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Abstract: The current work revisits the concatenation model having Kerr law of self-phase modulation and takes a 
fresher look with three different forms of integration technologies. The extended simple equation approach, the tanh-
coth method, and the improved modified extended tanh-function approach yielded a spectrum of soliton solutions to the 
model. These reveal a spectrum of 1-soliton solutions to the model and they are all classified as well. The surface plots 
are also presented.

Keywords: traveling waves, extended simplest equation method, tanh-coth approach, improved modified extended tanh-
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1. Introduction
One of the most unique models proposed to study the propagation of solitons through optical fibers is the 

concatenation model. This model was conceived in 2014 [1, 2]. It is the conjunction of three well-known equations 
that is studied in nonlinear optics. They are the nonlinear Schrodinger’s equation (NLSE), the Lakshmanan-Porsezian-
Daniel (LPD) model, and the Sasa-Satsuma equation (SSE). These three equations are concatenated and a new model 
was established during 2024, hence the name.

There have been several works that were reported from this model. These include the Painleve analysis, retrieval of 
solitons, and conservation laws with the usage of the undetermined coefficients and the multiplier approach respectively. 
Later, the trial equation approach was also implemented to recover the soliton solutions to the model [3-7]. Further 
down the road, several more studies were conducted. These include the evolution of quiescent optical solitons for 
nonlinear chromatic dispersion (CD) and the model was further analyzed with the absence of self-phase modulation 
(SPM). In this context, quiescent optical solitons were also studied with polarization-mode dispersion and the revealed 
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interesting results were also reported. The model was also studied numerically with the application of the Laplace-
Adomian decomposition principle where the surface plots for bright and dark soliton solutions are reported along with 
the error analysis. The inclusion if the spatio-temporal dispersion gave way to an extended version of the concatenation 
model that was analyzed, and the mitigation of the Internet bottleneck effect was also proposed for the model.

The current paper takes a fresher look at the model to recover the soliton solutions. These are the applications of a 
new set of integration technologies. They include the extended simple equation approach, the tanh-coth method, and the 
improved modified extended tanh-function approach. Thus, from such a fresh visitation to the model with these newly 
proposed integration structures a spectrum of soliton solutions is revealed. The results are indeed very promising as well 
as encouraging. These solutions are enlisted and they are exhibited in the rest of the paper along with the corresponding 
integration algorithms.

2. Governing model
The concatenation model is formulated as [1-6]:

2 2 2 2 2 4
1 1 2 3 4 5 6| | ( ) | | | | | |t xx xxxx x x xx xxi a b cψ ψ ψ ψ σ ψ σ ψ ψ σ ψ ψ σ ψ ψ σ ψ ψ σ ψ ψ∗ ∗ + + + + + + + + 

2 2
2 7 8 9 0.xxx x xic σ ψ σ ψ ψ σ ψ ψ ∗ + + + =   

The wave profile, including its spatial and temporal derivatives, can be described by the complex function ψ(x, 
t). The linear temporal evolution of solitons is given by the first term, while a is the coefficient of CD and b represents 
SPM. The concatenation model is the conjoined version of three familiar and frequently visible models. For c1 = c2 = 0, 
the model collapses to NLSE, while c1 = 0 and c2 = 0 give the familiar SSE and LPD equations, respectively.

3. Traveling wave solution
The solutions of Eq. (1) are supposed as [8-15]:

( , )( , ) ( ) ,i x tx t u e θψ ξ=

where ξ = x − γt and θ(x, t) = −kx + ωt + θ0 is the phase component of the wave. Also, u(ξ ) is the amplitude component 
of the wave. Here γ is the soliton speed, k is the soliton frequency, ω is the wavenumber and θ0 is the phase constant. 
Using Eq. (2) and their derivatives, Eq. (1) is transformed to

2 3[ ] [ 2 ]i u u a u iku k u buγ ω′ ′′ ′− − + − − +

( ) ( )2 3 4 2 2 2 3
1 1 1 2 34 6 4 ( ) 2c u'''' iku k u ik u k u c uu u kiu k uσ σ σ′′′ ′′ ′ ′ ′+ − − + + + + − −

( ) ( )2 2 2 3 5 2 3
1 4 5 1 6 2 7( ) 2 3 3c u u iku u k u c u c iu ku ik u k uσ σ σ σ′′ ′ ′′′ ′′ ′+ + − − + + + − −

( )2
2 8 9( ) 0.c u iu kuσ σ ′+ + + =

Eq. (3) can be decomposed into real and imaginary parts, which yield a pair of relations.

