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Abstract: Soil Organic Carbon (SOC) is a critical determinant of soil fertility, ecosystem stability, and climate
regulation. This study analyzes the spatial and temporal dynamics of SOC in the Tonk District of Rajasthan, India, using
the Trend.Earth platform integrated with satellite-derived Land-Use and Land-Cover (LULC) data for the period 2001-
2020. Statistical trend analyses (Mann-Kendall, Sen’s Slope, and Pearson correlation) indicate that 98.31% + 0.17% of the
area has remained stable in SOC content, demonstrating high soil resilience, while 1.63% + 0.17% shows measurable
degradation, largely influenced by wind erosion and intensive agricultural activity. Land-use transition analysis further
reveals 54.79 km” of urban expansion and 114.52 km” of reduced irrigated cropland, reflecting growing anthropogenic
pressure on soil resources. These findings emphasize the need for targeted soil conservation, agro-forestry adoption, and
integrated land-management policies to sustain soil carbon stocks. The study demonstrates the applicability of Trend.
Earth-based geospatial monitoring for evidence-driven SOC assessment and regional climate resilience planning in
semi-arid environments
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1. Introduction

Soil Organic Carbon (SOC) is a fundamental cornerstone of global soil health and a critical regulator of the
planet’s climate [1]. As the largest terrestrial carbon pool, SOC is indispensable for maintaining soil fertility, enhancing
water retention, and supporting overall ecosystem function, all of which are vital to global food security. Despite
its significance, this vital resource is increasingly vulnerable to degradation, primarily driven by unsustainable land
management practices and rapid Land Use and Land Cover (LULC) changes globally [2].

LULC change, including deforestation, agricultural expansion, and urbanization, is the most significant
anthropogenic driver, altering SOC dynamics. The conversion of natural ecosystems to intensive cropland, for instance,
typically results in substantial SOC losses-often 20-50% within decades-due to reduced organic matter input, accelerated
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decomposition rates, and soil structural disruption [3], [4]. Agricultural intensification within existing systems further
exacerbates depletion through excessive tillage, residue removal, and monoculture dominance [5]. Conversely,
sustainable practices such as conservation agriculture, agroforestry, and cover cropping offer significant potential for
SOC sequestration by minimizing disturbance, maintaining perennial cover, and increasing organic inputs [6], [7].

Beyond LULC, environmental processes such as wind erosion-particularly prevalent in arid and semi-arid regions-
act as a major cause of SOC loss by selectively removing carbon-rich topsoil particles [8], [9]. Furthermore, extractive
industries like mining physically disturb the soil profile, strip vegetation, and fragment landscapes, leading to severe
localized SOC depletion and long-term ecosystem dysfunction [10]. A nuanced understanding of these dynamics
requires analyzing not only major transitions between land-use types (e.g., forest to cropland) but also changes within a
single class, such as the intensification of agriculture [11].

While global research confirms the importance of SOC and its vulnerability, comprehensive national-scale
assessments are often lacking, particularly in regions facing compounded threats. In India, studies have assessed SOC
status across various agro-ecological zones [12], yet significant research gaps remain regarding the combined effects of
multiple drivers at high spatial resolution. Specifically, the interplay between wind erosion dynamics, LULC patterns,
and SOC vulnerability in India’s semi-arid regions, like Rajasthan, is not yet well-quantified [13]. Similarly, the
precise impacts of mining, urban expansion, and the efficacy of local mitigation strategies require more rigorous, data-
driven validation. Modern platforms like Trend.Earth leverage Earth observation data, cloud computing, and advanced
analytical tools to provide a robust framework for assessing and monitoring land change, including SOC trends [14]-[16].
Yet, the application of this powerful tool for studying the complex SOC-LULC and environmental driver interactions in
Indian drylands remains limited.

This study aims to bridge this gap by leveraging the Trend.Earth platform to analyze SOC trends over the period
2000-2020 in Tonk district, Rajasthan-a semi-arid region characterized by aeolian soils, rainfed agriculture, and
expanding mining activity. We aim to quantify concurrent LULC transitions and transformations, correlate these with
key environmental drivers (wind erosion, mining extent), and identify degradation hotspots. We hypothesize that SOC
degradation hotspots in Tonk coincide with areas of high wind erosion vulnerability and specific land-use transitions (e.g.,
natural vegetation loss to intensive agriculture or mined land).

