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Abstract: The paper experimentally and theoretically analyses large deflection behaviour of clamped curved beam 
subjected to finite clamping and combined bending-stretching loads. The experimental specimen is clamped around 
central location under vertically concave and convex orientations. For each specimen settings, clamping is done by 
two different torque values. Application of vertical end loads on the clamped concave and convex systems produces 
two different combinations of bending and in-plane loadings. Large deflection behaviour of the experimental system 
is modelled theoretically considering geometric nonlinearities coming from combined bending-stretching, non-
uniform curvature and asymmetric geometry. Effect of finite clamping is incorporated in the theoretical model through 
equivalent additional end loads. Due to the involved geometric nonlinearities, analysis is carried out through variational 
energy principle based incremental Lagrangian approach in curvilinear system and transformed into global frame. The 
semi-analytical model is successfully validated by comparing with the experimental results. The combined theoretical-
experimental study addresses practical complication associated with local deformation at boundaries. In addition, the 
physically plausible theoretical model may be of interest for simulation of many real world structures with complicating 
system parameters. Moreover, observations on combined effects of curvature, loading combinations and finite clamping 
may provide reference for design optimization of equivalent engineering structures.

Keywords: curved beam, large deflection, finite clamping, combined bending-stretching, variational energy principle, 
incremental lagrangian

1. Introduction
Conventionally beam like flexible structures in engineering applications are designed under prescribed deformation 

constraints at boundaries [1]. However, many practical members do not follow such classical assumptions and involve 
complicating effects coming from finite deformation at boundaries. Such deformation dependent boundary conditions 
of practical structures cause failure of classical models during operating condition [2]. When the structural members 
undergo large deformation, such non-conventional system parameters dominate their deformation characteristics [3]. 
In addition, if the structures involve initial curvature, their deformation characteristics become much more complicated 
due to interaction of several deformation degrees, like, bending, centre line stretching, shear deformation, etc. [4], [5]. 
Some frequently encountered complicating effects associated with non-conventional boundary conditions are reviewed 
from the available literature and presented in the next paragraph. Following that a brief review on large deformation 
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characteristics of curved beams together with foundation of related analysis methods is presented in another paragraph.
The most widely used classical boundary conditions for beam bending problems are simple supports and clamped 

conditions. One major practical complication associated with simple supports is shifting of contact points during 
large deformation [6]. Due to this relative motion between the structure and its supports, friction force is generated at 
contacting surface. The friction force imparts in-plane loading on the deforming structure and leads towards mixed 
displacement-force boundary conditions [7]. Symmetry of beam structure and loading with respect to the supports 
balances the friction forces at two ends [8]. Whereas, generalised asymmetric geometry and loading increases 
complications due to imbalance of friction forces at the boundaries [9]. Another practical complication of simple 
supports is violation of displacement restraint under operating condition [10]. For clamped beam problems, theoretically 
infinite clamping is assumed at fixed supports. Or in other words, zero displacement and rotation are assumed at 
clamped ends. However, practically such ideal clamping is not possible. Hence, finite deformation under finite clamping 
at the clamped end affects deformation characteristics of clamped practical structures [11]. In addition to the frequently 
encountered simple, clamped and hinged supports, several machine elements in mechanical engineering applications 
contain rigid links at boundaries [12]. Such combined rigid-flexible structures are subjected to another class of 
complications due to interactive deformation of flexible member with rigid links [13]. Another frequently encountered 
complicating effect associated with large framed structures is partial flexibility of connections between their beam and 
column elements [14]. So called semi-rigid characteristics of such beam-column connections cause failure of design 
based on classical assumption of rigid or simple connections [15]. The literature survey yields that boundary conditions 
of simply supported, clamped-clamped, cantilever or any other type of practical structural and machine elements depend 
on deformation state to some extent. Such deformation dependent local deformations at boundaries are generally 
modelled using longitudinal [16] and rotational [17] springs at boundaries. For simple geometry and loading conditions, 
spring elements with linear characteristics effectively capture deformation at boundaries. However, nonlinear springs 
are required for rigorous modelling of more complicated structures [18].