(1)

(2)

(3)
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The real part from Eq. (3) is:

(4) 2 2
1 1 2 7 1 1 1 4 53 6 ( )c u a c k k c u c u uσ σ σ σ σ  ′′ ′′+ + − + + 

2 4 2 3
1 2 3 1 1 2 7( )c uu c k ak c k uσ σ σ σ ω ′+ + + − − − 

2 3
2 8 9 1 2 3 4 5( + ) ( + + )b kc c k uσ σ σ σ σ σ + + − + 

5
1 6 0,c uσ+ =

while the imaginary part reads as:

3 2
2 7 1 1 1 1 2 7( 4 ) 4 3 2c kc u k c k c ak uσ σ σ σ γ ′′′ ′− + − − − 

2
2 8 9 1 2 3 4 5( ) 2 ( ) 0.c kc u uσ σ σ σ σ σ ′+ + − + + + =  

From Eq. (5), the soliton speed is:

( )2
1 12 4 ,k k c aγ σ= − +

whenever

2 8 9 1 2 3 4 5( ) 2 ( ),c kcσ σ σ σ σ σ+ = + + +

and

2 7 1 14 .c kcσ σ=

Eq. (4) can be written as

(4) 2 2 3 5
1 1 2 1 4 5 1 2 3 5 6 1 6( ) ( ) 0,c u u c u u c uu u u c uσ β σ σ σ σ β β σ′′ ′′ ′+ + + + + + + + =

Where,

2
2 1 16 ,a k cβ σ = + 

2 2
5 1 1( 3 ) ,k a k cβ σ ω = − + + 

and

2
6 1 2 3 4 5( ) .b c kβ σ σ σ σ = + + + + 

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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For β2 = β5 = β6 = 0, then Eq. (9) can be written as:

(4) 2 2 5
1 4 5 2 3 6( ) ( ) 0.u u u uu uσ σ σ σ σ σ′′ ′+ + + + + =

Therefore, we get:

2 4 2
1 1 1 1 1 2 3 4 56 ,  3 ,  ( + ) .a k c k c b c kσ ω σ σ σ σ σ= − = = − + +

4. Methodologies
In this section we will apply three different methods to solve Eq. (13). These methods are the extended simple 

equation method (ESEM), the Tanh-Coth method, and the improved modified extended Tanh function method (IMETF).

4.1 Extended simple equation method (ESEM)

In this section, the extended form of the simple equation method (ESEM) is introduced to obtain the soliton 
solutions [8, 9].

Step 1: Consider the form of the solution for Eq. (13) as [16-25]:

1
1( ) ( ).j j

jju B fξ ξ=

=−
= ∑

Here, Bj is a real constant.
Step 2: Find the positive integer N that appeared in Eq. (13) by employing the balance rule between non-linear 

terms and the highest-order derivative.
Step 3: Suppose that f(ξ ) satisfies the following differential equation:

2
0 1 2( ) ( ) [ ( )] ,f b b f b fξ ξ ξ′ = + +

where b0, b1, and b2 are arbitrary constants.
Step 4: For different values of bi, the solutions of Eq. (1) are given below:
When b0 = 0,

1 0

1 0

( )
1

1( )
2

( ) ,   0,
1

b

b
b e

f b
b e

ξ ξ

ξ ξξ
+

+
= >

−

and

1 0

1 0

( )
1

1( )
2

( ) ,   0.
1

b

b
b ef b

b e

ξ ξ

ξ ξξ
+

+
= − <

+

When b1 = 0,

( )0 2 0 2 0
0 2

2

tanh ( )
( ) ,   0.

b b b b
f b b

b

ξ ξ
ξ

− − +
= <

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Step 5: A system of equations is produced by substituting Eq. (15) into Eq. (13) and setting the coefficients of 
powers of f j(ξ ) to zero. After the set of equations is solved, the constant parameter values are found. The solution of Eq. 
(13) is obtained by carrying these constant values along with the f (ξ ) values in Eq. (16).