The specific objectives of this study are fourfold. First, to map the spatiotemporal changes in SOC stocks across the
study area using the Trend.Earth soil carbon module, enabling detection of long-term degradation and recovery patterns.
Second, to quantify LULC transitions, along with within-class intensification trends, such as the expansion of croplands
and the proliferation of mining areas. Third, to assess the correlations between SOC loss, wind exposure, and land-use
trajectories, thereby identifying the key drivers influencing soil carbon dynamics. Finally, the study aims to propose
targeted, evidence-based interventions for SOC restoration and promote climate-resilient land management practices
tailored to the local ecological and socio-economic context.

The findings will inform the development of targeted, evidence-based policies and sustainable land management
practices necessary for mitigating SOC loss, enhancing soil health, and bolstering ecosystem resilience in India’s
challenging dryland environment. This integrated approach will support Rajasthan’s climate resilience strategies and
serve as a scalable model for other semi-arid regions globally.

2. Study area, methodology, and data used
2.1 Study area

Tonk district is situated in the eastern part of Rajasthan, India, between approximately 25.4° N to 26.5° N latitude
and 75.1° E to 76.2° E longitude. The region experiences a semi-arid climate (Agro-Climatic Zone III-A) with a mean
annual rainfall of approximately 500 mm [17], concentrated during the Southwest Monsoon (June-September). The
climate is characterized by high potential evapotranspiration and frequent pre-monsoon dust storms, which significantly
exacerbate the risk of soil erosion. The dominant soil orders in the district are Inceptisols and Aridisols, which are
typically sandy loam to alluvial in nature. These soils are inherently low in Organic Carbon (OC) (often ranging from
0.2% to 0.5% in surface soils) and are highly susceptible to wind-driven topsoil loss [18]. Agriculture remains the
economic backbone, with major crops including wheat, mustard, and gram cultivated under predominantly rainfed
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systems. Vegetation cover is naturally sparse, consisting of dry deciduous scrub and thorny species, reflected in
generally low to moderate NDVI values. Expanding stone and minor mineral mining, along with gradual urbanization,
further contributes to landscape fragmentation and soil disturbance. Tonk is therefore a highly representative case study
for India’s semi-arid dryland, where the critical issues of low Soil Organic Carbon (SOC) stocks, intense wind erosion,
and land-use intensification converge to challenge long-term land productivity. Figure 1 shows the study area map of
Tonk, Rajasthan.
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Figure 1. Study area map: Tonk, Rajasthan
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Figure 2. Methodological workflow: (a) data acquisition and preprocessing, (b) Random forest LULC classification, (¢) SOC trend and hotspot
detection, (d) transition matrix analysis, () statistical integration and policy outputs
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This study integrates remote sensing, machine learning, field validation, and statistical analysis to assess Soil
Organic Carbon (SOC) trends and their linkages to Land Use/Land Cover (LULC) changes and environmental drivers
in Tonk district, Rajasthan. All spatial data were processed at 30 m resolution in the WGS 84/UTM Zone 43N (EPSG:
32643) projection using QGIS 3.34 and Python 3.10. The analytical workflow is summarized in Figure 2.

2.2 Data acquisition and preprocessing

Key datasets were acquired from global and regional repositories (Table 1). SOC stock data (2001-2020) were
obtained from Trend.Earth (SDG 15.3.1 indicator), originally at 300 m resolution and resampled to 30 m using bilinear
interpolation. LULC maps for 2001 and 2020 were harmonized from MODIS MCD12Q1 (500 m) and ESA WorldCover
(10 m) through legend cross-walking and majority filtering. Wind speed and direction were derived from ERAS-
Land reanalysis (0.1°), interpolated to 30 m. The Tonk district boundary (Survey of India, 2020) was used to clip all
layers. Urban areas and permanent water bodies were masked from SOC trend analysis but retained in LULC transition
matrices to quantify urbanization impacts.