Large deformation characteristics of initially straight beams with simple loading and boundary conditions are 
well captured by geometrically nonlinear kinematic setting of the original Euler-Bernoulli model [19]. With increasing 
complexity in terms of problem parameters, pure bending assumption of such classical nonlinear models causes failure [20]. 
Out of plane cross-sectional deformation is one of such complicating effect associated with thick beams. Whereas, 
centre line extensibility dominates large deformation behaviours of slender beams. Deformation characteristics of 
thick beams with classical problem parameters are generally analysed through Timoshenko beam theory and several 
other higher order shear deformation theories [21]. Geometrically nonlinear combined bending-stretching models are 
employed to analyse deformation behaviours of very slender beams [22]. Presence of some initial curvature in beam 
structures further increases complexity through coupling of different deformation degrees of freedom, like, bending, 
stretching, shear deformation, cross-sectional warping, torsion, etc. [13], [23]. Simo-Reissner beam model provides 
the most systematic framework for large deformation analysis of curved beam like structures [5], [24]. Geometrically 
nonlinear beam models based on Simo-Reissner theory are generally implemented using variational principle either 
through conventional full domain methods [4], [13] or through discretization of problem domain into finite number 
of elements [23], [24]. Straight beam elements were previously used extensively for approximating curved beam 
geometry in finite element analysis. Use of straight elements in large number for approximating curved geometry not 
only results high computational cost but also arises question on accuracy as well [25]. Development of economically 
efficient and rigorous curved beam elements has been one of the major focus of engineers for the last few decades [26]. 
Detailed discussions on theoretical backgrounds of the extensively used large deformation curved beam models are 
well documented in the papers [27], [28]. Hence, such discussions on large deformation curved beam problems are not 
repeated here to maintain brevity.

Though large deformation analysis of curved beam has been an active research field for the last few decades, 
sufficient studies on curved beam problems with complicating effects caused by non-conventional boundary and 
loading conditions are not found in literature. Most of the reported studies on effects of the non-conventional system 
parameters deal with initial straight beams. Majority of such reported beam models are developed within pure numerical 
framework, whereas, analytical treatment of the problems is rare. Moreover, the research area lacks in experimental 
fidelity as well. One of the rare experimental study on the subject problem dealing with large deformation characteristics 
of curved beam under finite clamping and combined bending-stretching loads is reported by the authors in a previously 
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reported work [29]. The experimental results are first post-processed in the present work to obtain interactive effect of 
finite clamping with combined loading. Based on the observations, theoretical model of the experimental curved beam 
system is developed through variational energy principle based incremental Lagrangian approach. Finally the theoretical 
model is validated with the experimental deflection results and some observations are made. Post-processing of the 
experimental results, development of theoretical model and the comparison study are presented in the following three 
sections.

2. Experimental observations
Experimental investigations on effects of finite clamping and combined bending-stretching field are carried out 

through post-processing results of the previously reported work [29]. Master leaf spring is considered as experimental 
curved beam specimen, which is clamped with vertically concave and convex orientations under 3 and 14 kg-m 
clamping torques for each setting. Photographs of the specimen settings under the two different orientations are shown 
in Figure 1.

Figure 1. Photographs of the experimental set-up with vertically (a) concave and (b) convex specimen orientations

For each of the curved beam setting under each clamping torque, external loads (FW) are applied symmetrically at 
the two eye ends through eight steps of magnitudes 14.42, 90.94, 166.48, 241.52, 317.55, 391.62, 463.23 and 484.81 
N. Deflection profiles of the four different loaded curved beam systems are obtained through some direct measurement 
and image processing techniques. Detailed descriptions of the experimental set-up, measurement techniques and 
deflection results are already presented in the article [29]. Post-processing of the deflection profiles to obtain effects of 
finite clamping and specimen orientation on deformation characteristics of the curved beam system is presented in the 
following sub-section.

