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Abstract: This paper presents a methodology embodying identification procedures, uncertain modeling, and robust 
control design of embedded multivariable control systems. Concerning the identification, this methodology involved 
the determination of probabilistic uncertainty bounds for multivariable plants based on the black box or gray box 
identification. The bounds obtained were used in the derivation of an uncertain model in the form of upper Linear 
Fractional Transformation (LFT). This model was used in the robust control design implementing μ-synthesis. The 
problems arising on the different design stages were illustrated by an example presenting the embedded robust control of 
a two-input two-output analog model. The plant was identified by using black box and gray box identification methods 
that produced the necessary information to develop the corresponding uncertainty models. Two discrete-time robust 
controllers relevant to the two types of identification were designed and embedded in the physical system. Simulation 
results for the embedded closed-loop system and experimental results obtained by using the robust controllers were 
compared.

Keywords: embedded control systems, multivariable system identification, uncertainty modeling, robust control

1. Introduction
Recently, there was an increasing interest in the design and implementation of embedded systems, which utilize 

robust control laws (see [1]-[3]). The modern microcontrollers and Digital Signal Processors (DSP) allow the embedding 
of sophisticated controllers that realize high order robust control laws. The implementation of such laws provides 
possibilities to achieve robust stability and performance of the closed-loop systems and to ensure low sensitivity to 
parameter variations and unknown noises and disturbances. 

The design and implementation of robust control laws in embedded systems are associated with several challenges, 
which can make the design process a nontrivial task. The main difficulty is related to the determination of a plant 
uncertainty model that is appropriate for the design of a controller satisfying stability and performance requirements to 
the closed-loop system behavior. 

Finding such a model usually requires the application of an identification procedure and a sequence of algorithms 
for model reduction and uncertainty description. This is followed by the design of a robust controller that may require 
doing several iterations to determine the desired performance weighting functions. Finally, the controller should be 
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implemented in the appropriate hardware and software environment.

2. Plant identification
In practice, it is frequently required to use experimentally obtained input and output data to determine an 

appropriate plant model. As it is well known [4], a model can be identified by two different approaches named black box 
and gray box respectively. The black box approach requires only measurements of system inputs and outputs and does 
not require information about the plant structure. In this way, the black box models do not explicitly reveal the physical 
structure and parameters of the plant, but the structure should be sufficiently simple and appropriate for controller 
design. Aside from input/output measurements, the gray box approach requires information about model structure 
and in this case, only the plant parameters are estimated. This approach is useful when we can derive model structure 
from physical principles, but do not know the values of the parameters, including mass, the moment of inertia, friction 
coefficients, and others. The main advantage of the gray box model is that its variables and parameters have physical 
interpretation and explicitly reveal the physical relations between these variables. Methods for black box and gray box 
identification were implemented in various functions of System Identification ToolboxTM [5].

The identification process of linear models involves several issues including:
Experiment design and input/output data acquisition;
Model structure selection;
Estimation of model parameters;
Validation of the estimated model to decide whether the model is adequate for the controller design.
A thorough discussion of these issues can be found in [4], [6]-[8].

Figure 1. Block-diagram of the analog model

In this paper, as an illustrative example, we considered using the design of an embedded controller for a two-
input/two-output control pant with block-diagram, as shown in Figure 1. Due to the cross-coupling between the inputs, 
the plant is difficult to control by single-input controllers and good performance requires the implementation of a 
multivariable controller. Physically, the plant is developed by the analog modeling system Serie 9500 Modulsystem 
Regelungstechnik [9] in the form of a board on which blocks with different dynamic functions were arranged (Figure 2). 
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Figure 2. The laboratory set up

The board was powered by a DC supply of ±15 V with the linear range of input and output signals of ±10 V. The 
gains and time constants were set arbitrarily within the admissible ranges.

Plant identification was done in an open-loop setting. The two models were estimated by the black box and gray 
box approaches, respectively. To ensure a permanent excitation of the plant, two mutually uncorrelated stochastic binary 
sequences were used as the input signals to the plant. These signals are of levels 0.5 V and 1.5 V for the first input 
and 1.5 V and 2.5 V for the second input. The data measured with a sampling period of T0 = 0.05 s were centered and 
separated into two sets which were used to estimate and validate the model. The set of centered data intended for model 
estimation is as shown in Figure 3. The sampling period was chosen to be sufficiently smaller than the expected values 
of the plant time constants.

