
Volume 6 Issue 1|2025| 147 Engineering Science & Technology

Engineering Science & Technology
http://ojs.wiserpub.com/index.php/EST/

Copyright ©2025 Maosheng Zheng, et al.
DOI: https://doi.org/10.37256/est.6120255823
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Research Article

Parameter Design in Production by Means of Robust Fuzzed PMOO 
in Case of Desirable Target

Maosheng Zheng1* , Jie Yu2

1School of Chemical Engineering, Northwest University, Xi’an, 710069, China
2School of Life Science, Northwest University, Xi’an, 710069, China
 Email: mszhengok@aliyun.com

Received: 29 September 2024;  Revised: 23 December 2024;  Accepted: 3 January 2025

Abstract: A proper parameter design in the production process is critical to guarantee the quality of products and their 
improvement. The rationality of the previous traditional approaches for robust assessment including the Taguchi method 
and dual response method is questionable. In this article, the combination of probabilistic multi-objective optimization 
(PMOO) with membership approach in fuzzy theory is developed to conduct parameter design of production in case of 
desirable target with robustness deeply, which is furthermore applied to two examples of both parametric design of gas 
metal arc (GMA) welding process and printing machine’s ability. In the new approach, the mean value of “complement” 
of membership value of a set of test data belonging to its desired target of an objective response is taken as one sub-
objective response, which is an unbeneficial type of index in the assessment to contribute the first part of the partial 
preferable probability of the objective. In contrast, the dispersion of a set of test data in terms of membership with 
respect to the desired target value is taken as the other sub-objective response to contribute the second part of the 
partial preferable probability of the objective simultaneously, which is an unbeneficial index. Thus, the fuzzed PMOO 
approach is regulated comprehensively. Besides, the consequences of application examples reflect the reasonability of 
the approach as an auxiliary measure for PMOO consistently to perform optimal robust design.
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1. Introduction
A proper parameter design in the production process is quite important to guarantee the quality of products and 

their improvement. Usually, the arc welding process is complicated and nonlinear; therefore, optimum parameters can 
be derived with experimental data from appropriately designed welding tests and optimization algorithms.

In general, experiments of the welding process for optimization are influenced by the actual working environment, 
resulting in unreliability and uncertainty in the welding quality under corresponding actual welding environments. 
While the robust optimization of the welding process is to seek a set of input parameters, which are insensible to the 
external environment so as to guarantee the quality of the welding products with high reliability.

A robust parametric design of the printing machine’s ability is another typical design to find a set of specific input 
parameters that ensure the printing machine works close to the desired status with less fluctuation.
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Early in the 1950s, Box and Taguchi noticed the importance of robust design [1], [2]. Taguchi once proposed the 
so-called “Taguchi Method” to determine specific controllable parameters under certain conditions to ensure good 
quality of products, which is insensitive to the disturbance of environmental factors.

In Taguchi’s method, a signal-to-noise ratio (SNR) was proposed to assess the robust design [2].
However, Taguchi’s SNR was queried by some statisticians, the main reason is the lack of revealing the actions 

of both mean value and variation of objective responses separately [3], [4]. Subsequently, many modifications 
and improvements have been put forward, which attempted to solve the above problem [5]-[15], but the intrinsic 
shortcoming remained still [16], [17].

Recently, the probabilistic multi-objective optimization (PMOO) was proposed [4], which considers the 
optimization problem of multiple objectives being the integral/overall optimization of multiple objectives within 
a system, and makes every objective as one independent event of probability theory analogically; furthermore the 
simultaneous appearance of all those objectives represents the integrity of the system, and the maximum of the joint 
probability of the system corresponds to the overall optimum state of the system according to systems theory and 
probability theory analogically [4]. The utility of every objective is quantified by a new term of “partial preferable 
probability” according to its preference or role in the optimization; furthermore, the product of all partial preferable 
probabilities results in the “total preferable probability” of a candidate scheme, which is the unique decisive index of 
the status of the candidate scheme, the maximum of the total preferable probability of the system corresponds to overall 
optimum state of the system [4]. As to robust design, the mean value and its variance of an objective are taken as dual 
objectives of the multi-objective optimization problem, thus the robust design problem seems to be solved. Under 
conditions of ‘the smaller the better’ and ‘the larger the better’, it is no doubt about solving the problems as they are 
directly. Currently, for the case of desired ‘target the best’, i.e., “desirable target” or “ideal value as the target” in plan 
or in mind, the departure of the actually tested values from the target value is considered [16], [17], it is a promising 
solution, especially the membership approach of fuzzy theory, the mean value of tested result belonging to the desired 
target value of an objective response is taken as one objective response, which is a brand new method and value to be 
examined extensively. 