2.1 Post-processing of load-deflection results

From loaded deflection profiles of the curved beam specimen under each of the four settings, deflections of the 
left and right tips are obtained with respect to undeformed geometry. Due to asymmetry of the specimen geometry 
about clamping location, left and right tips undergo different deflections under the same applied load (FW) and they 
are denoted by δL and δR respectively. Variations of tip deflections δL and δR with applied load FW are presented through 
direct data points (dotted points) and fitted curves (dashed lines) in Figure 2(a1) and (a2) for concave system under 
3 kg-m clamping torque. Variations of δL and δR with FW for the concave system under 14 kg-m clamping torque are 
shown in Figure 2(b1) and (b2). Similar load-deflection plots for the convex curved beam system are shown in Figure 3 
following the representation scheme of Figure 2.

Before application of external static loads (FW ), curved beam systems undergo deflections due to application of 

(a) (b)

Scales Scales
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clamping torque only. Such deflections due to clamping only are different for the left tip than those of the right tip due 
to asymmetric specimen geometry, and denoted by δCL and δCR respectively. As the tip deflections δL and δR, presented 
in Figures 2 and 3, are measured with respect to the initial geometry, they consist of deflections due to clamping only 
(δCL and δCR) and deflections due to dead load only (δWL and δWR). δL and δR axes intercepts of the fitted FW 1v − δL and FW 1v −
δR curves in Figures 2 and 3 obviously give deflections due to clamping only (δCL and δCR), as these deflection values 
correspond zero applied loads (FW ). Numerical values of the deflections δCL and δCR for the four different curved beam 
settings are presented in Table 1.

Figure 2. Load-deflection behaviour of (#1) left and (#2) right tip for concave set-up under (a#) 3 kg-m and (b#) 14 kg-m clamping torque
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Figure 3. Load-deflection behaviour of (#1) left and (#2) right tip for convex set-up under (a#) 3 kg-m and (b#) 14 kg-m clamping torque

Table 1. Tip deflections (mm) of different curved beam systems due to clamping

Measurement Concave under
3 kg-m torque

Concave under 
14 kg-m torque

Convex under 
3 kg-m torque

Convex under 
14 kg-m torque

δCL 8.89 8.57 -4.01 -4.23

δCR 8.13 8.17 -5.66 -5.84

Positive values of δCL  and δCR for concave systems clearly indicate that deflections produced by clamping are in 
the same direction to the defections produced by dead loads FW . Whereas, negative values of δCL  and δCR for the convex 
systems indicate deflections due to clamping are in opposite direction to those due to FW. The contradictory deflection 
patterns under finite clamping show significant effect of specimen orientation or combinations of bending-stretching 
loads on deformation characteristics. Now the load-deflection curves FW 1v − δL and FW 1v − δR in Figures 2 and 3 are shifted 
to pass through origin and the modified curves are presented through solid lines in the figures. The modified load-
deflection curves in Figures 2 and 3 obviously represent variations of deflections due to applied load only (δWL and δWR) 
with applied load (FW ). Corresponding to the tip deflection values of Table 1, load values are obtained from the modified 
load-deflection curves of Figures 2 and 3. These load values obviously represent equivalent end loads (FCL and FCR) 
corresponding to clamping deflections (δCL  and δCR) and presented in Table 2.

