Review

Organotitanium Click Chemistry

Gregory G. Arzoumanidis

Oakwood Consulting, Inc., Naperville, Illinois, USA E-mail: arzoumandis@gmail.com

Received: 15 April 2023; Revised: 17 May 2023; Accepted: 22 May 2023

Abstract: The click chemistry of titanium exemplified by the "green" [3 + 2] cycloaddition of the [Ti-N₃] moiety with nitriles RCN to form a tetrazole ligand, is currently limited in scope, but the future of this open and wide field is bright, full of promising new synthetic approaches discussed herein, for pharmacological and bio orthogonal applications. This prediction is based on emerging click reaction possibilities from newly prepared titanium azides (complex **6**), to existing titanium azides, including the commercially available Ti(N₃)₄, Cp₂Ti(N₃)₂, (ⁱPrO)₂Ti(N₃)₂, and their multiple derivatives, participating in cycloaddition, exchange and other reaction types with alkynes, alkenes, nitriles, and related click synthons. Most of the organotitanium click reactions show nearly quantitative yields, as in the reaction of Ti(OⁱPr)₄ with (CH₃)₃SiN₃. Structural, mechanistic, stereo control and other effects on reactivity are briefly discussed. The main emphasis in this review article is on recently discovered organotitanium complexes like 2-phenylindole titanium dichloride, easily modified by insertion reactions of small molecules like CO₂, SO₂ or even RN₃, serving as springboards of a new era in organotitanium click chemistry, by the original syntheses of non-toxic, potentially bioactive complexes.

Keywords: organotitanium, azide, click chemistry, cycloaddition, insertion, bioactive, pharmaceutical

1. Introduction

Titanium is relatively less known in click chemistry, in terms of catalytic effects or forming click-related coordination compounds, unlike other metals like copper, cobalt, ruthenium, palladium, platinum, osmium and even technetium, among several others.¹ The iconic click reaction, Cu(I)-catalyzed or not, is between an azide (RN₃) and a triple bond unsaturation ($-C \equiv C$ - or $-C \equiv N$) in a [3 + 2] cycloaddition, to form triazole or tetrazole derivatives. These and several other related "green" reactions carried-out under modest conditions (room temperature, often in an aqueous

Copyright ©2023 Gregory G. Arzoumanidis DOI: https://doi.org/10.37256/fce.4220232854

This is an open-access article distributed under a CC BY license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

medium), producing nearly quantitative yields, gave a tremendous impetus and progress in the important areas of bioorthogonal cell biology, medicinal chemistry, synthetic applications, organometallic chemistry, photo - and polymer chemistry, to mention only a few.

Several titanium compounds with azide functionality exist that could be utilized to expand the click chemistry of the metal. In dealing with azides in the laboratory, several safety precautions must be taken, because some of them tend to be explosive. Easily accessible titanium tetra azide $Ti(N_3)_4$ obtained quantitatively within minutes from TiF_4 and (CH₃)₃SiN₃ in acetonitrile at room temperature, features a linear azide coordination, whereas the 5- and 6-coordinated complexes $[P(C_6H_5)_4][Ti(N_3)_5]$ and $[P(C_6H_5)_4]_2[Ti(N_3)_6]$ respectively, demonstrate a bent azide configuration.² The structural difference of the linear vs. bent azide has been rationalized on the basis of the electron back-donation of the α -nitrogen atom. In the special case of tetracoordinate d^o metals, all three electron pairs on the α -nitrogen atoms can donate electron density into three lobes of empty d-orbitals tetrahedrally arranged about the (+IV) central metal. In this model, azide acts as a tridentate ligand (Figure 1a), resulting in linear triple-bond conjugation. Usually the α-nitrogen atoms act as one electron pair donors (Figure 1b) with two sterically active free valence electron pairs resulting in strongly bent M-N-N \equiv N bond angles. This has been shown both computationally and by X-ray analysis to be the situation in the higher-coordinated (more stable) compounds $PPh_4[Ti(N_3)_5]$ and $(PPh_4)_5[Ti(N_3)_6]$. Likewise, the hexacoordinated complexes $(bpy)Ti(N_3)_4$ and $(phen)Ti(N_3)_4$ (bpy = bipyridine, phen = 1,10 phenanthroline) show bent azide groups.³ In the important area of bis(cyclopentadienyl)titanium complexes, Cp₂TiCF₃(N₃) demonstrates similarly a bent azide group.⁴ Bending of the azide ligand may be important in the reactivity of these complexes. The majority of the new complexes we propose in this mostly conceptual overview will have a coordination number of five or six, therefore expected to feature bent azide ligands.