However, since the maximum value of membership μ is 1, a finite value, instead of infinite, an alternative 
appropriate manner to deal with this problem can be put forward by introducing a “complement” of the membership 
value, i.e., η = 1 – μ, to conduct the evaluation logically. Additionally, in the condition of robust assessment, the 
dispersion of test data must be taken into account properly.

In this article, a rational robust parameter design of production in case of desired value as target is developed 
in terms of the “complement” value of the membership; moreover, two examples are represented to illuminate the 
procedure, which includes gas metal arc (GMA) welding process and parametric design of printing machine’s ability.

2. Regulation of fuzzed probabilistic robust design in case of desired value as target
2.1 Combination of PMOO with membership approach of fuzzy theory

In the case of the desired value as the target of an objective response, the actual closeness of each test data y to 
the desired target value y0 can be used to measure its closeness to the target. Thus, the greater the distance of the test 
data y from the desired target value y0 is, the smaller the closeness or degree of proximity to the desired target. This is 
something like the membership in fuzzy theory [17]. The assessment of membership μ of a test data y belonging to the 
desired target value y0 is as follows rationally,
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In Eq. (1), μ is the membership function of the test data y belonging to the desired target value y0, and δ is the pre-
assigned value, over which the value of the membership function becomes 0.

(1)
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However, since the limit value of membership of y belonging to y0 is “1”, which is a finite value instead of 
an infinitely large one. It seems improper to consider this optimization problem as “the larger the better” type, i.e., 
beneficial indicator. Since, in the latter type, the value of the objective response has the possibility to take a value of 
infinitely large value instead of a finite one. 

Alternatively, the “complement” η of the membership value μ can be used as the appropriate index to deal with this 
problem with Eq. (2),

1η µ= −

The limit value of η is 0, which corresponds to μ taking its maximum value of 1. So, the optimization problem of μ 
taking its maximum value is equivalent to η approaching its minimum value of 0.

Furthermore, as to robustness assessment, since the unavoidability of dispersion of a set of test data in the same 
experimental conditions due to the effects of external uncertain factors, such as environments, testing, raw materials, 
etc., the dispersion of a set of test data must be taken into account in the evaluation surely [4], [16], [17]. 

In the light of Lin and Tu’s discussion [7], [16], [17], the dispersion of a set of test data in terms of membership η 
of fuzzy theory can be characterized as follows,

2 2 0.5s ( )µ µη σ= +

In Eq. (3), σμ is the standard error of membership value μ of the set of test data in the same experimental conditions;  
η  is the mean value of “complement” η of the membership value in the corresponding set; sμ reflects the dispersion of 
a set of test data in term of membership with respect to the desired target value to join the assessment of the second part 
of partial preferable probability. Meanwhile, η  is an unbeneficial index to join the assessment of the first part of partial 
preferable probability.

2.2 Assessment of preferable probability

Furthermore, the parts 
µs

P  and 
ηP  of the partial preferable probability, corresponding to both sμ and η  for an 

objective, can be conducted as unbeneficial indicators to perform the assessment [4], [16], [17]. As a result, the partial 
preferable probability Pij of the j-th objective of the i-th candidate scheme (alternative) is the product of both 

µs
P  and ηP ; 

subsequently, the total preferable probability Pi of the i-th candidate scheme is [4], [16], [17],
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In addition, the evaluations for partial preferable probability Pij of an objective in both beneficial and unbeneficial 
conditions were proposed in [4], [16], [17], which are cited as follows.

As to the beneficial attribute, its partial preferable probability Pij can be quantitatively written as [4], [16], [17],

, 1, 2, 3, ..., ;  1, 2, 3, ..., ij j ijP A X i n j m= = =

1/ ( )=j jA nX

In Eq. (5), n is the total number of alternatives in the system; m represents the total number of attribute (objective) 
indicators of each alternative; Xij is the value of utility value of the j-th objective (attribute) indicator of the i-th 
alternative; jX  is the averaged value of the utility of the j-th objective indexes in the attribute group.

