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Abstract: Based upon the modified couple stress theory, we devise a procedure to analyze multiple interacting micro-
cracks subject to the mixed mode deformation in an isotropic elastic plane. First, we carry out the asymptotic analysis 
of the displacement field at the tip of a stationary crack. The dominant term of displacement field reveals that the 
symmetric part of the stress tensor, which is energy conjugate to the strain tensor, is not singular. In contrast, the couple 
stress tensor has square root singularity at a crack tip. Furthermore, we use the Fourier integral transform to obtain 
the solution to an edge dislocation in an isotropic plane. Asymptotic analysis of the obtained solutions shows Cauchy 
singularity in the location of the edge dislocation. The integral equations for several interacting parallel micro-cracks 
are constructed via the distributed dislocation technique. These equations are solved numerically for the density of 
dislocations on a micro-crack surface. The effects of intrinsic material length scale on the stress field of a crack and the 
interaction between two parallel micro-cracks are studied.
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Nomenclature
a			   Half crack length
A, B, C, D		  Constants of integration
bx

(i), by
(i)		  Dislocation densities for in-plane deformation

bφ
(i)			   Disclination density for in-plane deformation

Bx, By		  Burgers vector of an edge dislocation
Bφ			   Burger vector of a wedge disclination
er, eθ, ez		  Unit base vectors in cylindrical coordinate system
E			   Strain tensor
f, g			  Defined functions
F[ ; β]		  Complex Fourier transform
gx

(i), gy
(i), gφ

(i)		  Defined bounded functions for dislocation densities
G			   Lame’s constant of elastic isotropic material
─Gt, Gt		  Kernels of integral equations
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H(x)		  Heaviside step function
i			   Imaginary unit in complex numbers
I			   Unit matrix
Kn(x)		  Modified Bessel function of the second kind
KR

(i), KL
(i)		  Defined couple stress intensity factors

l			   Intrinsic length-scale of an elastic isotropic material
m			   Deviatoric part of couple stress tensor
mnn			  Normal component of the couple stress vector
mrr, mrθ, ...		  Deviatoric couple stress tensor components
n			   Outward unit vector normal to the boundary
N			   Number of cracks
pk

u			   Colocation points for solving integral equation
qk

u			   Quadrature points for solving integral equation
r			   Polar coordinate system component
sgn(x)		  Sign function
tn			   Traction vector
txy, tyy, ...		  Traction vectors components
u, v, w		  Displacement components in cylindrical coordinate system
U			   Displacement vector
V			   Volume of elastic body
W			   Strain energy function of elastic body
x, y			  Components of Cartesian coordinate system
xi

0, yi
0		  Coordinates of the center of ith crack

xi( p), yi( p)		  Cracks parametric form in Cartesian coordinate system
α			   Apex angle of a wedge
β			   Complex Fourier transform parameter
δ(x)			  Dirac delta function
 			   Levi-Civita permutation symbol
θ			   Polar coordinate system component
Θ			   Rotation vector
λ			   Lame’s constant of elastic isotropic material
σ			   Symmetric part of stress tensor
σ0			   Component of applied traction
σrr, σrθ, σθθ, ...	 Stress tensor components
χ			   Symmetric curvature tensor
ω			   Defined elastic isotropic material constant
∂( )/∂( )		  Partial derivative with respect to the variableΔ

			   Vector differential operator
| |			   Absolute value
( )T			   Transpose of a matrix
( ), ( )		  Partial derivatives with respect to the variable
( )', ( )'', ( )'''		 1st, 2nd and 3rd derivative of a function

1. Introduction
Stress analysis in the micron scales necessitates the consideration of the intrinsic material parameters to relax the 