Figure 3. Input/output plant data 
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To estimate the plant model, the prediction error method for the state-space models [4] was implemented using the 
function ssest of MATLAB® System Identification ToolboxTM [5]. As a result of the black box identification, a fourth-
order model is obtained in the form of

( 1) ( ) ( ) ( )x k Ax k Bu k Ke k+ = + +

( ) ( ) ( )y k Cx k e k= +

where
x(k) = [x1(k) x2(k) x3(k) x4(k)]T is the state vector, u(k) = [u1(k) u2(k)]T is the input vector, y(k) = [y1(k) y2(k)]T is the 

output vector, and e(k) = [e1(k) e2(k)]T is the residue error vector.
The matrices of the obtained model (1) are
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Figure 4. Correlation test for residue error of black-box (left) and gray-box identification models (right)

Model (1) was validated by various tests. The residue correlation tests in the time domain and frequency domain 
are as shown on the left side of Figure 4 and 5. 
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Figure 5. Residue frequency response for the black-box (left) and gray-box (right) identification models

Using the grey box identification procedure a similar fourth-order model is obtained with matrices
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The residue correlation tests in the time domain and frequency domain for this model are as shown on the right-
hand side of Figure 4 and 5. It is seen from the residue error test for both models that the estimates obtained are 
unbiased. 

Figure 6. Simulated response comparison for the black-box (left) and gray-box (right) identification models
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A comparison of the simulated responses of the two estimated models is as shown in Figure 6. The coincidence of 
more than 85% between the output signals demonstrated that the model sufficiently describes the plant dynamics well.

3. Derivation of the uncertainty model
The next step after the identification is the determination of the plant uncertainty model. If an analytical description 

of the plant is not available (this is the most frequent case in practice), it is necessary to derive the uncertainty 
model based on plant identification results. Using identification to determine uncertain models for robust control has 
been discussed in several papers (see [10]-[15]). However, practical methods for finding uncertain models through 
identification using the MATLAB® environment are not widely available. 

The derivation of an uncertainty model of a plant using the results from the black box or grey gray box 
identification of the system was considered. The condition of unbiased parameter estimates obtained by the 
identification guarantees that the exact parameter values are contained in the confidence intervals of parameter estimates 
with probability close to 1. This allows us to derive a parametric uncertainty model with scalar uncertainties. However, 
since the number of estimated parameters is usually large, the implementation of a structured uncertainty model is not 
practical and it is preferable to derive an unstructured uncertainty model. Based on parameter 3σ confidence intervals, 
maximum relative deviations from the nominal model in the frequency domain can be obtained. These deviations were 
parameterized and used to obtain input or output, multiplicative uncertainty model.

The uncertain model in the case of black-box identification was determined in the following way. Based on the 
estimated model (1) it is possible to estimate the residuals after identification e(k). The estimate of the covariation e(k) is 
determined from
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where 40 1θ̂ ×  is a vector of estimated parameters (the elements of the matrices A, B, C, K ) and 40 2
ˆ( , )kψ θ ×  is a matrix, 

whose columns are the gradients of the predicted error in respect to the parameters θ for θ = ˆθ θ= , i.e.,

40
ˆ ˆˆ( , ) ( ( ) ( , )),  1, 2.i i ik grad y k y k iθψ θ θ× = - =

The predicted output ˆˆ( , )y k θ  is obtained by the system
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( , ),  1, 2,...40.
и

P i i iθ θσ = =

The model (1) is easily transformed into the transfer matrix

1 1( , ) [ ] [ ]W z C zI A B C zI A Kθ - - = - - 

Based on the standard deviations (7) and Gauss approximation formula [4], it is possible to compute the standard 
deviations ( , ),  1, 2,  1, 2j

ijW e i jω θ∆ = = i = 1, 2, j = 1, 2 of the individual elements of the transfer function matrix (8)

' '1( , ) ( , ) ( , ),  1, 2,  1, 2j j T j
ijW e W e P W e i j

N
ω ω ω

θθ θ θ∆ = = =

where the matrix ' ( , )jW e ω θ  is the matrix of the gradients of the elements (8) concerning the estimated parameters θ. 
Under the condition that the estimates obtained are unbiased, it follows that with the probability of 0.997 one has

( ) ( , ) 3 ( , )j j j
oW е W е W еω ω ωθ θ ∈ ± ∆ 

where Wo(e
jω) is the “true” transfer function and

11 12 11 12

21 22 21 22

( , ) ( , ) ( , ) ( , )
( , ) ,  ( , ) .

