 16 12 6 3 21 8 2 1

x2 WWR 35 27 24 18 33 28 28 7

x3 DSH 3 2 4 2 6 2 2 1

x4 CSPT 2 1 72 54 0 0 81 64

x5 HSPT 80 92 2 1 0 0 40 22

x6 SAIN_W 4 1 3 1 0 0 2 1

x7 SAEx_W 79 63 63 44 0 0 36 20

x8 ThEx_W 13 10 8 6 0 0 4 2

x9 STwin 7 5 6 4 0 0 2 1

x10 VTwin 2 1 2 1 25 11 3 1

x11 Thwin 3 1 2 1 0 0 2 1

x12 Thgas-win 2 2 2 1 0 0 3 1

Besides, by comparing the results obtained through the OPAT and Sobol’s analyses, it may be concluded that the 
sensitivity results obtained by the introduced DI in OPAT are in good agreement with Sobol’s because the main idea 
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of defining the DI was taken as per the variance of the output due to changes in the input. Without having an index in 
OPAT analysis, it was not possible to determine the sensitivity of the outputs to the inputs only by monitoring the OPAT 
graphs, mainly due to the non-linear behavior of the building system. Therefore, the introduced DI may be used for the 
OPAT analysis of different systems and obtain reliable results. It should be noted that the ranges adopted for the inputs 
highly affect the SA results. Therefore, the authors chose the ranges of inputs as per the most common materials in the 
market as well as the EnergyPlus data set [56].

As can be deduced from the results, both OPAT and Sobol’s methods offer unique insights into sensitivity analysis 
but differ significantly in their approach and the depth of information they provide. The OPAT method, with its 
straightforward approach of altering one input variable at a time while keeping others constant, offers an intuitive way to 
identify the influence of individual factors on the output. This method is particularly accessible and easy to implement, 
making it a popular choice for preliminary sensitivity analyses. However, its major limitation lies in its inability to 
capture the interactive effects between variables, which can lead to an incomplete understanding of the system being 
studied.

In contrast, Sobol’s method employs a more sophisticated approach based on variance decomposition to quantify 
the contribution of each input variable to the output’s variance, including both the main effects and all possible 
interactions among variables. This method provides a comprehensive view of the sensitivity landscape, enabling 
researchers to identify not only the most influential factors but also how these factors interact with each other to affect 
the system’s output. Sobol’s method, rooted in the mathematical framework of variance-based sensitivity analysis, 
offers a more detailed and accurate depiction of the system’s behavior, but it requires significantly more computational 
resources compared to the OPAT method. The choice between OPAT and Sobol’s methods should, therefore, be guided 
by the specific requirements of the study, including the complexity of the model, the number of input variables, the need 
to understand interaction effects, and the available computational resources.

5. Conclusions
As buildings are inherently very complex multivariable systems, undoubtedly, SBSA is a leading and indispensable 

approach for building engineers and decision-makers to predict the sensitivity and behavior of the system to its inputs to 
adopt the best solutions in the shortest possible time. This research introduced a powerful method for SBSA of building 
performance by integrating EnergyPlus with LSA and GSA algorithms through the C++ programming language. 
Accordingly, the C++ features and potentials were added into EnergyPlus to perform SBSA of building performance 
directly without the use of other plugins and third parties. A dwelling house situated in Bushehr (Iran) with a hot semi-
arid climate was adopted as a case study to examine the sufficiency of the introduced approach. Hereupon, the building 
rotation (BR) from the north axis, window-to-wall ratio (WWR), depth of shading device (DSH), cooling and heating 
setpoints (CSPT and HSPT), solar absorptance of the building walls including interior walls (SAIN_W) and exterior walls 
(SAEx_W), thickness of (building) wall (ThEx_W), solar transmittance of window glass (STwin), visible transmittance of 
window glass (VTwin), thickness of window glass (Thwin), thickness of gas in window (Thgas-win) were adopted as input 
variables. Moreover, four major building criteria including AHC, ACC, ALC, and PPD were adopted as output variables. 
The OPAT analysis as the LSA and Sobol’s analysis as the GSA were conducted to scrutinize the behavior of outputs 
contrasted to input changes and to quantify the sensitivity of outputs-to-inputs. In the LSA approach, a new sensitivity 
index was suggested to specify the influence of inputs on outputs. The results demonstrated that for our building under 
study, AHC was most sensitive to the heating setpoint and solar absorptance of the building exterior walls, respectively. 
ACC was most sensitive to the cooling setpoint and solar absorptance of the building exterior walls, respectively. 
Besides, WWR, visible transmittance of window glass, and building rotation were respectively the most influential 
inputs on the ALC. Furthermore, cooling and heating setpoints, the solar absorptance of the building exterior walls, 
and WWR were respectively the most influential inputs on the PPD. The CSPT, HSPT, SAIN_W, SAEx_W, ThEx_W, STwin, 
Thwin, and Thgas-win did not affect the ALC. Furthermore, the proposed DI was in good agreement with the ST. It was 
deduced the design specifications remarkably affected building efficiency in such a way that with reasonable adoption of 
parameters, it is possible to achieve a building that has the lowest energy loss and the highest resident’s thermal comfort. 
By carefully considering the local climate and building orientation, and incorporating appropriate materials, colors, and 
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architectural strategies, it is possible to optimize the energy efficiency of buildings while ensuring a comfortable living 
and working environment.

Additionally, the results showed that OPAT provides a quick and straightforward way to identify influential factors. 
It requires fewer model runs, which can be advantageous when dealing with computationally expensive models, and 
is effective for identifying the direct impact of each input variable on the output. However, OPAT does not account for 
interaction effects between variables. In many complex systems with a large number of input variables like building, 
the output depends on the interaction between two or more inputs, which OPAT fails to capture. Because it doesn’t 
consider interactions, OPAT might lead to misleading conclusions about the importance of variables or their impact on 
the system. On the other hand, Sobol’s method delivered a comprehensive and nuanced understanding of the system’s 
sensitivity dynamics, making it invaluable for complex models where interactions play a significant role in determining 
the output. Nonetheless, Sobol’s method requires a significant number of model runs, making it computationally 
expensive.

The developed approach prepared a speedy and accurate way to perform the SBSA of buildings during the design 
phase by integrating the abilities of LSA and GSA algorithms into EnergyPlus and prepared an opportunity for building 
engineers to have a better picture of the range of options for decision-making. Consequently, the introduced SBSA 
approach allows building designers and decision-makers to identify the significant parameters to design a building 
with optimal performance by carefully adopting the best elements at the initial conceptual design phase in the shortest 
possible time.

Our future investigation involves multi-objective optimization of the building under study to extract the Pareto 
optimal solutions and determine the trade-off between building energy use and residents’ thermal comfort. In addition, 
the proposed method will be implemented in different climate zones of Iran to examine the influences of climate on 
building efficiency. It would be also interesting to examine the introduced procedure on other building types, particularly 
net zero energy buildings. Besides, the SBSA of acoustic comfort and respiratory comfort, environmental and economic 
analysis, embodied energy, and life cycle assessment should be performed to get more robust design results.
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