locality assumption of the conventional continuum mechanics. The microstructural effect on the mechanical behavior of 
solids, such as those with coarse grains, glassy and semi-crystalline polymers [1], porous materials [2], and foams [3] is 
well-known. In polycrystalline materials, the existence of micro-cracks is inevitable. Experimental results indicated that 
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bodies containing micro-cracks were more resistant to fracture than those with macro-cracks [4]. However, the classical 
elasticity theory is insensitive to the length scale, leading to the application of the non-classical elasticity theories [5]. 
We provide a brief review of studies that used strain gradient elasticity, and couple stress theories to model material 
length scale effects in crack problems. The earliest attempt to incorporate material length scale into the analysis was 
made by Sternberg and Muki [6]. They considered the plane strain formulation of couple-stress theory, devised initially 
by Mindlin [7] for the two-dimensional problems, to analyze cracks under a uniformly distributed uniaxial tension and 
obtain a singular stress field at the crack tips. Han et al. [8] obtained dynamic stress and dynamic couple stress intensity 
factors for a finite crack which may propagate under mode I loading. Anisotropic strain gradient formulation was used 
by Vardoulakis et al. [9] for mode III analysis of a crack. A mixed-mode crack problem was solved by Huang et al. 
[10] by considering strain gradient effects. They showed that near-tip stress and couple-stress fields were square-root 
singular. The fracture of cellular materials employing gradient elasticity was addressed by Chen et al. [11]. Paulino et 
al. [12] and Chan et al. [13] considered mode III deformation of a crack in a functionally graded material using gradient 
elasticity theory. In the framework of couple stress elasticity theory developed by Koiter [14], the anti-plane deformation 
of a crack situated at the interface of two dissimilar planes was analyzed by Piccolroaz et al. [15]. Their major finding 
was that stress singularity at the crack tip was strongly influenced by microstructural parameters and may or may not 
exhibit oscillatory behavior. The same elasticity theory was employed by Mishuris et al. [16] to address the problem 
of steady-state propagation of a semi-infinite crack subject to anti-plane loading. The couple stress theory was used by 
Itou [17] for the analysis of elastic layers containing a crack perpendicular to the boundary. Layers were under uniform 
tensile traction and the effect of couple stress on crack stress intensity factors was investigated. Karimpour and Fotuhi [18] 
studied the anti-plane deformation of a cracked plane utilizing strain gradient theory. The above problem was solved by 
Zhao et al. [19] in the framework of a modified strain gradient model leading to a stress field with singularity stronger 
than square root. In two articles Baxevanakis et al. [20]-[21], considered the interaction of a discrete dislocation and a 
finite length crack using couple stress elasticity. Opening and shear modes were studied, respectively, in the first and 
second articles. Vafa and Faiborz [22] considered micro-cracks under anti-plane deformation based on the modified 
couple stress theory. They analyzed a screw dislocation in a plane and then employed a dislocation distributed method to 
study the anti-plane deformation of multiple cracks in the plane. Gourgiotis [23], in the context of couple stress theory, 
studied the interaction of two collinear in-plane cracks under remotely applied shear traction. The effects of material 
characteristic length on cracks stress intensity factors and energy release rates were also investigated. Homayounfard et 
al. [24] presented a finite element formulation for studying mode I crack problems within couple stress elasticity. They 
studied a crack in an infinite and finite-width plate. Moreover, the effects of internal length parameters on stress, couple 
stress intensity factors, and energy release rate were examined. Joseph et al. [25] used strain gradient elasticity theory 
to deal with a crack in a layer under anti-plane deformation. Li and Wang [26] analyzed the same problem in a layer 
sandwiched between two semi-infinite layers. Gharahi and Schiavone [27] used the micropolar surface model to analyze 
the deformation of a micropolar half-plane weakened by a single-edge dislocation. Nobili et al. [28] analyzed the elasto-
dynamic anti-plane deformation of a semi-infinite crack utilizing couple stress theory by taking into account the micro 
inertia. Baxevanakis and Georgiadis [29] considered the interaction of a finite-length crack with climb, glide, and 
screw dislocation dipoles. In all cases, the defects are placed along the crack plane and are not emitted by the crack tip. 
Giannakopoulos and Zisis [30] studied a moving semi-infinite crack in an infinite flexoelectric material with constant 
velocity. They showed that the anti-plane dynamic flexoelectric problem is equivalent to a dynamic couple stress 
elasticity problem. Employing William’s expansion method Tian et al. [31] analyzed the electromechanical coupling 
effect around the tip of a crack under anti-plane deformation. Lei et al. [32] developed general displacement and traction 
boundary integral equations to analyze plane strain problems of three typical couple stress theories. They considered 
some numerical examples using the boundary element method, including a center crack in a plate. Cong and Duc [33] 
studied the mode I crack propagation problem using the modified couple stress and the phase-field theory. Chen et al. 
[34] investigated a mode I embedded crack in a pre-stressed elastic medium using couple stress theory. They analyzed 
the effects of material parameters and initial stress by numerically solving the governing equations with the Fourier 
transform method. Chen et al. [35] analyzed an interface crack between two pre-stressed couple stress materials under 
an anti-plane shear load. Lazar [36] used nonlocal simplified first strain gradient elasticity theory to solve the screw 
and edge dislocation problem in a plane and showed that all relevant dislocation fields are nonsingular. Solyaev [37] 
derived an asymptotic solution for the higher-order mode I crack tip fields using strain gradient elasticity theory. Chen et 
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al. [38] used couple stress theory to solve a Yoffe-type anti-plane crack problem with a couple of tractions on the crack 
surface. Xie and Linder [39] obtained the full-field solution for mode III deformation of semi-infinite and finite cracks 
in flexoelectric solids. The mode III fracture of a Yoffe crack in flexoelectric materials was the subject of study by 
Knisovitis et al. [40]. They studied the asymptotic structure of the displacement and the polarization fields at the crack 
tip.