Table 2. Equivalent end forces (N) of different curved beam systems due to clamping

Loading Concave under 
3 kg-m torque

Concave under 
14 kg-m torque

Convex under 
3 kg-m torque

Convex under 
14 kg-m torque

FCL 39.49 38.71 -16.75 -17.47

FCR 35.96 35.08 -25.31 -26.30

3. Theoretical model
The experimental concave and convex physical systems are modelled as clamped curved beams subjected to direct 

externally applied loads (FW ) and an additional equivalent end loads due to clamping (FCL or FCR). Initial curvature 
of the curved beam produces combination of bending and membrane loadings under the total vertical loads FL = FCL  
+  FW and FR = FCR + FW at left and right ends. Moreover due to completely opposite direction of curvatures under 
concave and convex settings, two different combinations of such bending-stretching fields are developed. In addition to 
geometric nonlinearity associated with combined bending-stretching kinematics, the curved beam systems also involve 
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complicating effects caused by non-uniformity of centre line curvature and asymmetry of geometry about clamping 
location. In order to capture nonlinear deformation characteristics of the physical systems more rigorously, analysis is 
carried out through incremental Lagrangian approach. Body fitted curvilinear coordinate system is used as framework 
for incremental analysis through variational energy balance principle. Geometric specifications of previous incremental 
step (i 1v −1) is considered as reference for analysis of current step i. Origins of the body fitted frame at current (Osn

i ) 
and previous (Osn

i-1) step together with global Cartesian frame Oxy are defined at the clamped location. The incremental 
curved beam models with concave and convex settings are shown with respect to global Cartesian frame Oxy in Figure 4.

Figure 4. Incremental curved beam model for (a) concave and (b) convex system configuration

The incremental deformation is characterized in global Cartesian frame (x, y) by horizontal (ux) and vertical (uy) 
displacement fields. Whereas, with respect to reference body fitted frame (si -1, ni -1), the deformation is characterised 
by bending (un) and stretching (us) fields. Boundary conditions of the bending and stretching fields in body embedded 
frame are prescribed as

us = 0 at si -1 = 0 and us = unknown at si -1 = -SL
i-1 and si -1 = SR

i-1,                                       

un = 0 at si -1 = 0 and un = unknown at si -1 = -SL
i-1 and si -1 = SR

i-1.                                        
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In the above equations, SL
i-1 and SR

i-1 represent arch lengths of left and right parts of curved beam and θ i -1 represents 
slope of beam centre line. The superscript (i 1v −1) corresponds reference configuration under previous load step. The 
notation style of reference configuration by superscript (i 1v −1) is followed hereon throughout the entire document. A 
detailed list of nomenclature is presented towards the end of the paper. Determination of body fitted displacement fields 
us  and un through variational energy principle and subsequent geometry updation using Equation (3) are presented in the 
following two sub-sections.

3.1 Governing equation

Incremental strain-displacement relation in the curvilinear frame for curved beam undergoing combined bending-
stretching is obtained from kinematic descriptions of the paper [13] as given by

2 2 1
1 1
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In the above equation, κ i -1 represents the curvature of beam centre line. Using the above presented strain-
displacement relation and linear material law Δσss

i = EΔεss
i , expression of strain energy of the curved beam with cross-

sectional width b and thickness h is derived as
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Following Ritz method, unknown displacement fields are approximated in normalized curvilinear coordinate 

(ξ i -1, η i -1) as 
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= ∑ . For the sake of simplicity in computation, origin of the 

normalized curvilinear frame (ξ i -1, η i -1) is taken at left end of curved beam. Transformation relations of the normalized 
computational frame with the dimensional curvilinear frame are given by ξ i -1= (si -1 + SL

i-1)/S i-1 and η i -1 = (ni -1 + h /2) /
h . With the approximated displacement fields, governing equation for incremental deformation behaviour of the curved 
beam system is derived through variational energy principle δ (Us

i + Vs
i) = 0. Final algebraic form of the governing 

equation is presented as
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Expressions of stiffness matrix and load vector elements of the above equation are presented below.
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3.2 Deflection profile