( , ) ( , ) ( , ) ( , )

j j j j
j

j j j j

W е W е W е W е
W е W z

W е W е W е W е

ω ω ω ω
ω

ω ω ω ω

θ θ θ θ
θ θ

θ θ θ θ
   ∆ ∆

= ∆ =   ∆ ∆   

The standard deviations ( , )j
ijW е ω θ∆  are obtained in the form of nonparametric models in the frequency domain 

(frequency responses). These models should be parametrized to obtain an uncertainty model, which contains the “true” 
plant description with probability tending to 1. In the given case, it is proposed to use uncertain models with input 
multiplicative uncertainty such that each transfer function is approximated by

ˆ( ) ( )(1 ( ) ),  1, 2,   1, 2ij ijnom ij ijG z G z W z i j= + ∆ = =

where Gijnom(z) = Wij(z)|Δij| < 1 are dynamic uncertainties and ˆ ( )ijW z  are weighting filters. The filters ˆ ( )ijW z  are obtained 
after approximation (parametrization) of the nonparametric frequency models
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by stable no minimum phase transfer functions of an appropriate order. Note that the division in (12) was done element-
wise on each one of the values of the nonparametric model. The approximation itself was done by the function 
fitmagfrd of MATLAB. As the order of these transfer functions increased, the approximation error decreased while 
the model order increased. In this case, we use transfer functions W11, W12, W21 and W22 of the order 9, 3, 3, and 8, 
respectively, which ensure good coincidence between the approximated and actual magnitude plots. Each element of the 
multivariable plant (11) may be represented as an input multiplicative uncertainty as shown in Figure 7.

It should be noted that instead of the input multiplicative model (11) it is also possible to use output multiplicative 
or additive models [17]. The advantage of the multiplicative models is that in this case, one uses relative instead of 
absolute values of the uncertainty.
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Figure 7. Input multiplicative model of the uncertain element

Figure 8. Approximations of the weighted functions obtained for the black-box identification model

The magnitude plots of the weighting functions for the black box identification model are as shown in Figure 8. 
The approximation of the weighting functions in the case of gray box identification was similarly done. In this case, it is 
possible to achieve good accuracy using transfer functions of order 3.

Weighting function-W21 Weighting function-W21

Frequency Frequency
10-3            10-2            10-1             100            101             102 10-3            10-2            10-1             100            101             102

M
ag

ni
tu

de

M
ag

ni
tu

de

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

0.12

0.1

0.08

0.06

0.04

0.02

0

Frequency response
Approximation

Frequency response
Approximation

Weighting function-W11

Frequency Frequency
10-3            10-2            10-1             100            101             102 10-3            10-2            10-1             100            101             102

M
ag

ni
tu

de

M
ag

ni
tu

de

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

3.5

3

2.5

2

1.5

1

0.5

0

Frequency response
Approximation

Frequency response
Approximation

Weighting function-W12

Wij

Gij

++ Gij nom

Δij

Σ



Engineering Science & Technology 104 | Petko Petkov, et al.

Figure 9. Approximations of the weighted functions obtained for the gray-box identification model

The magnitude plots of the weighting functions for the gray box model are as shown in Figure 9. Clearly, the 
frequency responses of the relative uncertainties are quite different for both models.

Figure 10. Upper LFT of the uncertain element

For both types of identification, the model (11) is represented in the form of upper LFT as shown in Figure 10. 
The transfer function M is obtained from the transfer functions ˆ ( )ijW z(z) and Gijnom(z). Δ is a diagonal matrix, containing 
the uncertainties Δij. Due to the presence of the weighting transfer functions, the nominal model M is obtained of a high 
order-in the case of the black box identification M is of order 156 and in the case of gray box identification, it is of order 
112.
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Figure 11. Magnitude plots of the uncertain plants obtained by the black-box identification (left) and the gray-box identification (right)

The magnitude plots of the corresponding uncertain models that possessed close shapes are as shown in Figure 11.

4. Plant model reduction 
The high order of the uncertain plant model caused the subsequent controller designing difficult or even impossible. 

Therefore, the model order is reduced based on the Hankel singular values [16], [17] of the plant.

Figure 12. Hankel singular values of the uncertain black-box (left) and the gray-box (right) identification plant models

The Hankel singular values of the uncertain models obtained by the function hankelsv are as shown in Figure 12. 
It can be seen that only the first four singular values are sufficiently greater than zero so that the next values can be 
neglected. Hence, both uncertain models can be chosen to be of the order 4. The reduced-order models were obtained by 
the function reduce from Robust Control ToolboxTM.