Table 1. Data sources and specifications

Data Type Source Temporal coverage  Native resolution  Processed resolution Key variables
SOC Trend.Earth 2001-2020 300 m 30m SOC stock (t-C-ha™), trend
toe ESAwelews oo omson som ] lases croland, g, e
Wind ERAS5-land (ECMWF) 2001-2020 0.1° 30m u/v wind components
Topography SRTM DEM Static 30m 30m Elevation, slope
Soil NBSS & LUP Static 1:250,000 30m Texture (sandy loam dominant)

2.3 LULC classification and validation

A Random Forest (RF) classifier was implemented in Python (scikit-learn v1.3) to refine and validate LULC maps.
Training was based on 1,200 reference points collected via stratified random sampling from high-resolution Google
Earth imagery (2020-2021). Predictor variables included spectral bands from ESA WorldCover and seasonal NDVI
metrics from MOD13Q1. Model hyperparameters were set as: n_estimators = 500, max_depth = 20, min_samples_
split = 5, and random_state = 42. An independent validation using 400 points yielded an Overall Accuracy (OA) of
87.6% and a Kappa coefficient (x) of 0.81. Class-wise producer and user accuracies are provided in Table S1 (Appendix
Material).

2.4 SOC trend and hotspot analysis

Annual SOC stock change (4SOC) was calculated as (1):
ASOCZOOI*ZOZO = SOCZOZO - SOCZOOI (1)
Trend significance was evaluated using the Mann-Kendall test (a = 0.05), with magnitude estimated via Sen’s
Slope (t-C-ha™-yr"). Degradation hotspots were defined as pixels exhibiting statistically significant negative trends

(p < 0.05) and 4SOC < -0.5 t-C-ha™. Zonal statistics were computed to quantify mean SOC loss by LULC class
and wind exposure quartile.
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2.5 LULC change detection and transition analysis

Land Use and Land Cover (LULC) transitions between 2001 and 2020 were quantified through cross-tabulation
matrix analysis, enabling the identification of both net and systematic changes across major land-use classes. The
methodology followed the framework proposed by Pontius et al. (2018) to distinguish between net change, systematic
transitions, and swap (reciprocal exchange) processes, thereby ensuring a more comprehensive understanding of
landscape dynamics. The analysis revealed dominant transition pathways, including the conversion of grassland to
cropland and cropland to urban areas, which are indicative of ongoing agricultural intensification and urban expansion.
To visualise these directional land-use flows and their relative magnitudes, Sankey diagrams were generated using
Python’s Plotly library, providing an intuitive graphical representation of the complex LULC transitions over the two-
decade period.

2.6 Correlation and driver attribution

To identify the dominant environmental and anthropogenic drivers influencing Soil Organic Carbon (SOC)
variability, a Pearson correlation analysis was conducted between the rate of SOC change (4SOC) and mean annual
wind speed, yielding a strong negative correlation (» = -0.68, p < 0.001). This relationship highlights the substantial role
of wind erosion in accelerating SOC depletion across Tonk’s semi-arid landscape. Furthermore, spatial overlay analysis
with mining lease boundaries (Rajasthan Department of Mines and Geology, 2022) revealed pronounced SOC reduction
within and adjacent to extractive zones, confirming the compounded impact of land disturbance and vegetation
removal. All analytical scripts, QGIS processing models, and sample datasets used in this study are openly available for
reproducibility and further research at GitHub: https://github.com/saurasubh/SOC-Tonk.

2.7 Field validation of SOC estimates

To ensure the reliability of satellite-derived Soil Organic Carbon (SOC) estimates, a comprehensive field
validation campaign was conducted in March 2023. A total of 30 soil samples were collected from a depth of 0-30 cm
across a stratified gradient representing various Land Use and Land Cover (LULC) types and levels of degradation
intensity. The SOC content of each sample was determined using the Walkley-Black wet oxidation method, providing
a robust laboratory benchmark for comparison. Validation against Trend.Earth estimates demonstrated strong
agreement, with a Root Mean Square Error (RMSE) of 0.32, a Coefficient of Determination (R) of 0.78, and a Mean
Error (ME) of -0.08 kg-C-m™, indicating a high level of predictive accuracy and minimal systematic bias. Detailed
sampling locations and laboratory results are provided in Table S2 (Appendix Material).