Governing equation of the incremental curved beam problem, as presented in Equation (7), contains set of 
nonlinear algebraic equations. The nonlinear equation set is solved iteratively in the computational environment of 
MATLAB® software for unknown coefficients (c1 and c2). The iterative numerical scheme is adopted from the paper [13], 
and is not described in detail here to maintain brevity. Number of functions for the approximated bending and stretching 
displacement fields are taken as 5. Start functions for approximations of both the displacement fields are selected 
as (ξ i -1 1v − ξO

i -1)2 through satisfaction of geometric boundary conditions (Equation (1, 2)), where ξO
i -1 is normalized 
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coordinate of the origin. Once the unknown coefficients are obtained, displacement fields un  and us become known with 
respect to body fitted frame. The displacement fields are transformed from body embedded curvilinear frame to global 
Cartesian frame using the transformation relation of Equation (3), which finally yields deformed profile as
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4. Theoretical results and comparison
Importing no-load geometry of the specimen from the [29] and equivalent end forces due to clamping from Table 

2, deflection profiles of the four curved beam systems are computed up to maximum applied load (FW) of 500 N. 
The theoretical deflection profiles are interpolated at the eight experimental load values (FW) and compared with the 
corresponding experimental results. Comparison plots of deflection profiles for the concave system under 3 kg-m and 
14 kg-m clamping torque are presented in Figure 5(a1) and (a2) respectively. Whereas, such comparison plots for the 
convex system are shown in Figure 5(b1) and (b2). The comparison plots in Figure 5 clearly show that the theoretical 
and experimental results are matching quite well for the concave system under both the clamping torques at all load 
levels. However, for the convex system, the theoretical and experimental results are matching well at the lower load 
levels but discrepancy between them increases with applied load.

Figure 5. Deflection profiles of (a#) concave and (b#) convex curved beam system under (#1) 3 kg-m 
and (#2) 14 kg-m clamping torque (geometric and material parameters: b = 38.5 mm, 

h = 6.25 mm, L0 = 878.4 mm, S0 = 921.8 mm, E = 210 GPa)
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Deformation characteristics of the curved beam systems are studied further in detail through tip deflections (δL 
and δR) and change in horizontal span (ΔL = L 1v − L0). Observations on the deformation measures are made through both 
theoretical and experimental results, and hence the investigations also provide comparison studies as well. Variations of 
the left tip deflection (δL) with applied load (FW) for the concave system under 3 kg-m and 14 kg-m clamping torques 
are presented in Figure 6(a1) and (a2) respectively. Whereas, load-deflection behaviours of the left tip for the convex 
system are shown in Figure 6(b1) and (b2). Similarly, load-deflection behaviours of the right tip for the concave and 
convex systems under both 3 kg-m and 14 kg-m clamping torques are shown in Figure 7. Whereas, variations of change 
in horizontal span (ΔL) with applied load (FW) for the four curved beam systems are presented in Figure 8.

As clearly seen from Figures 6 and 7, tip deflections (δL and δR) of the concave systems show softening type 
nonlinearity against applied load (FW). Whereas, the convex systems possess hardening type nonlinearity in terms 
of tip deflections (δL and δR) against applied load (FW). Contrary behaviours of the concave and convex curved beam 
systems for horizontal span changes (ΔL) are observed in Figure 8. Here, the concave systems possess hardening type 
nonlinearity in variations of changes in span (ΔL) with applied load (FW). Whereas, changes in span (ΔL) for the convex 
systems show softening type nonlinearity against applied load (FW). Comparisons of deformation characteristics (δL, δR, 
and ΔL) between the theoretical and experimental results in Figures 6-8 clearly show better matching for the concave 
systems compared to the convex ones. However, trends of the deformation measures of the curved beam systems are 
almost same for both theoretical and experimental results.