The magnitude plots of the elements G11, G12, G21, G22 and the reduced-order black box model were determined 
for 20 random values of the uncertain elements along with their corresponding upper and lower bounds (shown by 
continuous lines) determined for the original model and reduced order model, as shown in Figure 13. It can be seen that 
the frequency response bounds approximately well with the uncertainties in the corresponding elements.
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In the case of gray box identification, the obtained probabilistic bounds on the gains k1, k2, k3, k4 and time constants 
T1, T2, T3, T4. This allows for obtaining a discrete-time uncertainty model with structured uncertainty. Unfortunately, 
pure structured uncertainty creates numerical difficulties in μ-synthesis, which prevents the usage of such a model. 
Hence, the uncertainty model was again used with the unstructured uncertainty obtained in the following way. The 
model parameters were gridded for 100 values of each parameter and the maximum uncertainty of each element Gij  
is approximated by input multiplicative uncertainty as described above for the case of black-box identification. The 
frequency responses gridded for 20 values are as shown in Figure 14. Clearly, the derived upper bounds capture well the 
uncertainties in the corresponding transfer function matrix elements. 

Figure 13. Uncertain frequency responses of the reduced-order model obtained by black-box identification
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Figure 14. Uncertainties frequency responses for the reduced-order model obtained by gray-box identification

Figure 15. Block-diagram of the uncertain closed-loop system

The block diagram of the closed-loop system relevant to the determined uncertain plant model for both 
identification methods is as shown in Figure 15, where d denotes the plant output disturbances and n is the sensor and 
Analog to Digital Converter (ADC) noises.
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5. Robust controller design

Figure 16. Block-diagram of the closed-loop system

The block diagram of the closed-loop system used in the design of robust controllers which includes the 
performance Wp and control weighting Wu functions is as shown in Figure 16, which is typical for robust control 
design [16]-[18]. The transfer function matrix of the uncertain plant is denoted by Gunc and the discrete controller to be 
determined-by Kd. The system has a reference vector r = [r1 r2]

T and an output error vector z = [z1 z2]
T. A two degrees-of-

freedom controller [17] is used to achieve better performance.
The control action is determined from

= [ ] =r y r y

r
u K K K r K y

y
 

+ 
 

where Kr is the prefilter transfer function matrix and Ky is the output controller transfer function.
Thus, the closed-loop system in Figure 16 is described by the equation

1

2

= p o unc r

u i r

W S G Kz
r

W S Kz
  
  

   

where So = (I - GuncKy)
-1 is the output sensitivity transfer function matrix, and Si = (I - KyGunc)

-1 is the input sensitivity 
transfer function matrix. The problem for μ-synthesis is solved by seeking a controller in (13) to satisfy the following 
conditions [16]-[18]. 

Robust stability: The closed-loop system is robustly stable if it is internally stable for all admissible uncertainties. 
Robust performance: The closed-loop system must be robustly stable and for each admissible, Gunc, it is necessary 

to satisfy the performance requirement

1p o unc r

u i r

W S G K
W S K

∞

<

The performance weighting function Wp is chosen as a low pass filter and the control weighting function Wu as a 
high pass filter. The design is done for a variety of weighting functions ensuring a good balance between robustness and 
performance. The final weighting functions for the black box identification model are
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1.4(2.5 1) 1.2(2 1) 0.04(0.01 1) 0.02(0.01 1)( ) , ,  ( ) ,
4 0.1 4 0.1 0.0001 1 0.0001 1p u

s s s sW p diag W p diag
s s s s

+ + + +   = =   + + + +   

and the performance weighting function for the gray box identification model is

1.4(2 1) 1.2(2 1)( ) , ,
3 0.1 3 0.1p

s sW p diag
s s

+ + =  + + 

the control weighting function Wu is the same as in the case of the black box identification model.
For the aim of controller design, the weighting functions are sampled with the sampling interval of 0.05 s. The 

μ-synthesis is done by the Robust Control ToolboxTM function dksyn [19]. For both models, the controller designed is of 
16th order and the corresponding closed-loop system achieves robust stability and robust performance.

Figure 17. Controller singular value plots for the black-box (left) and gray-box (right) identification models

The controller singular values for both types of models are as shown in Figure 17. The controller based on the gray 
box model ensures closer gain of the two channels.

Figure 18. Closed-loop system singular value plots for the black-box (left) and gray-box (right) identification models
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From the closed-loop singular value plots as shown in Figure 18, one can conclude that both systems have a 
closed-loop bandwidth of about 0.4 rad/s. Obviously, the two closed-loop systems have close behavior in the frequency 
domain.

Figure 19. Closed-loop system poles for the black-box (left) and gray-box (right) identification models

The closed-loop poles for both systems are shown in Figure 19. Although the two systems have similar behavior, 
the closed-loop poles are distributed differently. 

