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Abstract: As true random numbers are essential for many applications, high-quality Random Number Generators 
(RNGs) are highly demanded. Several different statistical test suites have been developed to evaluate the quality of 
RNGs. However, some programming skills are required to work with these statistical tests as they are not available 
as self-contained software and often are without a Graphical User Interface (GUI). In this work, we have developed 
PiRATe (Pi Randomness Assessment Test) an easy-to-use wrapper software for the assessment of RNGs using 
a comprehensive set of statistical tests, including DIEHARDER, NIST SP800-22, NIST SP800-90B, Entropy-
Nonlinearity-Test (ENT), Borel Normality, and four Chaitin-Schwartz-Solovay-Strassen tests. We then used PiRATe to 
evaluate the quality of five different (Commercial and Experimental) Quantum Random Number Generators (QRNGs).
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1. Introduction
High-quality random numbers are essential in many important and practical areas including telecommunications 

[1]-[3], cryptography [4]-[5], simulations [6]-[7], games [8], and quantum technologies such as Quantum Key 
Distribution [9]-[11], Quantum Imaging [12]-[13], and Quantum Radar [14]-[15]. There are two approaches to the 
generation of random numbers: a software approach known as a Pseudo-Random Number Generator (PRNG), which 
uses mathematical algorithms to generate random numbers from an initial seed [16]-[17], and a hardware approach 
known as a True Random Number Generator (TRNG), which extracts random numbers from a physical process [18]-
[19]. PRNGs may produce high-quality random sequences but by definition, they are (Turing) computable and hence 
predictable. The physical process behind TRNGs could be classical or quantum in nature [20]. While classical TRNGs 
employ complexity behind causality, a quantum TRNG known as a Quantum Random Number Generator (QRNG) 
employs the probabilistic nature of quantum mechanics to produce true random sequences that are unpredictable and 
incomputable. Random numbers from an ideal QRNG will be unbiased, however, it is hard to eliminate classical 
noise in practice [20]. The quality of the output from a Random Number Generator (RNG) (regardless of its type), 
can be assessed by a set of statistical tests [21]-[22]. Common test suites such as Dieharder [23] and NIST SP800-22 
[24] compare the statistical distributions of predefined patterns in the given string to the distribution expected for an 
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ideal random number generator. Other tests evaluate the performance of the output with respect to certain tasks and 
then compare this performance to that of other random number generators [25]. These tests are necessary to verify 
algorithmic randomness and thus incomputability of the random numbers [21]-[22].

Considering researches conducted at the Iranian Center for Quantum Technologies (ICQTs) [26]-[28] and the 
need for high-quality RNGs, we tried to gather a credible set of statistical tests (as a package) and apply them to 
different instruments and random number generation systems [29]. In this paper, we developed a wrapper software with 
Graphical User Interface (GUI) consisting of a comprehensive set of statistical tests including Dieharder [23], NIST 
SP800-22 [24], NIST SP800-90B [30], ENT [31], Borel Normality [25], [32], and Chaitin-Schwartz-Solovay-Strassen 
(CSSS) [21]-[22] tests. We then prepared random data from 5 different QRNGs, performed this set of statistical tests on 
them, and compared them. 

This paper is organized as follows. In Section 2, we give a brief overview of different statistical tests employed, 
a description of the software structure and a description of different QRNGs used in this work. Then we report the 
evaluation results in Section 3. We give an outlook on the impacts and future applications of this software in Section 4. 
Finally, a conclusion is given in Section 5.

2. Materials and methods
2.1 Statistical tests

There are several statistical tests to evaluate the quality of a string of random numbers. Considering their 
applications and popularity, we decided to choose six of the most important packages [20]-[21]. Now we will briefly 
describe these six different packages of tests we have employed in this software.

2.1.1 Dieharder

Dieharder [23] is the most famous test suite for testing RNGs. It is based on an older Diehard [33] battery of tests 
and consists of 31 statistical tests. Each test in this suite evaluates a p-value that should be larger than the significance 
level. The significance level in the tests is α = 0.01. The test is considered successful if all the p-values satisfy 0.01 ≤ p 
− value ≤ 0.99.