In the present article, the study in Vafa and Fariborz [22], is extended to the in-plane case. The modified couple-
stress theory [41] is employed for the in-plane analysis of multiple micro-cracks in an isotropic elastic plane. It is worth 
mentioning that among several well-known non-local theories, the modified couple stress theory is attractive because 
it involves only one material length-scale parameter, its boundary conditions are derived using the principle of virtual 
work, and the stress tensors used in the expression for strain energy density are symmetrical. The asymptotic analysis 
is carried out to derive the dominant solution of the displacement field in the inner region of the crack tip. The results 
show that in contrast to the local elasticity theory at the tip of a crack, the symmetric part of the stress tensor is not 
singular. Furthermore, we solved the edge dislocation problem in an isotropic plane and observed that the resultant 
stress components are Cauchy singular. Then, via the distributed dislocation technique [42], the integral equations are 
derived for multiple interacting micro-cracks in the isotropic planes. The numerical solutions to these equations are used 
to study the effect of intrinsic material length scale on stress distribution and the interaction between two parallel micro-
cracks.

2. Formulation of the modified couple stress elasticity
We review the basic three-dimensional formulation of the modified couple-stress elasticity. Then the formulation is 

simplified for a two-dimensional case to be used in analyzing elastic wedge and edge dislocation problems.

2.1 Three-dimensional formulation

In the framework of modified couple stress elasticity, in a linear elastic body with volume V, the strain energy 
density function W is expressed as [41]

1 ( : : ) 
2 V

W dV= +∫ E σ χ m

where σ is the symmetric part of the stress tensor, and m is the deviatoric part of the couple stress tensor, and their 
conjugate deformations are E, the strain, and χ , the symmetric curvature tensors, respectively. Therefore, in this theory, 
the strain energy function does not depend explicitly on anti-symmetric parts of the curvature and stress tensors. The 
strain and curvature tensors in terms of displacement vector U are represented as

1 ( )
2

TU U = ∇ + ∇ E

1 ( )
2

T = ∇Θ+ ∇Θ χ

where 

Δ

 is the vector differential operator, superscript T designates the transpose of a matrix, and Θ is the rotation vector 
defined as

1
2

UΘ = ∇×

(2)

(3)

(1)
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The constitutive equations for elastic isotropic materials in the modified couple-stress elasticity involve only one 
intrinsic length-scale l and read

tr( ) 2Gλ= +σ E I E

22Gl=m χ

where λ and G are the Lame’s constants and I is the unit matrix. It is worth mentioning that the value of the intrinsic 
length scale depends upon the micro-structure of materials. Conducting the torsion test on thin copper wires [43] found 
the mean value of l = 3.7 μm for the material. Li et al. [44] presented a standard experimental method for measuring l 
and obtained its value for copper and titanium micro-beams.

The equilibrium equations, ignoring body-force and -couple, yield

1 : 0
2

∇⋅ + ∇∇⋅ =σ m

where   is the Levi-Civita permutation symbol. The five boundary conditions required in the couple stress elasticity 
problems are

( )1either known or known
2

n
jn j nnU t t e n n m= = = ⋅ + × ∇ ⋅ −∇ =σ m

either ( ) known or ( ) known nnn m n m nnΘ⋅ − = = ⋅ ⋅ − =I I

In Eq (6), n is the outward unit vector normal to the boundary and mnn = n · m·n is the normal component of the 
couple stress vector.