Figure 1. Linear and bent configurations of titanium triazides

Other notable titanium azides are the tetrameric monoazidotitanium triisopropoxide $[(N_3)Ti(O^iPr)_3]_4$, derived from ligand disproportionation of the dimeric diazidotitanium diisopropoxide $[(N_3)_2Ti(O^iPr)_2]_2$ and $Ti(O^iPr)_4$.⁵ The commercially available dimeric diazidotitanium diisopropoxide $[(N_3)_2Ti(O^iPr)_2]_2$ is synthesized from $Ti(O^iPr)_4$ and two equiv of $(CH_3)_3SiN_3$ in nearly quantitative yield.⁶ We regard this simple reaction as a model in our vision of a new organotitanium click chemistry. It has all the expected characteristics of a click reaction: high yield, mild operational conditions, straightforward without unwanted byproducts, forming a solid product easily separated by simple filtration. In proposing several new organotitanium click complexes in the discussion section below, we take full advantage of the possibilities originating from this fundamental reaction. The crystal structure of $[(N_3)_2Ti(O^iPr)_2]_2$ could not be determined, but the crystal structure of $[(N_3)Ti(O^iPr)_3]_4$ features two bridging azides and the dimeric units are joined by a bridging azide and a bridging isopropoxide.

The reaction of Me₃SiN₃ with Ti(NMe₂)₄ at a molar ratio of 1.67 : 1 yields the unusual trimer [Ti(NMe₂)(N₃) (μ -NMe₂)]₃(μ ₃-N₃)(μ ₃-NH).⁷ This structure contains a triply bridging azide and three terminal bent azides. The imido complex **1** reacts with a large excess of Me₃SiN₃ in pyridine at Room Temperature (RT) for two days to substitute only one chloride and yield the dimer **2**, Figure 2. It is remarkable that in **2** the bridging positions are adopted by azides, but not the chloride ligands.⁸ Such a preferential bridge bonding of azide vs. chloride ligands is also exhibited in [AsPh₄]₂[TiCl₄](N₃)₂]⁹ and [(MeCp)TiCl₂(N₃)]₂.¹⁰ Furthermore, diazide **3** reacts at RT with cyclohexylamine (CyNH₂) in pyridine to form the dimeric azide **4** featuring both bridging and terminal azide groups.

Figure 2. Reactions of complex 1 with excess Me₃SiN₃, and complex 3 with CyNH₂ in Pyridine

The first-ever mentioning of an "i-click" (inorganic click) reaction for a d^o group 4 metal azide **6** with dipolarophile Dimethyl Acetylenedicarboxylate (DMAD) to afford the bis-triozalato complex **7** was in 2017, from a group in Bergen, Norway,¹¹ Figure 3, establishing the novelty of organotitanium click chemistry. Similar complexes of other transition metals (Ta, Mo, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd) had been known for some time. This is a key point, underlining the fact that click chemistry of several transition metals could be adapted to titanium, under certain conditions. These conditions were taken into account in proposing numerous new titanium click reaction pathways producing a bundle of organotitanium complexes discussed herein. In each case reference has been made to the relating original publication.

The most efficient way of preparing complex **6** with a quantitative yield is by the reaction of **5** with an excess of Me_3SiN_3 in CH_2Cl_2 overnight at RT. The effective use of a titanium di-isopropoxy derivative combined with excess Me_3SiN_3 to "click" the diazide **6** is a copycat of the previously mentioned "model" reaction of titanium tetraisopropoxide with Me_3SiN_3 . Indeed, the chloride analogue of 5 could not react efficiently with NaN_3 to produce **6**. Complex **5** and related derivatives are active in copolymerization of cyclohexene oxide with CO_2 .