  
2.1.2 NIST SP800-22

NIST SP800-22 [24] is the second famous statistical test suite which consists of 15 statistical tests. Similar to 
Dieharder, each test in this suite evaluates a p-value that should be larger than the significance level. The significance 
level in the tests is α = 0.01. The test is considered successful if all the p-values satisfy 0.01 ≤ p − value ≤ 0.99. 

2.1.3 NIST SP800-90B

NIST SP800-90B [30] is an entropy assessment package that provides a standardized means of estimating the 
quality of a source of entropy. This test assures that a random sequence is independent and identically distributed (IID) 
and also estimates the min-entropy for the provided data.

2.1.4 ENT

ENT [31] is a series of basic statistical tests that evaluate the random sequence in some elementary features such 
as entropy [34], Chi-square Test [35], arithmetic mean, Monte Carlo value for Pi, and serial correlation coefficient [35]. 
The entropy is the information density of the random data, expressed as a number of bits per bit. In other words, entropy 
measures how many bits are required to construct a bit of data. Non-random bits have lower entropy as they can be 
described using fewer bits. The Chi-square test is a common test for the evaluation of data randomness and is extremely 
sensitive to errors in RNGs. The Chi-square distribution is calculated for the stream of bytes in the file and expressed as 
an absolute number and a percentage which indicates how frequently a truly random sequence would exceed the value 
calculated. The arithmetic mean is the sum of all 0 s and 1 s divided by the total length. This should be about 0.5 for 
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nearly random data. The deviation of the mean from this value indicates that the data is biased. This test uses successive 
sequences of bits as X and Y coordinates within a square and uses the Monte Carlo algorithm to calculate the value 
of Pi. The Monte Carlo value for Pi is a measure of the quality of a random number generator. The serial correlation 
coefficient measures the extent to which each byte in the string depends upon the previous byte. For random sequences, 
this value is close to zero.

2.1.5 Borel normality

A finite string is subjected to the Borel normality test [25], [32], which determines if all substrings of length  appear 
with the expected probability of 2 − m. A string x of length |x| is said to be Borel normal if all integers m with 

 
1 ≤ m ≤ 

log2 log2 |x| satisfy the following requirements:
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Where ( )m
jN x  is the number of occurrences of the  j th string selected from all binary strings with length m. The 

left side of the above equation is called the Metric Value. Although Borel normality is a prerequisite for algorithmic 
randomness and incomputability, it is insufficient [21], [22], [36]. In the outputs from QRNGs, Borel normality 
violations have been observed [21], [25], [37]. It has been suggested that these violations may have been caused by bias 
in the random strings [21], [37].

2.1.6 CSSS

Random sequences are used as witnesses in the CSSS tests to determine whether an integer n is composite or 
prime. These tests are based on the Solovay-Strassen primality test [38] and the Chaitin-Schwartz theorem [39]. For an 
integer n, the Solovay-Strassen test establishes a predicate W (n, a) defined by

( )1 2( ) (mod )na a n
n

−≠ (2)

Where a is a natural number between 1 and (n − 1), and ( )a
n

 is the Jacobi symbol. W (n, a) is called the Solovay-

Strassen predicate. “If n is prime, then W (n, a) is false for all a ∈ [1, n − 1]. Thus, if W (n, a) is true for some a ∈ [1, n − 1], 
then n is composite, and we call a a witness to the compositeness of n” [22].

The probabilistic outcome of the Solovay-Strassen test can be transformed into a rigorous proof of primality using 
the Chaitin-Schwartz theorem if potential witnesses are drawn from random strings. “Let s be a string of length m in 2-bit 
binary representation, and let n be an integer. Rewrite s into base (n − 1), with digits s = dk dk−1…d0 over the alphabet {0, 
1,…, n − 1}, where k is given by the smallest integer that satisfies the inequality” [22].
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Now the compound predicate is defined as

0 1 1 ( , )  ( , 1 )  ( , 1 ) ...  ( , 1 )kZ n s W n d W n d W n d −= ¬ + ∧¬ + ∧ ∧¬ + (4)