2.2 Two-dimensional formulation 

The above formulation, in tensor form, is simplified in the generalized plane-strain elasticity problems [45]. 
Employing cylindrical coordinates, the displacement vector may be expressed as

( , ) ( , ) ( , )r zU u r e v r e w r eθθ θ θ= + +

In Eq (7), er, eθ, and ez are unit base vectors. The vector differential operator is simplified as

r
e

e
r r

θ

θ
∂ ∂

∇ = +
∂ ∂

By Eqs (2)-(5) and (7)-(8), equilibrium equations in terms of the displacement components, yield

, , 
, , 

, , 

( 2 ) r r
r

u v v uGG u v
r r r

θ θ

θ

λ
+ −   

+ + − +   
   

( ) ( ){ }
2

3 2
, , , , , , , , , , 4 2 0,

4 rrr rr rr r r r
Gl r v r v u r u v v u v u v

r θ θ θθ θθ θ θθθ θθθθ θθθ θθ θ+ + − + − + − + − + =

(4)

(5)

(6)

(7)

(8)
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, , 
, , 

, , 

2
r r

r

u v v uG u G v
r r r

θ θ

θ

λ + −   +
+ + +   

   

( ) ( ){
2

4 3 2
, , , , , , 4 2 2 3

4 rrrr rrr rrr rr rr rr
Gl r v r v u r u v v

r θ θ θθ− + − + − +

( ) ( )}, , , , , , , 3 3 3 0,r r r rr v u v u u v u vθ θθ θθθ θθθ θθ θ+ − − − + − + − =

( ){
2

, , 4 3 2
, , , , , 2 4 2 2

4
r

rr rrrr rrr rr rr

w w lw r w r w r w w
r r r

θθ
θθ+ + − + + −

( ) }, , , , 2 4r rr w w w wθθ θθθθ θθ+ − + +

2
2( ) ( ) 0

4
lw w= ∇ ⋅∇ − ∇ ⋅∇ =

In Eq (9), subscripts following a comma signify partial derivatives with respect to the variables. From Eq (6), in an 
infinite wedge with apex angle α, the conditions on the boundary θ = (0, α) become

, 
, 

1either known or 
2

rz z
r z r rz r r

m m
ue ve we m e e

r
θ θ

θ θ θθ θσ σ
 +  

+ + = + + +  
  

, 
, , 

1 known
2

rr r
z rr r r z

m m m
m m e

r
θθ θ θ

θ θθσ
 − +  

+ − − + =  
  

either  known or knownr r z z r r z ze e m e m eθ θΘ +Θ = + =

These conditions, in terms of displacement components, may be expressed as

( )( ){ 2 2
, , 3either known or 4

4 r
Gu l r v u rv
r θ= − − −

( )}2 3 2 2
, , , , , , , 2 known rrr rr rr r rl r v r v r u ru rv v uθ θ θθ θθ θθθ+ + − + + + − =

( ), , 
2either known or known r
Gv u u v

r θ
λλ +

= + + =

( )
2

2
, , , , , 2either known or 3 3 4 known 

4 rr r
G lw w r w rw w w
r rθ θ θ θ θθθ

 
= − − + + = 

 

( )
2

, 2
, , , 2either known or known

2 2 rr r

w Gl r w rw w
r r
θ

θθ= − − − =

(10)

(9)
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( )
2

, 
, , , , 2

1either known or known
2 2r r

v u Glv rv v u
r r

θ
θ θ θθ

− 
+ = + − = 

 

From Eqs (9) and (11), we observe that formulations of in-plane and anti-plane deformations are decoupled. 
Therefore, these problems may be treated separately. In what follows, the in-plane problem is analyzed.

3. Stress near a wedge apex
We study the behavior of the stress field in the inner region of a wedge apex, Figure 1.

Figure 1. Schematic of the infinite wedge

The strain energy should be finite at the wedge apex which implies, in view of Eqs (1) and (2), that the 
displacement vector in this region should behave as U ~ r γF(θ), γ > 1 as r → 0. By Eqs (2) and (4), this results in the 
boundedness of the symmetric part of stress tensor σ (called, thereafter, stress tensor) in the inner region of wedge apex, 
i.e., r/l = ε << 1. In the following, we investigate the behavior of the stress tensor σ and the deviatoric part of the couple 
stress tensor m (called, thereafter, couple stress tensor) at a wedge apex under in-plane deformation.

In view of Eq (9), in the vicinity of a wedge apex, the dominant equations become

( ) ( )3 2
, , , , , , , , , , 2 0,rrr rr rr r r rr v r v u r u v v u v u vθ θ θθ θθ θ θθθ θθθθ θθθ θθ θ+ − + − + − + − + =

( ) ( ) ( )4 3 2
, , , , , , , , , , 2 2 3 3 3rrrr rrr rrr rr rr rr r r r rr v r v u r u v v r v u v uθ θ θθ θ θθ θθθ+ − + − + + − − −

( ), , , 3 0u v u vθθθ θθ θ+ − + − =

Following Williams [46], the solutions to these equations are taken as

( ),  ( )u r f v r gγ γθ θ= =

We substitute Eq (13) into (12) and observe that the resultant equations are satisfied provided that