Figure 20. Closed-loop system output sensitivity for the black-box (left) and gray-box (right) identification models

The plots of output sensitivity functions, as shown in Figure 20 prove that both systems reject sufficiently well 
disturbances with the frequency band up to 10-2-10-1 rad/s.

The plots of input sensitivity functions for both systems are compared in Figure 21. For both systems, there are 
peaks of the frequency responses near 10 rad/s, which shows increased sensitivity of the input actions to noises within 
such frequency. 

The robust stability μ-plots obtained by the function robstab as shown in Figure 22 demonstrate that the two 
systems have close robustness properties. The maximum sensitivity to parameter variations is within the frequency 
interval of 1-2 rad/s.
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Figure 21. Closed-loop system input sensitivity for the black-box (left) and the gray-box (right) identification models

Figure 22. Robust stability of the closed-loop system for black-box (left) and gray-box (right) identification models

6. Embedding of the robust controller
After a suitable controller is determined, it is possible to go to the next design step, which is generating control 

code from the Simulink® controller model.
By using MATLAB® and Simulink®, the designer can automatically generate the control code, which increases 

efficiency, improve performance, and promote the innovation of control algorithms.
One of the widely used technologies for automatic generation of code intended for loading in microcontrollers 

and DSP is based on the programming tools Simulink CoderTM and Embedded Coder®, which are included in the 
programming system MATLAB®.

The Simulink CoderTM [21] (formerly known as Real-Time Workshop) generates and executes C and C++ code 
from Simulink® block-diagrams, diagrams of Stateflow® and MATLAB® functions. The generated output code can be used 
in applications in real-time and non-real-time, including accelerated simulation, rapid prototyping, and hardware-in-the-
loop simulation. The generated code can be tuned and debugged using Simulink or can be executed out of MATLAB® 
and Simulink®.

Embedded Coder® [22] generates compact and fast C and C++ code for using embedded processors and 
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microcontrollers for mass production. Embedded Coder® gives additional opportunities for configuration MATLAB® 
CoderTM and Simulink CoderTM and optimization of the generated code, files, and data. These optimizations improve the 
coding efficiency and facilitate the integration with previous code, data types, and calibration parameters, used in the 
embedding. The Embedded Coder® supports software-in-the-loop (SIL) and processor-in-the loop (PIL) simulations.

In this case, the designed μ-controllers are of 16th order. They were implemented in an embedded control system 
to steer the real analog model. The controllers were embedded in the control board Arduino Due based on the Atmel 
SAM3X8E ARM Cortex-M3 CPU [20] by code generation from Simulink model with help of Simulink CoderTM. This 
board works at 84 MHz and may perform single-precision (32-bit) computations by using FPU (Floating-Point Unit). 
It possesses low-performance 10-bits A/D converters and 12-bits D/A converters. The block diagram of the designed 
embedded robust control system is presented in Figure 23.

Figure 23. Block diagram of embedded robust control system 

The developed specialized Simulink model used for control code generation is shown in Figure 24. The main block 
is a subsystem named Single-Precision Controller, which represents the state-space realization of designed μ-controllers. 

Figure 24. Simulink model for control code generation 

The Simulink model also includes the blocks “Analog input” and “Analog Output” which were taken from the 
specialized library Simulink Support Package for Arduino Hardware. These blocks were used to interface with the ADC 
and Digital to Analog Converter (DAC) converters of Arduino board. 
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7. Experimental results
Several experiments with developed embedded control systems were done. A comparison between results from 

the experiment and Matlab simulation was performed. The output signals from experiments and simulation for the 
black box and gray box identification models are as shown in Figure 25 and 26 (all signals are measured in volts). In 
both cases, the μ-controller was implemented in single-precision (32 bits). The coincidence between experimental 
and simulation results is acceptable. The real outputs contained small noise due to random disturbances and noises in 
ADCs and DACs. The control actions contained larger noise in comparison with the outputs, as expected from the input 
sensitivity frequency response.

Figure 25. Actual and simulated output signals for the black-box (left) and the gray-box (right) identification models
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Figure 26. Actual and simulated control signals for the black-box (left) and the gray-box (right) identification models

8. Conclusions
The usage of black box or gray box identification to obtain unstructured uncertainty models intended for the design 

of robust controllers produced close and successful results. As one may expect, the derivation of the gray box uncertain 
model requires the implementation of weighting transfer functions of lower order. However, by using appropriate model 
reduction, the plant model order decreased sufficiently without sacrificing the closed-loop system behavior. A difficult 
question remains to obtain tighter bounds on the model uncertainty to reduce the conservatism in the controller design.
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