Equivalently, for attributes of the unbeneficial type, its partial preferable probability Pij can be quantitatively 
written as [4], [16], [17], 

(2)
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max min( ),  1,  2,  3,  ...,  ;   1,  2,  3,  ...,  ij j j j ijP B X X X i n j m= + − = =

max min1/ [ ( )]j j j jn X X XΒ = + −

In Eqs. (7) and (8), Xjmax and Xjmin express the maximum and minimum values of utility of the objective indicators 
in the j-th attribute group, respectively.

Finally, the overall optimal option of the system is the specific scheme with the highest total preferable probability 
[4], [16], [17].

3. Applications
3.1 Application in GMA welding process

As an application of robust parameter optimization for cases where the desired value serves as the target of an 
objective, the parametric optimization for the gas metal arc (GMA) welding process is employed to illuminate the 
procedure in detail. 

Kim and Rhee once studied the GMA welding process with a dual response approach [18]. Here in this article, this 
problem is restudied by using the newly developed probabilistic robust design of a product to demonstrate its utilization 
in case of desired value as a target.

The base metal used in the welding material for Kim and Rhee’s study was mild steel [18], welded as an I-groove 
type joint with a thickness of 5.8 mm. The AWS ER 70S-6 brand electrode wire was used, with a diameter of 1.2 mm. 
CO2 was used as the shielding gas, flowing at a rate of 20 liter/min. A constant voltage welding power source was used. 
The variation range of the root opening was 0.4~1.2 mm [18]. The target value for penetration y0 was 3.5 mm.

In Kim and Rhee’s study, 9 groups of tests were conducted according to the experimental design. The mean value 
and standard deviation of the output response were then caused from the test data of 5 specimens for each designed 
experiment. The input controllable variables include the rate (x1) of wire-feed and welding rate (x2). The output response 
is the penetration, which includes the mean value y  and standard error σ of the penetration. The level of each input 
controllable variable for 23 factorial designs is cited and shown in Table 1. Subsequently, their experimental results are 
cited in Table 2. 

The evaluation results for the membership values μ and the corresponding errors of GMA welding process are 
shown in Table 3, in which the pre-assigned δ takes a value of 0.8 mm, i.e., δ = 0.8 mm.

The results in Table 4 show that test scheme No. 2 gains the maximum total preferable probability Pt. Therefore, 
the robust status from these test data is test scheme No. 2, with a mean value of penetration of 3.42 mm and a standard 

error of 
0.55

2

1
( ) / 5 0.3487 mmi

i
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=
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∑  at a wire-feed rate of x1

* = 75 mm/s and a welding rate of x2
* = 6 mm/

s. Similarly, when the value of δ was taken as 1.0 mm [19], the same result was obtained, which indicates that the pre-
assigned value of δ falls within a reasonable range.

Table 1. Parameter design of GMA welding process experiment [18]

Input variable Level 1 Level 2 Level 3

Wire-feed rate (mm/s), x1 60 75 90

Welding rate (mm/s), x2 6 8 10

(7)

(8)
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Table 2. Experimental results of GMA welding process [18]

No.
Input variable Experimental result of penetration (mm), f Mean value, (mm) Standard error, (mm)