Now to find the values of N, apply the homogeneous balance principle to Eq. (13). By balancing u2u'' and u(4), one 
gets N + 4 = 2N + N + 2, then N = 1. Thus u(ξ ) has the form that is given below:

1
0 1 1( ) ( ),  0.

( )
B

u B B f B
f

ξ ξ
ξ
−= + + ≠

By using Eq. (23) and their derivatives in Eq. (13) along with b1 = 0, we get:

4 5 1
0 1 1 0 1 2

1 4 5

20,  0,  0,  0,  .
8

b b B B B b
σ σ σ

σ σ σ−
+

= − = = = = −
+

Consequently, a dark soliton solution comes out as

( )( ) 0( )21 0 2
1 0 2 2 7 1 1

4 5

20
( , ) tanh {3 8 } exp ,i kx tb b
x t b b x k c kc t ω θσ

ψ σ σ
σ σ

− + +  = − − − 
+  

where

0 2 1 4 50,  ( ) 0.b b σ σ σ< + <

4.2 Tanh-coth method

Assume u = u(ξ), by using the ansatz [8, 9]:

tanh( ),Y ξ=

that leads to the change of variables:

2(1 ) ,du duY
d dYξ

= −

2 2
2 2 2

2 22 (1 ) (1 ) ,d u du d uY Y Y
dYd dYξ

= − − + −

and

4
3 5 1 7 3

1 1 1 1 1 1 1 14 4 3 ( 9 ) 17 ( ) 9 3 .d u a Y a b Y b Y a b Y b Y a Y
dξ

− − − − = − + + + + − − 

For the next step, assume that the solution for Eq. (13) is expressed in the form

0 1( ) ,p pi i
i ii iu Y a Y b Y −

= =
= +∑ ∑

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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where the parameters p can be found by balancing the highest-order linear term u5 with the nonlinear terms u2u'' or uu' 2 
in Eq. (13). Therefore, one gets

5 2 2,  then 1.p p p p= + + =

The tanh-coth method admits the use of the finite expansion for

1
0 1( ) .

b
u Y a a Y

Y
 = + + 
 

Here a0, a1, and b1 are constants to be determined. Substituting Eq. (29) with their derivatives into Eq. (13), we get

4
2 2

1 6 2 3 2 3 2 3 2 3
0,1 0,3 0,2 1 12

6 2 3 6 66

12 5 ( ) ( ) 2( )
3 ,  ,  ,  0,  .

5 ( ) 5 55
a a a a b

σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σσ

 − + + + +
= = − = − = = 

+  

Accordingly, a singular soliton solution shapes up as:

( ) 0( )22 3
2, 0, 2 7 1 1

6
( , ) coth {3 8 } exp ,  1, 2, 3

5
i kx t

j jx t a x k c kc t jω θσ σ
ψ σ σ

σ
− + + + = + − − = 

  

where

2
2 3 2 3

1 4 5
6

( )
,  ( ) .

5 2
σ σ σ σ

σ σ σ
σ
+ +

= + = −

4.3 Improved modified extended tanh-function method

This method offers a simpler and more condensed way for the exact optical soliton solution than the other existing 
schemes. Several authors created the IMETF technique to figure out the soliton solution to several model equations 
in the deferential sense of derivative, including Jumarie’s modified Riemann-Liouville derivatives, conformable 
derivatives, and Kerr law nonlinearity [10-14].

In this section, the (IMETF) method is introduced to obtain the soliton solutions.
Step 1: Consider the form of the solution to Eq. (13) [26-37]:

0 1( ) .j N j Nj j
j jj ju A f B fξ = = −

= =
= +∑ ∑

Here, Aj, and Bj are real constants.
Step 2: Find the positive integer N that appeared in Eq. (13) by employing the balance rule between non-linear 

terms and the highest-order derivative.
Step 3: Suppose that f(ξ ) satisfies the following differential equation:

2 3 4
0 1 2 3 4( ) ( ) ( ) ( ) ( ),f g g f g f g f g fξ ξ ξ ξ ξ′ = + + + +

where g0, g1, g2, g3, and g4 are arbitrary constants.
Step 4: For different values of gi, the solutions of Eq. (13) are given below.