Where W (n, 1 + di) is the Solovay-Strassen predicate.
“The Chaitin-Schwartz theorem states that for all sufficiently large c, if s is a random string containing l(l + 2c)  

bits and n is an integer whose binary representation is l bits long, then Z (n, s) is true if and only if n is prime.” [22].
We can therefore conclude that random strings generally outperform nonrandom strings in testing primality. 
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Consequently, the CSSS tests can identify algorithmic randomness and incomputability. The four CSSS tests use 
random strings from the RNG source as large sets of potential witnesses for the primality test of sets of composite 
numbers. We can then compare the performance of strings from different QRNGs by measuring how well these 
strings perform in this primality-testing task. We used the CSSS tests as proposed and applied by Ref. [21] and code 
implemented by Ref. [22]. As in Ref. [21] and Ref. [22], we choose Carmichael numbers as test numbers, using the set 
of all Carmichael numbers up to 1021 (calculated in Ref. [40]). We look for statistically significant differences in the 
results from four CSSS tests by comparing the distributions of test results using the statistical analysis described in Ref. 
[22] and Ref. [21]. The statistical analysis includes the Kolmogorov-Smirnov test for two samples [41] and Welch’s t-test 
[42], both with a significance level of 0.005.

2.2 Software description

In this section, we describe the PiRATe software architecture and functionalities. PiRATe is written in C++ and its 
source is available on GitHub [43]. The source has been compiled and tested successfully in Ubuntu 22.04.

2.2.1 Software architecture

PiRATe is a wrapper software which means it consists of several independent programs. Each program is 
associated with a certain set of statistical tests and is originally written by other researchers. There are two ways for 
PiRATe to access these programs:

1. Internal access
2. External access
While some of the programs are internally attached to PiRATe other programs have their executable files located in 

the Tests/directory. Thus every time a user runs a test in PiRATe, it automatically executes the corresponding test.

2.2.2 Software functionalities

PiRATe gets a random data file (in binary format) and performs a randomness assessment on it using several 
statistical tests. As shown in Figure 1, PiRATe has a simple graphical user interface (GUI) where the user can simply 
choose the random data file and select the intended test. After clicking the “Start Test” button, the output result from the 
selected test is automatically printed on the screen and can be saved later into a text file.

Figure 1. A view from PiRATe
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2.3 Quantum random number generators

We prepared several random sequences with lengths of 50 Mbits and 1 Gbits from five QRNGs with different 
entropy sources based on: radioisotope decay [44]-[45], laser phase fluctuation [46]-[47], intensity in Charge-Coupled 
Device (CCD) [48], polarization entanglement source, and quantum fluctuations of the vacuum [49]-[50] (Table 1).

Table 1. List of QRNGs evaluated in this work

Short name Full name Manufacturer Mechanism

EYL EYL’s quantum entropy chip Everywhere in your life [46] Radioisotope decay

F.H.E.S Farhikhtegan-e Hami-e Elm-o-Sanaat QRNG Farhikhtegan-e Hami-e Elm-o-Sanaat [48] Laser phase fluctuation

SUT Sharif University of Technology QRNG Sharif University of Technology [49] Intensity in CCD

FreeSpace Free-space QKD key Iranian center for quantum technologies Polarization entanglement source

ANU Australian National University QRNG Australian National University [51] Quantum fluctuations of the vacuum

We also prepared random sequences with a length of 2 Gbits from EYL [45], SUT [48], and ANU [52] for CSSS tests.

2.3.1 EYL

EYL is a commercial QRNG manufactured by EYL Co in South Korea [45]. It consists of an Entropy chip that 
extracts random data from radioisotope decay. The raw data is then used to seed a PRNG implemented in an FPGA. 
According to the manufacturer, EYL has passed NIST SP800-22, NIST SP800-90B, AIS31, and Diehard tests.

2.3.2 F.H.E.S

F.H.E.S is a commercial QRNG manufactured by F.H.E.S Co in Iran [47]. It extracts random numbers from Laser 
Phase fluctuations. It consists of a Distributed Feedback (DFB) laser as the light source, modulated using electrical 
pulses. The output light is sent to an unbalanced Mach-Zehnder interferometer and then enters a photodiode. The output 
signal is converted to digital using an Analog-to-Digital Converter (ADC) to obtain raw data. Then raw data is post-
processed to obtain final random sequences.