x1, (mm/s) x2, (mm/s) f1 f2 f3 f4 f5 f σ

1 60 6 2.7 2.9 3.1 3.1 3.4 3.04 0.2332

2 75 6 3.0 3.2 3.3 3.6 4.0 3.42 0.3487

3 90 6 3.6 3.8 4.2 4.3 4.5 4.08 0.3311

4 60 8 2.4 2.6 2.6 2.7 2.8 2.62 0.1327

5 75 8 2.5 2.7 3.0 3.5 3.8 3.10 0.4858

6 90 8 2.9 3.3 3.6 3.7 4.1 3.52 0.4020

7 60 10 1.9 1.9 2.2 2.2 2.5 2.14 0.2245

8 75 10 1.8 2.4 2.7 2.9 3.2 2.60 0.4775

9 90 10 2.6 2.7 3.2 3.5 3.9 3.18 0.4874

Table 3. Membership values μ and the corresponding errors of GMA with δ = 0.8 mm

No. Membership function μ Mean value η η σμ sμ

1 0 0.25 0.5 0.5 0.875 0.425 0.575 0.3453 0.6707

2 0.375 0.625 0.75 0.875 0.375 0.6 0.4 0.3124 0.5075

3 0.875 0.625 0.125 0 0 0.325 0.675 0.3687 0.7692

4 0 0 0 0 0.125 0.025 0.975 0.0559 0.9766

5 0 0 0.375 1 0.625 0.4 0.6 0.4008 0.7216

6 0.25 0.75 0.875 0.75 0.25 0.575 0.425 0.3211 0.5327

7 0 0 0 0 0 0 1 0 1

8 0 0 0 0.25 0.625 0.175 0.825 0.2627 0.8658

9 0 0 0.625 1 0.5 0.425 0.575 0.3982 0.6994

Table 4. Evaluation results of the preferable probability

No. ηP µs
P Pt × 102 Rank

1 0.1260 0.1226 1.5445 3

2 0.1527 0.1465 2.2371 1

3 0.1107 0.1082 1.1976 6

4 0.0649 0.0778 0.5048 8

5 0.1221 0.1152 1.4067 5
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No. ηP µs
P Pt × 102 Rank

6 0.1489 0.1429 2.1264 2

7 0.0611 0.0744 0.4542 9

8 0.0878 0.0940 0.8255 7

9 0.1260 0.1184 1.4916 4

3.2 Application in the parametric design of printing machine’s ability

Vining and Myers once raised the problem of parametric design of printing machine’s ability [20], [21]. Three 
factors were involved, i.e., speed x1, pressure x2, and distance x3, which affect the printing machine’s ability to use ink 
to package labels. A 33 complete factorial design was used in the experiments which were with three replicates at each 
design point. The goal was to seek the optimal location at which the printing number is around 500 with minimum 
variance. Table 5 cited the experimental results.

From Table 5, it can be seen that the sample standard deviation of zero falls at two locations, alternatives 10 and 
14, but their printing numbers are significantly far from the target value y0 = 500. Table 6 provides the fuzzification 
evaluation results with y0 = 500 and δ = 100. Table 7 shows the evaluation results using PMOO, which shows that the 
scheme No. 23 of experimental alternative gains the highest overall preferable probability. Thus, scheme No. 23 can be 
selected as the optimal design, which corresponds to the coded input variables speed x1 = 0, pressure x2 = 0, and distance 
x3 = 1. At scheme No. 23, the mean printing number is 485.33 with a standard error of 44.64. Analogically, when the 
value of δ was taken as 200 in [19], it got the same result.

This approach avoids the effect of the puzzled standard deviation of zero, such as in this example at two locations, 
alternative schemes No. 10 and No. 14.

Table 5. Cited experimental result of printing ink data [20], [21]

No.
Coded input variable Output response Mean value Standard error

x1 x2 x3 y1 y2 y3 y σ

1 −1 −1 −1 34 10 28 24.00 12.49

2 0 −1 −1 115 116 130 120.33 8.39

3 1 −1 −1 192 186 263 213.67 42.83

4 −1 0 −1 82 88 88 86.00 3.46

5 0 0 −1 44 178 188 136.67 80.41

6 1 0 −1 322 350 350 340.67 16.17

7 −1 1 −1 141 110 86 112.33 27.57

8 0 1 −1 259 251 259 256.33 4.62

9 1 1 −1 290 280 245 271.67 23.63

10 −1 −1 0 81 81 81 81.00 0.00

11 0 −1 0 90 122 93 101.67 17.67

Table 4. (cont.)



Volume 6 Issue 1|2025| 153 Engineering Science & Technology

No.
Coded input variable Output response Mean value Standard error

x1 x2 x3 y1 y2 y3 y σ

12 1 −1 0 319 376 376 357.0 32.91

13 −1 0 0 180 180 154 171.33 15.01

14 0 0 0 372 372 372 372.0 0.00

15 1 0 0 541 568 396 501.67 92.50

16 −1 1 0 288 192 312 264.00 63.50

17 0 1 0 432 336 513 427.00 88.61

18 1 1 0 713 725 754 730.67 21.08

19 −1 −1 1 364 99 199 220.67 133.82

20 0 −1 1 232 221 266 239.67 23.46

21 1 −1 1 408 415 443 422.00 18.52

22 −1 0 1 182 233 182 199.00 29.44

23 0 0 1 507 515 434 485.33 44.64

24 1 0 1 846 535 640 673.67 158.21

25 −1 1 1 236 126 168 176.67 55.51

26 0 1 1 660 440 403 501.00 138.94

27 1 1 1 878 991 1,161 1,010.00 142.45

Table 6. Fuzzification evaluation results with y0 = 500 and δ = 100

No. Membership function μ Mean value µ σμ η sμ

1 0 0 0 0 0 1 1

2 0 0 0 0 0 1 1

3 0 0 0 0 0 1 1

4 0 0 0 0 0 1 1

5 0 0 0 0 0 1 1

6 0 0 0 0 0 1 1

7 0 0 0 0 0 1 1

8 0 0 0 0 0 1 1

9 0 0 0 0 0 1 1

10 0 0 0 0 0 1 1

Table 5. (cont.)
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No. Membership function μ Mean value µ σμ η sμ