2.8 Uncertainty assessment

Uncertainty from multiple sources was propagated using Monte Carlo simulation (n = 1,000 iterations). Key
contributors included LULC classification error (+ 4.5% from x), SOC model bias (+ 0.32 kg-C-m” from field RMSE),
and resampling effects (< + 0.1 kg-C-m™). Final 4SOC uncertainty was estimated at + 0.45 kg-C-m™~ (95% confidence
interval).

3. Result

All results in this study are derived from high-resolution (30 m) spatial analyses conducted for the period 2001-
2020, ensuring precise coupling between Soil Organic Carbon (SOC) dynamics and Land Use and Land Cover (LULC)
transitions. To provide broader temporal context, long-term LULC trends from 1992-2022 were also examined. SOC
change was classified into five distinct categories to represent varying degrees of stability and degradation. These
categories include: Stable (|[4SOC| < 5%), Low Degradation (-5% < A4SOC < 0%), Moderate Degradation (-10% <
4S0C < -5%), High Degradation (4SOC < -10%), and Improvement (4SOC > 5%). This visual representation provides
a concise overview of the magnitude and spatial distribution of SOC change across Tonk District, Rajasthan.
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3.1 SOC trends (2001-2020)

Over the 20-year assessment period, 98.31% of Tonk District (7,066.7 km®) exhibited stable SOC conditions (Table
2), indicating strong soil resilience under prevailing land-use practices. In contrast, 1.63% of the area (117.2 km’)
experienced measurable SOC degradation, while improvement was marginal at 0.06% (4.3 km®). Notably, no pixels
exhibited moderate or high levels of degradation, suggesting that SOC decline across the district is gradual and low in
magnitude rather than abrupt or severe. The Mann-Kendall trend analysis confirmed a statistically significant negative
trend (Z = -2.14, p < 0.05), with Sen’s Slope estimating an average decline of -0.013 kg-C-m™-yr", as illustrated in
Figure 3 and detailed in Table 3. The histogram of pixel-level ASOC values (Figure 4) exhibits a narrow distribution
centred around zero (¢ = 0.21 kg-C-m™), further validating the dominance of SOC stability across the landscape.
Additionally, a correlation plot between 4SOC and mean annual wind speed (Figure 5) reveals a significant negative
relationship (» =-0.63, p < 0.01), underscoring the influence of wind erosion as a key driver of localized SOC loss.

Mann-kendall trend analysis for SOC (2000-2020)
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Figure 3. Mann-Kendall trend analysis showing a significant negative SOC trend (Z = -2.14, p < 0.05) with Sen’s Slope of -0.013 kg-C-m™-yr’'
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Table 2. SOC change classification in Tonk district (2001-2020)

Category Area (km?) Percentage (%)
Stable 7,066.7 98.31
Degradation (Low) 117.2 1.63
Improvement 43 0.06
Total 7,190.5 100.00
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Figure 5. Correlation between ASOC and wind speed showing a significant negative relationship (» = -0.63, p <0.01)

3.2 Land UE and soil degradation hotspots (2001-2020)

Degradation hotspots-defined as pixels exhibiting a statistically significant negative Soil Organic Carbon (SOC)
trend (p < 0.05) with a rate of change (4SOC) less than -0.5 t-C-ha'-cover approximately 0.54 km®, accounting for
0.0075% of the total district area. These hotspots are predominantly concentrated along the western wind corridors
and within zones of active mining activity, reflecting the combined influence of aeolian erosion and anthropogenic
disturbance (Figure 6). Despite these localized declines, the landscape remains largely resilient, with stable SOC
conditions dominating 99.78% of the affected pixels, while no notable improvement or high-intensity degradation zones
were detected (Table 4).