2.3.3 SUT

SUT is an experimental QRNG located at the Sharif University of Technology (Information, Network, and 
Learning (INL) Lab) which contains a light-emitting diode (LED) and an image sensor. Due to quantum noise, the LED 
emits a random number of photons. The photons are captured and counted by the pixels of the image sensor (CCD), thus 
creating a series of raw random numbers. Finally, these raw random numbers are post-processed to achieve final random 
data [48].

2.3.4 FreeSpace

FreeSpace is the generated key from the first free-space entanglement-based Quantum key distribution (QKD) 
experiment (similar to Ref. [52]) in Iran. This experiment  (Figure 2) was performed by ICQTs between Milad Tower 
and Azadi Tower in Tehran at a distance of about 6 km. The implemented protocol was BBM92 and the entangled 
photon source was a Sagnac-interferometer with PPKTP crystal. The entangled photon source produces pairs of 
polarization-entangled photons using the Spontaneous parametric down-conversion (SPDC) mechanism which is a 
quantum process and inherently random. Thus, we assumed that the raw generated keys from this experiment can be 
considered as random strings and be used for tests.

http://
http://
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Figure 2. Schematics of free-space QKD experiment

2.3.5 ANU

The last QRNG is an experimental setup located at the Australian National University that generates random 
strings based on measurements of quantum fluctuations of the vacuum [49], [51]. The output from this QRNG is 
publicly available and its statistical randomness is confirmed in previous studies [22]. We used the outputs from this 
QRNG as a reference to compare our results.

3. Results
In this section, we present and analyze the statistical test results of the QRNGs obtained by PiRATe software.

3.1 Dieharder

Dieharder test results are presented in Table 2. As one can see, except for FreeSpace, all other QRNGs passed a 
good proportion of tests.

Table 2. Dieharder test results

QRNG Number of passed tests

EYL 30/31

F.H.E.S 28/31

SUT 31/31

FreeSpace 4/31

ANU 28/31

3.2 NIST SP800-22

NIST SP800-22 test results for sequences of 50 Mbits of random data are listed in Table 3.
As one can see, EYL, F.H.E.S, SUT, and ANU passed the NIST SP800-22 tests. However, FreeSpace showed poor 

performance.

http://
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Table 3. NIST SP800-22 test results

NIST test item EYL P-value F.H.E.S P-value SUT P-value FreeSpace P-value ANU P-value

Frequency 0.275709 0.851383 0.514124 0 0.834308

Block frequency 0.798139 0.779188 0.162606 0.000818 0.275709

Cumulative sums 0.595549 0.946308 0.554420 0 0.262249

Runs 0.574903 0.834308 0.262249 0 0.883171

Longest run 0.401199 0.816537 0.030806 0 0.275709

Rank 0.026948 0.983453 0.883171 0.171867 0.759756

FFT 0.000883 0.304126 0.115387 0.289667 0.534146

Non overlapping template 0.474986 0.12962 0.699313 0.058984 0.946308

Overlapping template 0.304126 0.383827 0.401199 0 0.383827

Universal 0.155499 0 0 0 0

Approximate entropy 0.366918 0.574903 0.236810 0 0.935716

Random excursions 0.939876 0.275709 0.275709 - 0.213309

Random excursions variant 0.874924 0.437274 0.048716 - 0.534146

Serial 0.759756 0.798139 0.171867 0.005358 0.249284

Linear complexity 0.739918 0.911413 0.574903 0.55442 0.759756

3.3 NIST SP800-90B

Results from NIST SP800-90B are presented in Table 4. As one can see only FreeSpace failed this test.