(28)

(29)

(30)

(31)

(32)
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Step 5: A system of equations is produced by substituting Eq. (32) into Eq. (13) and setting the coefficients of 
powers of f j(ξ ) to zero. After the set of equations is solved, the constant parameter values are found. The solution of Eq. 
(13) is obtained by carrying these constant values along with the f (ξ ) values in Eq. (32).

With the integrity of homogeneous evaluating of the highest order derivative terms u2u'' and u(4), one gets N + 4 = 
2N + N + 2, then N = 1. Thus, our technique permits us to use the supplementary solution of the form:

1
0 1( ) ( ) .

( )
B

u A A f
f

ξ ξ
ξ

 
= + + 
 

By using Eq. (33) and their derivatives in Eq. (13), we get the following cases:
Case I
Taking g0 = g1 = g3 = 0, one secures the results:

22
2 31 2

0 1 1 2 4 4 5 6
2 3

( )20, 0,  ,  ,  ,  .
3( ) 12 4

gA B A g g
σ σσ

σ σ σ
σ σ

+
= = = = − = − = −

+


When g2 > 0, and g4 < 0, we acquire a bright soliton solution:

{ } 0( )1
3 2 2

2 3

2
( , ) sech ( ) exp .

3( )
i kx tx t g g x t ω θσ

ψ γ
σ σ

− + += −
+



Case II
Choosing g0 = g1 = g3 = 0, the outcomes are:

0 4 5 6 2 40,  ,  0,  8 .A g gσ σ σ= = − = =

Family I

1 4 1 4
1 1 1 2 2 2

2 3 2 3

4 (4 1) 12For ,  .
3( ) ( )

g gA B A Bσ σ
σ σ σ σ

+
= = ∆ = = = ∆ = −

+ +

1 1 4
3 3 3 4 4 4

2 3 2 3

2 64For ,  .
( ) 7( )

g
A B A Bσ σ

σ σ σ σ
−

= = ∆ = − = = ∆ =
+ +

g2 > 0, and g4 < 0, we attain a straddled bright-singular soliton solution:

{ } { } 0( )1 4
4, 2 2

2 3

4 (4 1)( , ) sech ( ) cosh ( ) exp ,
3( )

i kx t
j

gx t g x t g x t ω θσ
ψ γ γ

σ σ
− + ++  = − + − +

 1, 2, 3, 4.j =

(33)

(34)

(35)

(36)

(37)
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Case III
Choosing g1 = g3 = 0, we have the solution set:

4 2 1 4
0 1 1 4 5

2 3 2 4

(3 2 )0,  0,  2 ,  .
( )( )

g g gA B A
g g
σ

σ σ
σ σ

−
= = = = −

+ −

Taking g2 < 0, g4 > 0, and 
2

2 4 4 2
0

4 4 2

( 12 )
4 (3 2 )

g g g g
g

g g g
+ −  =

−
, a dark soliton solution is acquired:

{ } 0( )4 2 1 4
5 2

2 3 2 4

(3 2 )( , ) 2 tanh ( ) exp .
( )( )

i kx tg g gx t g x t
g g

ω θσ
ψ γ

σ σ
− + +−

= − −
+ −

Case IV
Assuming g1 = g3 = g4 = 0, we get the findings:

1
4 5 2 3 6 0 1 1 2

2 3 0
0,  0,  0,  0,  .

( )
A B A g

g
σ

σ σ σ σ σ
σ σ

+ + + = = = = =
− +



Thus, a bright soliton solution comes out as:

02 ( )1
6 2 2

2 3 0
( , ) sech ( ) exp ,  0.