Figure 3. Synthesis of bis-triozalato titanium complex 7

A similar click approach could be proposed for the preparation of the important building block bis(cyclopentadienyl)titanium diazide $Cp_2Ti(N_3)_2$ **10** (Figure 4), although the originally published low-yielding procedures utilized Cp_2TiCl_2 and NaN₃ in boiling acetone¹² or even water.¹³

By comparison, the direct reaction of bis(cyclopentadienyl)titanium dichloride Cp_2TiCl_2 8 or the cyclo-pentadienyl titanium trichloride $CpTiCl_3$ with excess Me_3SiN_3 affords the substitution of a single chloride only¹⁴ producing a monoazide 11, Figure 5. The latter undergoes a [3 + 2] cycloadditon click reaction with nitrile RCN to yield two isomeric tetrazole derivatives, differentiated by the β - (12) or α -position (13) of the tetrazole ring carbon relative to the nitrogen atom bonded to titanium.¹⁵

Figure 4. Proposed new approach for the formation of $Cp_2Ti(N_3)_2$ 10

Figure 5. Single chloride substitution of Cp_2TiCl_2 8 with excess Me_3SiN_3 to form monoazide 11. Click reaction of 11 with RCN yielding two isomers, 12 and 13

The same [3 + 2] cycloaddition reaction performed on the diazide **10** (Figure 6) is expected to yield three isomers. The first isomer **14** with two tetrazole rings, each having the ring carbon in the α -position next to the nitrogen bonded to titanium. A second isomer **15** with two tetrazole rings, each with the ring carbon in the β -position relative to the nitrogen bonded to titanium, and a third mixed isomer **16** with one tetrazole ring with carbon in the α - and another tetrazole ring with its carbon in the β -position relative to the nitrogen bonded to titanium.

Figure 6. Three isomers from the cycloaddition of RCN with diazide 10

The click chemistry of the azide complexes 10 and 11 may be expanded in multiple ways, by applying a variety of suitable reaction partners (dipolarophiles, acetylides, nitriles, etc.), many of them known partners of other metal azides as well. Moreover, the organotitanium click chemistry is not limited to chemical transformations of complexes 10 and 11 or others mentioned above. In this paper we are introducing new organotitanium click complexes originating from our serendipitous discovery of the ortho-metallation of various heteroaromatic ligands with TiCl₄ or ZrCl₄, starting with the ortho-titanation of 2-pheylindole:¹⁶

Figure 7. Synthesis of 2-phenylindole titanium diazide 19

Figure 8. Selected organotitanium complexes available for click reactions

31

2. Discussion

2.1 New organotitanium complexes--synthons in click reactions

30

The orthometallation reaction of TiCl₄ or ZrCl₄ with suitable hetreroaromatic ligands featuring pendant phenyl,

naphthyl or other aryl groups like 2-phenylindole,¹⁷ is a most valuable tool for accessing new building blocks for organotitanium and -zirconium click chemistry. For example the orthotitanated 2-phenyl indole titanium dichloride **17** in Figure 7 follows an identical reaction pattern as Cp_2TiCl_2 **8** in Figure 5, or even that of complex **5** in Figure 3, to yield the corresponding new diazide **19**, over the intermediate diisopropoxy derivative **18**. Complex **19** may be further prone to azide insertion into the actve Ti-C σ -bond, vide infra.

Besides this "model" building-block 17, a number of selected organotitanium chlorides 20 through 31 depicted in Figure 8, are also accessible through the titanation reaction.¹⁶⁻¹⁸ These organotitanium chlorides may serve as building blocks for attaining new organotitanium azides, simply undergoing the same strategic pathway outlined in Figure 7. The list of organotitanium complexes in Figure 8 contains a monocloride (23), several dichlorides (21, 22, 25, 26, 28, 29, 30, 31) and trichlorides (20, 24, 27). In the following discussion, all click chemical transformations applicable to dichlorides will be represented by the framework of complex 17, and click transformations of trichlorides by the framework of complex 20. It is assumed that the remaining complexes in each category undergo identical transformations with their corresponding counterparts.