Table 4. NIST SP800-90B test results

QRNG NIST SP800-90B test

EYL Passed

F.H.E.S Passed

SUT Passed

FreeSpace Passed

ANU Passed

3.4 ENT

The testing results with ENT and ideal values of each parameter are presented in Table 5.
FreeSpace shows an Entropy below 1 bit per bit, which means that it can be compressed. Its Chi-square 

distribution is also out of the ideal range. The arithmetic mean value is a measure of bias in zeros and ones. It can be 
seen that FreeSpace is biased. The Monte Carlo value for Pi can be considered a quality factor. We can see that ANU is 
performing very well. The serial correlation coefficient is another important factor to ensure the lack of correlation, thus 

http://
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the randomness of the data. EYL and ANU have the lowest serial correlation coefficient. As one can see, EYL, SUT, 
and ANU results are very close to ideal values.

Table 5. ENT test results

ENT test item EYL F.H.E.S SUT FreeSpace ANU Ideal value

Entropy (bits per bit) 1.000000 1.000000 1.000000 0.999996 1.000000 1.000000

F.H.E.S 42.21% 96.37% 8.75% 1.50% 23.84% 10%-90%

SUT 0.4999 0.5000 0.4998 0.4988 0.5001 0.5000

FreeSpace 3.142257786 3.137246620 3.141624227 3.145970336 3.141585213 3.1415926536

ANU 0.000051 0.000317 0.000234 0.004146 0.000049 0.000000

3.5 Borel normality

The metric value from the Borel Normality test and results are presented in Table 6. For passing this test, the 
metric should be equal to or less than 1, which is not the case for FreeSpace.

Table 6. Borel normality test results

QRNG Metric value Status

EYL 0.196995 Passed

F.H.E.S 0.319421 Passed

SUT 0.270778 Passed

FreeSpace 7.76125 Failed

ANU 0.204028 Passed

3.6 CSSS

As FreeSpace random numbers did not pass the previous tests, we only performed the CSSS tests on EYL, SUT, 
and ANU. The objective of these tests is to detect any statistically significant difference between different RNGs.

The first CSSS test results for original (Figure 3a) and complemented bits (Figure 3b) show the minimum number 
of witnesses required to confirm the compositeness of all Carmichael numbers up to 1021. No statistically significant 
difference was observed between EYL, SUT, and ANU in the first CSSS test.

The second CSSS test results for original (Figure 4a) and complemented bits (Figure 4b) show the number of bits 
needed to witness the compositeness of all Carmichael numbers up to 1021. No statistically significant difference was 
observed between EYL, SUT, and ANU in the second CSSS test.

The third CSSS test results for original (Figure 5a) and complemented bits (Figure 5b) show the number of bits 
needed to witness the compositeness of all Carmichael numbers up to 1021, using the Chaitin-Schwartz compound 
predicate. No statistically significant difference was observed between EYL, SUT, and ANU in the third CSSS test.

http://
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Figure 3. Results of the first CSSS test for the (a) original and (b) complemented bits
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CSSS test results for original (Figure 6a) and complemented bits (Figure 6b) show how many times the Chaitin-
Schwartz theorem has been violated for 26 test numbers including all odd composite numbers less than 100 in addition 
to the smallest Carmichael number (561), accumulated over repeated passes through a given random string with an 
incremental starting offset. No statistically significant difference was observed between EYL, SUT, and ANU in the 
fourth CSSS test.

We did not find any statistically significant differences in the results from the CSSS tests. As Ref. [22] showed, 
the output from ANU QRNG is not algorithmic random, thus we can infer that there is not any evidence of algorithmic 
randomness and incomputability in the output from these QRNGs.

4. Discussion
4.1 QRNGs

We applied various statistical test suites to five QRNGs. In order to quantitatively compare the QRNGs, we assign 
them a test score. For every test they pass, they earn a +1 score, then we divide the total score to the maximum possible 
score. Some test results can not be interpreted as pass/fail. These tests are excluded from the scoring.

As one can see from Figure 7, four of five QRNGs passed more than 90 percent of tests. EYL, F.H.E.S, SUT, and 
ANU show good randomness in terms of lacking biases and correlations. Considering the overall results, they can be 
used for cryptography applications. However, one should note that these tests are not complete as some of them overlap 
with each other and many of them have vulnerability [53]-[56].
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Figure 7. A comparison of QRNGs in terms of the proportion of passed tests

The results of FreeSpace tell us that the experiment was noisy and there was a bias in the detectors. Therefore, for 
further improvements, one should eliminate the noises and biases.