(11)

(12)

(13)

r
θ

α
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2 2( 1) 0,  ( 1) 0f f g gγ γ′′ ′′+ − = + − =

where (' ) = d/dθ. The solutions to Eq (14) are readily known

cos( 1) sin( 1)f A Bγ θ γ θ= − + −

cos( 1) sin( 1)g C Dγ θ γ θ= − + −

From Eqs (11) and (13), the boundary conditions for Eq (15) near the tip of a crack, i.e., 0 < θ < 2π are taken as

( )21 0,   0f f fγ′′′ ′ ′′+ − = =

( )21 0,  0,  on 0, 2g g gγ θ π′′ ′+ − = = =

The application of boundary conditions (16) to Eq (15), considering γ > 1 due to the finiteness of strain energy, 
leads to

1 ,  {1, 2, 3, }
2
n nγ = + ∈ …

Therefore, contrary to the local elasticity theory, in the modified couple stress model stress tensor σ is bounded at 
a crack tip whereas couple stress tensor m is square root singular. The asymptotic displacement fields in Eq. (17) align 
with the crack tip analysis by Aravas and Giannakopoulos [47] for gradient elasticity theory.

4. Edge dislocation solution
Utilizing the modified couple-stress theory, the problem of edge dislocation in an elastic isotropic plane is 

investigated. In-plane equilibrium Eq (5) in terms of the displacement field in Cartesian coordinates become

2

, , , , , , , ( 2 ) ( ) 0
4xx xy yy xxxy xxyy xyyy yyyy

GlG u G v Gu v u v uλ λ  + + + + + − + − = 

2

, , , , , , , ( ) ( 2 ) 0
4xx xy yy xxxx xxxy xxyy xyyy

GlGv G u G v v u v uλ λ  + + + + − − + − = 

The related geometric and natural boundary conditions on the line y = constant, are obtained by setting n = ej in Eq 
(6), resulting in

( ), , 
1either known or known 
2xy xy xz x yz yu t m mσ= = + + =

either known or knownyy yyv t σ= = =

either known or knownz yzmΘ = =

(14)

(15)

(16)

(17)

(18)

(19)
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The above boundary conditions in terms of displacement components, become

( ) ( )
2

, , , , , either known or known
4xy y x xxx xxy xyy yyy

Glu t G u v v u v u= = + + − + − =

, , either known or ( 2 ) knownyy x yv t u G vλ λ= = + + =

( ) ( )
2

, , , , 
1either known or known 
2 2x y yz xy yy

Glv u m v u− = = − =

The solution to the edge dislocation with Burgers vector B = {Bx, By} and wedge disclination Bφ  located at the 
origin of the coordinate system where the cut is the half-line x > 0 in the context of the modified couple-stress theory, is 
derived. Equation (18) for the in-plane deformation are rewritten as

2

, , , , , , , ( 2) ( 1) 0
4xx xy yy xxxy xxyy xyyy yyyy
lu v u v u v uω ω  + + + + + − + − = 

2

, , , , , , , ( 1) ( 2) 0
4xx xy yy xxxx xxxy xxyy xyyy
lv u v v u v uω ω  + + + + − − + − = 

where ω = λ/G. Utilizing Eq (20), the displacement discontinuity and traction continuity caused by edge dislocation and 
disclination, on the x-axis are

( ) ( ), 0 , 0 ( ),xu x u x B H x+ −− =

( ) ( ), 0 , 0 ( ),yv x v x B H x+ −− =

( ) ( ) ( ) ( ), , , ,
1 1, 0 , 0 , 0 , 0 ( ),
2 2x y x yv x u x v x u x B H xφ

+ + − −   − − − =   

( ) ( ) ( ) ( ) ( ) ( )
2

, , , , , ,, 0 , 0 , 0 , 0 , 0 , 0
4y x xxx xxy xyy yyy
lu x v x v x u x v x u x+ + + + + +   + + − + −   

( ) ( ),, 0 , 0y xu x v x− − = + 

( ) ( ) ( ) ( )
2

, , , ,, 0 , 0 , 0 , 0 ,
4 xxx xxy xyy yyy
l v x u x v x u x− − − − + − + − 

( ) ( ) ( ) ( ), , , , , 0 ( 2) , 0 , 0 ( 2) , 0x y x yu x v x u x v xω ω ω ω+ + − −+ + = + +

( ) ( ) ( ) ( ), , , , , 0 , 0 , 0 , 0xy yy xy yyv x u x v x u x+ + − −− = −

Applying the complex Fourier transform to Eq (21) and boundary conditions (22), yields