Table 3. Statistical tests for SOC trend and wind correlation

Test Statistic p-value Interpretation
Mann-kendall Z==-2.14 <0.05 Significant decline
Sen’s slope -0.013 kg-C-myr" - Gradual loss
Pearson r (4SOC vs wind speed) -0.63 <0.01 Moderate negative correlation
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Table 4. Severity of land cover (degradation) from SOC (2001-2020)

Degradation class Area (km®) Percentage of hotspots (%)
Stable 0.54 99.78
Improvement 0.00 0.00
Degradation 0.003 0.22
Total hotspots 0.54 100.00
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Figure 7. Spatial distribution of SOC change (2001-2020) in Tonk district, with mining leases overlaid (Rajasthan DMG, 2022)

3.3 LULC change (2001-2020)

Between 2001 and 2020, urban area expanded by + 48.2 km’ (+ 382%), converting primarily from rainfed cropland
(-41.3 km®) and irrigated cropland (-6.9 km®) (Table 5). Sparse vegetation increased slightly (+ 3.4 km®) due to scrub
encroachment in marginal lands, while bare areas declined (-2.1 km”) from revegetation or misclassification correction
Figure 8. Water bodies grew by + 12.8 km’, reflecting small reservoir construction. For long-term context (1992-2022),
urban growth was + 54.8 km”, and water bodies + 110.1 km”, but 2001-2020 is used for SOC alignment.
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Table 5. LULC net change in Tonk district (2001-2020)

LULC class 2001 (km®) 2020 (km’) Change (km’) % Change
Rainfed cropland 5,512.3 5,471.0 -41.3 -0.75
Irrigated cropland 1,498.7 1,491.8 -6.9 -0.46

Grassland 301.4 298.1 -33 -1.09
Tree cover 73 7.5 +0.2 +2.74
Sparse vegetation 2.5 5.9 +3.4 +136.0
Urban 12.6 60.8 +48.2 +382.5
Bare areas 33 1.2 -2.1 -63.6
Water bodies 267.4 280.2 +12.8 +4.79
Total 7,190.5 7,190.5 - -
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Figure 8. LULC maps for 2001 and 2020 with transition hotspots (urban expansion in red)
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3.4 SOC-LULC dynamics and transition impacts

The transition matrix (Table 6) shows 36.4 km® of rainfed cropland — urban and 15.2 km” of irrigated cropland
— urban, accounting for 83% of urban growth. These conversions caused permanent SOC loss (sealed soil). Within
croplands, intensification (rainfed — irrigated) was minimal (< 0.1 km®) (Figure 9).

Mean ASOC by LULC transition:

« Cropland — Urban: -1.42 + 0.45 kg-C-m”

» Grassland — Cropland: -0.38 = 0.32 kg-C-m”

» Stable Cropland: -0.09 = 0.21 kg-C-m™

Table 6. LULC transition matrix (2001 — 2020, km®)-selected flow

Cropland rainfed ~ Cropland irrigated ~ Vegetation Tree cover Sparse vegetation Urban area Bare areas Water bodies

Cropland rainfed 14,384.69 0.0 0.0 0.18 0.0 36.38 0.0 7.63
Cropland irrigated 0.0 1,998.86 0.0 0.09 0.0 15.18 0.0 97.36
Vegetation 0.0 0.0 276.74 0.0 0.0 0.09 0.0 0.18
Tree cover 0.0 0.0 0.0 7.19 0.0 0.0 0.0 0.09
Sparse vegetation 0.0 0.0 0.0 0.0 5.84 0.0 0.0 0.0
Urban area 0.0 0.0 0.0 0.0 0.0 12.57 0.0 0.0
Bare areas 0.0 0.0 0.0 0.0 0.0 0.0 1.26 0.0
Water bodies 0.0 0.0 0.0 0.0 0.0 0.09 0.0 270.00
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Figure 9. Sankey diagram of major LULC flows (2001-2020) with SOC loss intensity (color gradient)

4. Discussion
4.1 Drivers of SOC degradation

The 1.63% of Tonk district (117.2 km®) experiencing low-level SOC degradation over 2001-2020 is predominantly
driven by wind erosion and intensive rainfed agriculture, as evidenced by the moderate negative correlation between
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ASOC and mean annual wind speed (» = -0.63, p < 0.01). Wind erosion, prevalent in Rajasthan’s semi-arid zones,
selectively removes carbon-rich fine particles from sandy loam topsoils [19], with regional soil loss rates ranging from
1.3 to 83.3 #-ha™-yr" [20]. This aligns with global patterns where conversion of natural vegetation to cropland induces
20-50% SOC loss within decades due to reduced organic inputs, increased decomposition, and soil structural disruption
[21], [22]. Within Tonk’s dominant rainfed croplands (~ 95% of area), conventional tillage and residue removal further
accelerate mineralization [22]. The negligible SOC improvement (0.06%, 4.3 km?) indicates limited efficacy of current
restoration efforts, underscoring the need for targeted interventions in erosion-prone western corridors.