( ) 2
i kx tg

x t g x t g
g

ω θσ
ψ γ

σ σ
− + +

  = − > 
− +   

Case V
Setting g1 = g3 = g4 = 0, one arrives at the consequences:

2
1 0 1 2 0 4

0 1 1,1 1,2 4 5 2 0 4
2 3 2 3 4

2 (3 1) ( 12 )
0,  0,  ,  ,  ,  2(1 3 ) .

( ) ( )
g g g g

A A B B g g g
g

σ σ
σ σ

σ σ σ σ
− +

= = = = = − = − +
+ +

Accordingly, a singular soliton solution is obtained from the analysis as follows:

0( )0 4
7, 1,

(1 3 )
( , ) coth ( ) exp ,  1, 2.

2
i kx t

j j
g g

x t B x t jω θψ γ − + + + = − − = 
  

5. Results and discussion
With the help of Eqs. (1), we have successfully derived optical soliton solutions for the concatenation model. Three 

methods are used: the ESEM, the Tanh-Coth method, and the Improved Modified Extended Tanh-Function method 
(IMETF). The system’s optical soliton solutions are denoted by ψ(x, t). Equations (4) and (5) are the system of real and 
imaginary equations that are derived from the concatenation model. Next, we investigate this system’s optical soliton 
solutions utilizing the three techniques. Some restrictions were assumed. Surface, contour, and 2D plots of dark and 
bright soliton solutions described by Eqs. (22) and (35) are shown in Figures 1 and 2, respectively. In Figure 1, the 

(38)

(39)

(40)

(41)
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parameters that have been chosen are k = 1, c1 = 1, c2 = 1, σ7 = 1, b0 = 1, b2 = −1, and σ5 = 1, while the parameters g2 = 1, 
and σ3 = 1 are addressed in Figure 2.
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Figure 1. Profile of a dark soliton solution (22)

The Figures presented in our analysis illustrate not only the functional dependence of dark and bright soliton 
solutions on the parameters of fourth-order dispersion (σ1) and nonlinear dispersions (σ2 and σ4) but also provide 
insights into their intricate properties. By examining the behavior of these solutions across varying parameter values, 
we uncover nuanced characteristics such as amplitude modulation. Furthermore, through detailed numerical simulations 
and theoretical analyses, we elucidate the underlying mechanisms driving the observed behaviors. Specifically, we 
explore how changes in the dispersion parameters influence the formation, propagation, and interaction of dark and 
bright solitons within the medium. By delving into these properties, our analysis not only establishes the functional 
dependencies but also enhances our understanding of the dynamic nature of soliton solutions in the context of the 
studied system.

In our investigation, we have observed that modifying the parameter yields varying outcomes for ψ(x, t). However, 
it is important to elucidate that these differences extend beyond mere variations in the numerical values of ψ(x, t). 
Rather, the alterations in the parameter manifest distinct patterns of behavior within the system under study. Thus, 
the essence of the differences lies not only in the diverse numerical outputs but also in the underlying dynamics and 
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emergent phenomena shaped by the parameter’s manipulation.
Our analysis, conducted through rigorous application of established methods, consistently yields robust results. The 

observed consistency and strength of these results are indicative of the reliability and effectiveness of the methodologies 
employed.

(b) Contour plot

|ψ(x, t)|

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5432

x

10-1

t

-4

-2

0

2

4

|ψ(x, t)|

1.0

0.5

0.0
4

2

0

0

2

4

-2

-4

t

x

(a) Surface plot



Engineering Science & Technology 206 | Anjan Biswas, et al.

Figure 2. Profile of a bright soliton solution (35)

6. Conclusion
This paper reports the application of three integration algorithms that were implemented for the first time to the 

concatenation model. The results align with those reported in previous papers. However, the implementation of the three 
integration technologies successfully to the concatenation model, with Kerr law of SPM, is being presented for the first 
time in this paper. The three successfully applied integration algorithms are the extended simple equation approach, 
the tanh-coth method, and the improved modified extended tanh-function approach. Later these methodologies will be 
implemented into the concatenation model with polarization-mode dispersion as well as for dispersion-flattened fibers. 
Additional forms of SPM and the application of these algorithms to the dispersive concatenation model are awaited at 
this time. These results will be made visible after they are aligned with the previously reported works [8-15].
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