(20)

(21)

(22)

,
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2 2 4 3 2
2 2 3

2 4 3 2( 1) ( 2) 0,
4

d U dV l d U d V d U dVi U i i
dy dydy dy dy dy

β ω β ω β β β
 

+ + − + − − − + = 
 

2 2 3 2
2 2 3

2 3 2( 2) ( 1) 0,
4

d V dU l d U d V dUi V i i i V
dy dydy dy dy

ω β ω β β β β β
 

+ + + − + − − + = 
 

( ) ( ) ( ) ( ), 0 , 0 ( ) ,  , 0 , 0 ( ) ,x y
i iU U B V V Bβ β πδ β β β πδ β
β β

+ − + −   
− = − − = −   

   

( ) ( ) ( ), ,, 0 , 0 2 ( ) ,y y y
iU U i B Bφβ β β πδ β
β

+ −  
− = − − 

 

( ) ( ), ,, 0 , 0 ( ) ,
2y y x

i iV V Bβωβ β πδ β
ω β

+ −  
− = − − +  

( ) ( )
2

, , , 0 , 0 ( ) ,
2yy yy x

iU U Bωββ β πδ β
ω β

+ −  
− = − +  

( ) ( ) ( ) ( ), , , ,, 0 , 0 , 0 , 0yyy yyy yy yyU U i V Vβ β β β β+ − + −   − − −   

2
2 2

4 42 ( )y
ii B B

l l φβ β πδ β
β

   = − + −        

where [U(β, y), V(β, y)] = F [u(x, y), v(x, y); β]. Taking the inverse Fourier transform of the solution to Eq (23) results 
in

2
2
4| |

2 2 | |

0

1 1 2( , ) sgn( ) 1 2 | | sin( )
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In light of the identities given in Appendix A, the displacement field (24) is simplified as
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The stress and traction components become
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Utilizing the polar coordinates (r, θ) and the asymptotic formulas for modified Bessel functions with small 
arguments [48], we observe that at dislocation location, as r → 0
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The above expressions are Cauchy singular at dislocation location which differs from the stress behavior under 
anti-plane deformation [22].

5. Micro-cracks formulation 
We employ the derived dislocation solution to analyze a plane weakened by N interacting micro-cracks with half-

length ai, i ∈ {1, 2, ..., N}. The plane is subjected to uniformly distributed traction as | y | → ∞. For the sake of brevity, 
only horizontal cracks are considered. The cracks are represented in parametric form, as

0( ) ,  1 1i i ix p x a p p= + − ≤ ≤

0( ) ,  {1, 2, , }i iy p y i N= ∈ …

where xi
0 and yi

0 are the coordinates of the center of ith crack. The analyses of micro-cracks under in-plane loading are 
accomplished using the distributed dislocations technique.

The dislocation and disclination densities for in-plane deformation are defined as
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The distributed dislocation technique is employed to construct integral equations for a plane containing N 
horizontal micro-cracks. The resultant integral equations are
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The kernels of integral equation (30) may be readily deduced from Eq (26). These are specified in Appendix B. It 
is worth mentioning that only kernels with over-bar are Cauchy singular whereas all other kernels are bounded. Making 
use of the behavior of dislocation and disclination densities at a crack tip, we take

(30)
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where unknown functions gx
(i), gy

(i), and gφ
(i) are bounded. Since only bφ

(i)(q) is square root singular at a crack tip, Eq (30) 
should satisfy the following closure condition
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The numerical solution of integral equations (30) and (32) is accomplished through the procedure devised by, 
Erdogan et al. [49]. Substituting equation (31) into (30) and (32) for discretization, the following colocation and 
quadrature points, designated by superscripts b for bx

(i) and by
(i) and u for bφ

(i), are used
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As we may note, points pk
b and qk

b are different from those used under anti-plane mode [22], whereas points pk
u and 

qk
u are the same. The resultant algebraic equations become
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We solve the above system of 3n linear algebraic equations to determine the unknown representing dislocation and 
disclination densities, at the collocation points. The stress fields in a plane weakened by N interacting parallel micro-
cracks are
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As shown in Eq (27), the stress component myz is square root singular at crack tips. The couple stress intensity 
factors (CSIFs) are defined as
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Therefore, from last Eq (30) and Eq (37), CSIFs under in-plane deformation may be obtained as

(36)

(37)
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6. Numerical results
In the sequel, we consider elastic planes under uniform traction as | y | → ∞. Therefore, in the absence of cracks, 

couple stress tensor vanishes. Numerical results of stress components are provided for three different values of l /a, along 
a crack line outside the crack surface. Moreover, Eq (38) is used to determine the normalized CSIFs, (KL, KR)/σ0a

3/2, 
where σ0 is a component of applied traction and subscripts L and R signify crack tips, (-a, 0) and (a, 0), respectively.