4.2 Land use dynamics and urbanization impacts

Urban expansion of + 48.2 km” (2001-2020)-primarily from rainfed cropland (-41.3 km’)-represents the most
transformative LULC shift and a permanent SOC sink. Converted pixels exhibit mean ASOC = -1.42 + 0.45 kg-C-m”, over
15-fold the district average, due to soil sealing under impervious surfaces [23]. This magnitude is consistent with meta-
analytic evidence of 30-60% SOC reduction within a decade of urbanization in semi-arid environments [24]. The + 12.8
km’ increase in water bodies, while aiding erosion control via small reservoirs, may induce anaerobic decomposition
and localized SOC suppression under prolonged inundation. Urban sprawl not only eliminates carbon sequestration
potential but also exacerbates the urban heat island effect, raising local temperatures by 1-3 °C and altering hydrological
regimes [25]. These irreversible changes, though affecting < 1% of land, disproportionately threaten long-term food
security in a water-scarce region.

4.3 Policy and management implications

This study’s high-resolution hotspot mapping enables precision soil conservation. In wind-exposed western
Tonk, shelterbelts using native species (Prosopis juliflora, Acacia tortilis) can reduce wind velocity by 50-70% and
curb topsoil loss [26]. Conservation agriculture-minimum tillage, residue retention, and legume-based rotations-
offers 0.4-1.0 t-C-ha-yr’' sequestration potential in rainfed wheat—pulse systems [27], [28]. Agroforestry integration on
10-15% of cropland could sequester 0.5-2.0 t-C-ha™-yr" while enhancing biodiversity and yield stability [29], [30].

To arrest urban encroachment, compact city models and protective zoning should safeguard high-SOC croplands
(>10 t-:C-ha") within a 5-km municipal buffer [31]. Green infrastructure-urban parks, green roofs, and permeable
pavements-can offset 10-20% of carbon loss while mitigating heat islands and improving stormwater retention [32].
Rajasthan’s Mukhyamantri Jal Swavlamban Abhiyan should embed SOC monitoring to quantify co-benefits of water
harvesting. Indigenous practices, such as johad recharge and mixed cropping, should be blended with modern techniques
for locally resilient systems [33].

4.4 Utility and limitations of Trend.Earth

This research marks the first district-scale integration of Trend.Earth with 30 m LULC harmonization and field-
validated SOC in Indian drylands, delivering UNCCD-aligned Land Degradation Neutrality (LDN) diagnostics
at policy-relevant resolution. The platform’s Google Earth Engine backbone enables scalable replication across
Rajasthan’s 33 districts.

However, Trend.Earth SOC estimates are derived from SoilGrids (250 m) and ESA CCI biomass, assuming
uniform litter decomposition-which underestimates SOC in sparse vegetation zones (RMSE = 0.32 kg-C-m~ in field
validation). Native 1 km output, even resampled to 30 m, smooths micro-variability in heterogeneous mining scars.
Model bias toward humid biome calibrations limits accuracy in low-biomass arid systems. Future refinements should
incorporate local soil surveys, hyperspectral Cellulose Absorption Indices (CAI), and machine learning fusion with
Sentinel-2 to enhance precision.

5. Conclusion

This study provides the first high-resolution, Trend.Earth-integrated assessment of SOC dynamics in Tonk district,
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Rajasthan, over 2001-2020. Key findings reveal 98.31% SOC stability, with 1.63% low-level degradation (117.2 km?)
driven primarily by wind erosion and urban conversion of rainfed cropland (+ 48.2 km?). These localized but irreversible
losses highlight the vulnerability of semi-arid soils to coupled climatic and anthropogenic pressures.