11 0 0 0 0 0 1 1

12 0 0 0 0 0 1 1

13 0 0 0 0 0 1 1

14 0 0 0 0 0 1 1

15 0.59 0.32 0 0.3033 0.3875 0.6967 0.7972

16 0 0 0 0 0 1 1

17 0.32 0 0.87 0.3967 0.5352 0.6033 0.8065

18 0 0 0 0 0 1 1

19 0 0 0 0 0 1 1

20 0 0 0 0 0 1 1

21 0.08 0.15 0.43 0.22 0.2670 0.78 0.8244

22 0 0 0 0 0 1 1

23 0.93 0.85 0.34 0.7067 0.7534 0.2933 0.8085

24 0 0.65 0 0.2167 0.3753 0.7833 0.8686

25 0 0 0 0 0 1 1

26 0 0.4 0.03 0.1433 0.2316 0.8567 0.8874

27 0 0 0 0 0 1 1

Table 7. Evaluation results by means of PMOO

No. ηP µs
P Pt × 104 Rank

1 0.0296 0.0372 11.0128 -

2 0.0296 0.0372 11.0128 -

3 0.0296 0.0372 11.0128 -

4 0.0296 0.0372 11.0128 -

5 0.0296 0.0372 11.0128 -

6 0.0296 0.0372 11.0128 -

7 0.0296 0.0372 11.0128 -

8 0.0296 0.0372 11.0128 -

9 0.0296 0.0372 11.0128 -

10 0.0296 0.0372 11.0128 -

Table 6. (cont.)
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No. ηP µs
P Pt × 104 Rank

11 0.0296 0.0372 11.0128 -

12 0.0296 0.0372 11.0128 -

13 0.0296 0.0372 11.0128 -

14 0.0296 0.0372 11.0128 -

15 0.0602 0.0365 22.0130 3

16 0.0296 0.0372 11.0128 -

17 0.0697 0.0364 25.3184 2

18 0.0296 0.0372 11.0128 -

19 0.0296 0.0372 11.0128 -

20 0.0296 0.0372 11.0128 -

21 0.0518 0.0367 19.0303 4

22 0.0296 0.0372 11.0128 -

23 0.1009 0.0357 36.0286 1

24 0.0515 0.0367 18.9104 5

25 0.0296 0.0372 11.0128 -

26 0.0441 0.0369 16.2599 6

27 0.0296 0.0372 11.0128 -

4. Discussion
In the present approach, the option of the value of the parameter δ is quite important, it should be chosen properly 

not only to cover an appropriate number of test data but also to keep the test data close to the desired target value for 
the specific problem. If the value of the parameter δ is chosen too big, the difference of the test data cannot be revealed 
in terms of membership function in the manner of fuzzy theory distinctly; otherwise, if the value of the parameter δ is 
too small, there is no enough number of test data to participate the evaluation by means of probabilistic multi-objective 
optimization. As to an intensity type of physical quantity, it could suffer a 10% fuzziness (δ) in actual treatment 
approximately in general [4], [22]. Here in our studies for the GMA welding process and parametric design of printing 
machine’s ability problems, the desired target values for penetration (3.5 mm) and printing number (500), belong to the 
intensity type of physical quantities. The only exception here is that a 20% fuzziness is employed so as to cover more 
data from the experiments.

5. Conclusion
Disturbances and changes of unavoidable factors, such as environments, testing, raw materials, etc., lead to 

uncertainty of product quality. In this paper, a fuzzified approach of robust design for the case of desired value as a 
target is developed in terms of probabilistic multi-objective optimization in this paper. The consequences of application 
examples for robust designs in GMA welding process parameters and the printing machine’s ability indicate the 

Table 7. (cont.)
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reasonability of the fuzzification approach as an auxiliary measure.
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