Figure 2. Normalized stress on the x-axis, outside crack under normal traction

Figure 3. Normalized stress on the x-axis, outside crack under shear traction
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In this section, the analysis of a plane weakened by a horizontal crack with length 2a, sustaining normal traction 
tyy(x, y) = σ0 as | y | → ∞, is taken up. The right side of integral Eq (35) are, txy( pk

b) = myz( pl
u) = 0, σyy( pk

b) = -σ0. In-
plane normalized stresses σxx(x, 0)/σ0, σyy( x, 0)/σ0 for different values of intrinsic length l are shown in Figure 2. As the 
result of symmetry, σxy(x, 0) = 0. At a crack tip, the stress component σxx(x, 0) is bounded and its value attenuates as l 
increases. From Eq (19), the traction-free boundary conditions on the crack surface -a ≤ x ≤ a yield, tyy(x, 0) = σyy( x, 0) = 
0. Therefore, at a crack tip, only bounded stress component σxx exists. The normalized CSIFs (Table 1) at the tips of the 
crack are equal.

Table 1. CSIFs under in-plane traction

Example CSIF l = 1/10 l = 1/20 l = 1/50

Crack under normal traction ( ) 0/R LK K aσ= 3.03 × 10-3 8.29 × 10-4 1.47 × 10-4

Collinear cracks

0/RK aσ 1.41 × 10-3 3.83 × 10-4 1.72 × 10-4

0/LK aσ -2.90 × 10-3 -8.01 × 10-4 -5.05 × 10-4

Non-collinear cracks

0/RK aσ 1.99 × 10-3 4.62 × 10-4 5.54 × 10-5

0/LK aσ -2.85 × 10-3 -7.78 × 10-4 -2.70 × 10-4

In this example, the plane under uniformly distributed far-field shear traction txy(x, y) = τ0 as | y | → ∞, weakened by 
a crack, is analyzed in Figure 3. The only non-vanishing stress component along the crack line is the shear stress σxy(x, 
0), |x | > a. Furthermore, due to anti-symmetry CSIF does not exist. The value of l, except for l = 0, wherein σxy(x, 0) is 
unbounded as x → a+, weakly affects the stress component.

We investigate the interaction between two collinear cracks in a plane under uniform traction components tyy = 
σ0 and txy = σ0 /2. The normalized stress components on the x-axis are shown in Figures 4(a-f). The extremum of stress 
components, on the ligament between cracks tips, occurs at the middle of the ligament. In this region, the intrinsic 
length l changes only the values not the behavior of the stress field. On the half-line x < -a, the effect of l is negligible. 
Table 1 contains the normalized CSIFs.

In the last example, the interaction between two parallel off-center cracks, under remote normal traction tyy = σ0 is 
studied. The variations of stress components on the x-axis are shown in Figures 5(a-f). Comparing the results on the x-axis 
for x < -a with those of the first example shows the appearance of a weak shear stress component whereas normal stress 
components σxx(x, 0) and σyy(x, 0) have changed slightly. On the half-line x > a, contrary to stress components σyy(x, 0) 
and σxy(x, 0), the behavior of σxx(x, 0) changes with the value of l /a. On the half-line, however, the extremum of all stress 
components enhances significantly as l decreases. The normalized CSIFs are given in Table 1. In the case of two parallel 
interacting micro-cracks, the signs of CSIFs at the tips of a crack are different.
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Figure 4. Normalized stress components on the line y = 0 for two co-linear cracks under uniform normal and shear tractions, (a, c, e) outside cracked 
area, (b, d, f) on ligament between cracks
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Figure 5. Normalized stress components outside of the crack surface on the x-axis for two parallel off-center cracks under uniform normal traction
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7. Conclusion
The Volterra edge dislocation and wedge disclination are analyzed in an isotropic elastic plane employing the 

modified couple-stress theory. The stress field for an edge dislocation is Cauchy singular. Utilizing the Williams 
procedure reveals that in the modified couple stress theory, the stress field at a crack tip, is bounded but the couple 
stress tensor is square root singular. The dislocation solution in conjunction with the distributed dislocation technique is 
utilized to construct singular integral equations to analyze N interacting parallel micro-cracks. The equations are solved 
numerically for the density of dislocations on a crack surface. Several examples of a single and two interacting cracks 
are solved and stress distribution along the crack lines together with the normalized CSIFs at the tips of cracks for three 
values of the material intrinsic length-scale l are determined. In all examples, as the value of length scale l decreases 
CSIFs attenuate while the stress field near the crack tips experiences significant growth.