Figure 6. Load-deflection behaviour of the left tip for (a#) concave and (b#) convex curved beam system 
under (#1) 3 kg-m and (#2) 14 kg-m clamping torque
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Figure 7. Load-deflection behaviour of the right tip for (a#) concave and (b#) convex curved beam system 
under (#1) 3 kg-m and (#2) 14 kg-m clamping torque
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Figure 8. Change in span with load for (a#) concave and (b#) convex curved beam system
 under (#1) 3 kg-m and (#2) 14 kg-m clamping torque

One of the major discrepancy between the theoretical model and the actual experimental system lies in modelling 
of the clamping zone as point. Whereas, the experimental curved bean system contains clamping zone of finite length. 
Clamping of the curved beam specimen not only induces a locked-up moment but also imparts a clamping force non-
uniformly distributed over the finite clamping zone. Hence, in addition to some deflections caused by locked-up 
moment, the clamping force causes local deformation at the clamping zone. Increment of discrepancy with applied load 
and for convex system compared to concave one clearly indicates towards another limitation of the theoretical model. 
Actually locked-up moment and local deformation produced by finite clamping depend on magnitude and combination 
of applied loadings. Whereas, the theoretical model does not consider such deformation and loading combination 
dependent effect of clamping. Consideration of local deformation due to distributed clamping force in addition to 
locked-up moment leads toward a very complicated combined displacement and stress based mathematical model. In 
addition, incorporation of deformation and loading combination dependency of such clamping effect further complicates 
the analysis. Though considerations of the mentioned complicating effects may leads towards more rigorous simulation, 
the present theoretical model well captures deformation characteristics of the curved beam system without considering 
such complications. Hence, the developed theoretical model may be of interest from engineering perspective, in analysis 
of many practical curved beam structures with complicating system parameters.

5. Conclusions
As a result of provided theoretical and experimental analysis of the large deflection behaviour of clamped curved 

beam under finite clamping and combined bending-stretching loads, two different combinations of bending-stretching 
loadings are created under vertical end loads by clamping the experimental specimen with vertically concave and convex 
orientations. At each of the specimen settings, experimental observations are carried out under two different clamping 
torques. Effects of finite clamping and loading combinations are obtained through post-processing experimental results. 
A theoretical model for large deformation characteristics of the experimental system is developed based on incremental 
Lagrangian approach in body fitted curvilinear frame. Effect of finite clamping is incorporated in the theoretical model 
through equivalent end loads based on the experimental observations. In addition, geometrically nonlinear effects 
coming from combined bending-stretching, non-uniform initial geometry, asymmetry in geometry about clamping 
location, etc., are also considered in the theoretical model. The theoretical model is compared with experiment and 
some insight characteristics of clamped curved beam system are noted. The developed easy to implement model not 
only captured deformation characteristics of the considered experimental system but addressed a frequently encountered 
issue on complicating local deformation of practical beam like structures at boundaries.
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Nomenclature
b                          Width of rectangular beam cross-section
{c}                      Unknown coefficient vector
E                          Young’s modulus
{ f }                     Load vector
FCL, FCR               Equivalent end loads due to clamping at left and right ends
FL, FR                  Total vertical loads at left and right ends
FW                        Externally applied load
h                          Thickness of rectangular beam cross-section
[K]                      Thickness of rectangular beam cross-section
L                          Horizontal span of curved beam
Osn                       Body fitted curvilinear frame
Oxy                       Global Cartesian frame
S                          Arch length of curved beam
un, us                    Bending and stretching displacement fields in body embedded frame
ux, uy                    Horizontal and vertical components of displacement field in global frame
Us                         Strain energy
Vs                         Potential energy
β, γ                       Set of functions in stretching and bending field approximations
δCL, δCR                Deflections of left and right tip due to clamping only
δL, δR                    Total deflections of left and right tip
δWL, δWR               Deflections of left and right tip due to external load only
ΔL                       Change in horizontal span
ΔεSS                      Incremental axial strain
ΔσSS                      Incremental axial stress
θ                          Slope of beam centre line
κ                          Curvature of beam centre line
Superscripts
0                          No-load condition
i 1v −1                      Previous incremental load step
i                           Current incremental load step
Subscripts
L                          Left part of curved beam
R                          Right part of curved beam
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