4.2 Statistical tests

Hypothesis tests are indeed fundamental in assessing the performance and reliability of RNGs. The aim of 
hypothesis testing in this context is to ascertain whether the output sequence generated by an RNG adheres to the 
expected characteristics of true randomness.

In statistical terms, the null hypothesis (H0) posits that the RNG produces numbers that are indistinguishable 
from truly random numbers, while the alternative hypothesis (Ha) suggests that the RNG’s output deviates from true 
randomness in some way. Through hypothesis testing, we seek to gather evidence to either support or refute the null 
hypothesis.

Several statistical techniques are employed in these hypothesis tests to compare the observed output of the RNG 
with what would be expected under the assumption of randomness. Some of the common techniques include:
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Chi-Square Test: This test evaluates the uniformity of the distribution of numbers generated by the RNG. It 
compares the observed frequencies of numbers in different categories (e.g., bins) with the expected frequencies if the 
numbers were generated randomly. Deviations from expected frequencies may indicate non-random behavior.

Kolmogorov-Smirnov Test: The Kolmogorov-Smirnov test assesses whether the cumulative distribution function 
(CDF) of the generated numbers matches the expected uniform distribution. It quantifies the largest discrepancy 
between the empirical CDF of the generated numbers and the theoretical CDF of a uniform distribution.

Runs Test: The runs test examines the patterns of consecutive numbers in the generated sequence. It checks 
whether the number of runs (sequences of consecutive increasing or decreasing values) deviates significantly from what 
would be expected in a random sequence. Deviations may suggest non-random behavior.

Autocorrelation Test: Autocorrelation measures the correlation between elements of a time series at different 
lags. In the context of RNG testing, autocorrelation tests examine whether there are significant correlations between 
successive numbers in the generated sequence. The lack of significant autocorrelation is a characteristic of randomness.

Entropy Analysis: Entropy is a measure of randomness. Entropy analysis evaluates the amount of information 
contained in the generated sequence. High entropy indicates high randomness, while low entropy suggests patterns or 
predictability in the sequence.

These tests collectively provide insights into various aspects of the randomness of RNG output, helping assess their 
performance and reliability. Additionally, it’s important to conduct multiple tests and consider their results collectively 
to obtain a comprehensive evaluation of the RNG’s randomness properties.

4.3 Software

As mentioned before, random numbers are essential for many applications. It leads to increased demands for 
high-quality RNGs with high bit-generation rates. Although there are several schemes for the generation of random 
sequences, many of these are not truly random. Therefore, it is important to have standard routines for the evaluation of 
RNGs.

Evaluation of random data is not straightforward. As there is not a single notion of randomness, several statistical 
tests have to be employed to ensure the randomness of a sequence. These tests measure different aspects of randomness 
and are usually provided by different institutions. As they are available in sparse code forms, gathering them requires 
some programming knowledge. Thus, a comprehensive software package that easily gathers all these tests would be 
beneficial.

With these considerations, we gathered these tests into a single software package with a user-friendly GUI.
PiRATe helps researchers easily evaluate the randomness of their (Quantum) Random Number Generators. For 

instance, we have used PiRATe in our recent paper [29] to evaluate two different QRNGs. Nonetheless, this software is 
by no means complete and can be upgraded to include new statistical tests for randomness assessment.

The implemented statistical test programs are inefficient and may have bugs. This subject affects the final efficiency 
of PiRATe. However, the efficiency can be improved by reprogramming the original test programs.

5. Conclusions
In conclusion, we gathered a comprehensive set of statistical tests and developed an easy-to-use software to 

evaluate the quality of random strings from QRNGs and verify their randomness. We used this software to assess 
five different QRNGs and compared the results. Our results show that although the commercial EYL QRNG, the 
experimental SUT QRNG, and ANU QRNG do not produce algorithmic random sequences, their output is acceptable, 
especially for applications in cryptography where the lowest correlations are required. Due to the limited amount of 
random data, we could not evaluate the algorithmic randomness of F.H.E.S. However, it passed most of the tests. We 
also showed that the keys generated from FreeSpace QKD do not have good randomness, as they failed all statistical 
tests.
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