Moreover, the length scale, except for σxx(x, 0), x > a in the case of two parallel off-center cracks, has little effect on 
the behavior of the stress field. It is worth mentioning that in the case of two interacting cracks, signs of the CSIFs at the 
tips of a crack differ. Furthermore, |KL | > |KR |; therefore, CSIF is more severe at the crack tip which is farther from the 
tips of other interacting cracks.
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Appendix A
The following identities are used for the determination of displacement components
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Appendix B
The kernels of the integral equations (30) and (36) are

( )
2

2 2
0 13 3

2 3 1 2 2 2 | | 2 1( ) | | 2 | |
2xy

x
t

G x lG x K x l x K x
x x l l l xx x

ω
π ω
  +      = − + + + − −       +        

2

2 3

2 3 1 2 2 1( ) | |
2yy

y G lG x K x
x x l x xσ

ω
π ω
 +   = − − − +    +    

12 2

| | 2( ) | |
2yy

Gl x lG x K x
lx x

φ
σ π

  = −  
  

12 2

| | 2( ) | |
2 2yz

y
m

Gl x lG x K x
lx xπ

  = − −  
  

( )2 2

0

1( ) 4 sin( )
2yzm
Gl lG x l l l x d

x l
φ π β β β β

π β
∞ 

= − + + + − 
 

∫

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1 3( , ) 2
2xx

x
l x yG x y r l x r x yG x y y K K

l l lr r r r rσ
ω

π ω

  − − + +       = − + + +       +           

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1( , ) 2
2xx

y
l x yG x y r l y r x yG x y x K K

l l lr r r r rσ
ω

π ω

  − − + −       = − − − − +       +           

2 2 2 2

0 12 4

2 2 2 2( , ) 1
2xx

G y r l x y r rG x y K K
l l lr r

φ
σ π

 −     = + −          

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1( , ) 2
2yy

x
l x yG x y r l x r x yG x y y K K

l l lr r r r rσ
ω

π ω

  − − + −       = − − + + +       +           

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1 3( , ) 2
2yy

y
l x yG x y r l y r x yG x y x K K

l l lr r r r rσ
ω

π ω

  − − + +       = − − − −       +           

( )2 2 22

0 12 4

2 2 2 2( , ) 1
2yy

l x yG y r r rG x y K K
l l lr r

φ
σ π

 −      = − + −           



Engineering Science & Technology 146 | S. J. Fariborz, et al.

( )2 2 22 2 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 1( , ) 2
2xy

x
l x yG x y r l x y r x yG x y x K K

l l lr r r r rσ
ω

π ω

  − − − + −       = − − + + +       +           

( )2 2 22 2 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 1( , ) 2
2xy

y
l x yG x y r l x y r x yG x y y K K

l l lr r r r rσ
ω

π ω

  − − − + −       = − − + + +       +           

2
2
42 2 2 | || | 2 | |

0

1 1 2( , ) sgn( ) sin( )
2 2xy

yy y ll lG x y G y e l e e x d
β

φ β
σ

ββ β β
π β

− +− ∞ −
  +  = − − −

    
∫

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1( , ) 2
2xy

x
t

l x yG x y r l x r x yG x y x K K
l l lr r r r r

ω
π ω

  − − + −       = − − + + +       +           

( )2 2 22 2 2 2 2 2

0 14 2 3 5 4

33 2 2 2 2 1( , ) 2
2xy

y
t

l x yG x y r l x r x yG x y y K K
l l lr r r r r

ω
π ω

  − − + −       = − − + + +       +           

2

22 2

2( , ) 2
xyt

G xy l rG x y K
lr r

φ

π
  = −  

  

2

22 2

2( , )
2yz

x
m

G xy r lG x y K
lr rπ

  = −  
  

( )2 2 22

0 12 4

2 2 2( , ) 1
4yz

y
m

l x yG y r r rG x y K K
l l lr rπ

 −      = + −           

2
2
42 | || | 2 | |

2 20

1 4( , ) sin( )
2yz

yy yll
m

Gl lxG x y e l e e x d
r l

β
φ βπ β β β

π β

− +− ∞ −
  
  = − + + + −

    
∫