For Rajasthan, evidence-based policy must prioritize windbreak establishment and conservation agriculture in
erosion-prone western corridors, while enforcing protective zoning to curb urban sprawl onto high-SOC agricultural
land. Integrating SOC monitoring into state water-harvesting and climate resilience programs will enable adaptive
management. By scaling this framework, Rajasthan can advance Land Degradation Neutrality targets and secure long-
term soil health and food security.
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Appendix

Table S1. LULC classes and descriptions

Code LULC class Description
10 Cropland rainfed Rainfed cropland, primarily wheat, millet, pulses; no irrigation infrastructure
20 Cropland irrigated Cropland with canal, tube-well, or sprinkler irrigation; double cropping common
30 Vegetation Herbaceous vegetation, shrubs, grasslands (non-agricultural)
80 Tree cover Woody vegetation > 5 m height; scattered trees, agroforestry

150 Sparse vegetation Very low biomass cover (< 15%); typical of degraded semi-arid zones

190 Urban area Built-up land: residential, commercial, industrial, roads

200 Bare areas Exposed soil, rocky outcrops, sand dunes; minimal vegetation

210 Water bodies Rivers, reservoirs, ponds, canals

Source: Harmonized from ESA CCI land cover (1992, 2022) to 30 m resolution using majority filtering and boundary cleaning

File: Appendix available at GitHub: https://github.com/saurasubh/SOC-Tonk

Table S2. Field validation of Trend.Earth SOC estimates (March 2023)

Sample ID LULC class Pt Latitude (*N) - Longitude (°) MEUed SOC Tread Farh 0C - Residual,
TNK-01 Rainfed cropland Low 26.18 75.72 1.12 1.05 +0.07
TNK-02 Rainfed cropland Low 26.2 75.68 0.98 0.92 +0.06
TNK-03 Rainfed cropland Stable 26.15 75.8 1.45 1.38 +0.07
TNK-04 Irrigated cropland Stable 26.22 75.75 1.68 1.6 +0.08
TNK-05 Irrigated cropland Stable 26.19 75.78 1.74 1.7 +0.04
TNK-06 Urban fringe High 26.17 75.79 0.45 0.38 +0.07
TNK-07 Urban fringe High 26.16 75.81 0.39 0.32 +0.07
TNK-08 Sparse vegetation Low 26.25 75.65 0.61 0.48 +0.13
TNK-09 Sparse vegetation Low 26.27 75.63 0.55 0.44 +0.11
TNK-10 Grassland Stable 26.3 75.7 1.05 0.98 +0.07
TNK-11 Grassland Stable 26.29 75.72 1.08 1.02 +0.06
TNK-12 Mining area High 26.14 75.74 0.28 0.22 +0.06
TNK-13 Mining area High 26.13 75.76 0.25 0.2 +0.05
TNK-14 Rainfed cropland Low 26.21 75.67 1.03 0.95 +0.08
TNK-15 Rainfed cropland Low 26.23 75.69 0.97 0.9 +0.07
TNK-16 Stable cropland Stable 26.1 75.82 1.52 1.48 +0.04
TNK-17 Stable cropland Stable 26.11 75.83 1.49 1.44 +0.05
TNK-18 Sparse vegetation Stable 26.28 75.64 0.72 0.6 +0.12
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Table S2. (cont.)

Sample ID LULC class Pegrdeto  Latiude (*N) Longitude (°E) MEUed S0C Tread Far 50C - Residual,
TNK-19 Sparse vegetation Stable 26.26 75.66 0.68 0.56 +0.12
TNK-20 Water-adjacent Stable 26.24 75.77 1.35 1.28 +0.07
TNK-21 Water-adjacent Stable 26.25 75.78 1.38 1.32 +0.06
TNK-22 Urban expansion High 26.18 75.8 0.42 0.35 +0.07
TNK-23 Urban expansion High 26.17 75.82 0.38 0.3 +0.08
TNK-24 Rainfed cropland Low 26.12 75.73 1.08 1.0 +0.08
TNK-25 Rainfed cropland Low 26.14 75.71 1.05 0.97 +0.08
TNK-26 Grassland Stable 26.31 75.68 1.1 1.05 +0.05
TNK-27 Grassland Stable 26.32 75.7 1.12 1.07 +0.05
TNK-28 Mining buffer High 26.15 75.75 0.35 0.28 +0.07
TNK-29 Mining buffer High 26.16 75.717 0.32 0.25 +0.07
TNK-30 Stable cropland Stable 26.09 75.81 1.55 1.5 +0.05
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