2.2 Click reactions of titanium monochloride complexes

The reaction of complex **20** with 6-tert-butyl fulvene in the presence of Mg in THF affords the mono-chloride¹⁹ complex **23**, Figure 9. When three or more equiv. of Me_3SiN_3 react with complex **23** something extraordinary and unprecedented happens! Me_3SiN_3 attacks three distinctly different reactive sites of complex **23** simultaneously, in three separate modes of action: a. A chloride substitution reaction, forming the Ti-N₃ functionality, under Me_3SiCl elimination, b. The insertion into the Ti-C (alkyl) bond ultimately creating a relatively stable azide²⁰ **33** in the solid state, and c. The insertion into the Ti-C (phenyl) bond forming a transient azide **32**, which gives up N₂ readily to form complex **33**. The latter is stable in the solid state at ambient temperature, but in solution decomposes gradually giving-up additional N₂, forming complex **36**. Mechanistically, precursors of complex **36** decomposition are the transient intermediates **34** and **35**.

Figure 9. Reaction of complex 20 with 6-tert-butyl fulvene in the presence of Mg in THF, followed by azidation of product 23 with excess Me₃SiN₃

Fine Chemical Engineering

152 | Gregory G. Arzoumanidis

Azide 36 Figure 10 undergoes a [3 + 2] cycloaddition with benzonitrile PhCN to form the click isomeric tetrazole pair 37 and 38. Other alkyl nitriles RC \equiv N and even thiocyanates RSC \equiv N show comparable behavior.

Figure 10. Cycloaddition of benzonitrile with complex 36

Typical click reactions of complex **36** with several unsaturated reagents are depicted in Figure 11. First, the reaction with CS_2 , ultimately yields the S-coordinated thiotriazoline titanium complex **39**.

Figure 11. Typical click reactions of complex 36 with unsaturated organic compounds

The latter is the isomerization product of an originally formed N-bound 1,2,3,4-thiatriazoline thionate.²¹ On the right top side of Figure 11, the equation represents the reaction of complex **36** with disubstituted acetylenes $R^1C \equiv CR^2$. Better known examples are with $R^1 = R^2 = CO_2Me$,²² Ph, and CF_3^{23} affording two isomers in each case, one isomer

Volume 4 Issue 2|2023| 153

Fine Chemical Engineering

with titanium coordinated to the α -N of the triazole ring and the other with the titanium coordinated to β -N. Likewise, an alkene²⁴ derivative will yield complex **42**, which isomerizes promptly to complex **43**, featuring coordination of the triazole ring to titanium through the middle nitrogen atom of the triazol ring.

Cycloaddition reactions with isothiocyanates RNCS²⁵ give rise to N-coordinated thiotetrazole complexes **44** and S-coordinated tetrazole complexes **45**. Isocyanates RNCO²² follow the same reaction pattern, yielding the corresponding oxygenated isomers replacing sulfur.

2.3 The role of insertion reactions into the active Ti-C σ -bond

Insertion reactions into the active Ti-C σ -bonds of the complexes, as in complex 32, take center stage in all chemical manipulations involving each and every complex in Figure 8. The insertion reaction may occur independently, i. e., before any click reaction (for example complex 17 to 49, Figure 12); At the same time with a substitution reaction, as in complex 17 to 51 (a transient intermediate) and 52; or in complex 18 to 53 and 54; Finally, insertion and substitution may take place in sequence (insertion first, complex 17 to 49, and then substitution, 49 to 50). Please note that the reaction of Me₃SiN₃ with chloride complexes in Figure 2 results in a single chloride substitution only, as in monochlorides 50 and 52, vide supra. The remaining chloride functionality in these monoazide complexes (50, 52) may participate in secondary substitution reactions, exchanging the chloride of the complex with new functional groups like nitriles, alkoxides, amides, etc. Unlike the single chloride substitution of 17 and 49 in reactions with Me₃SiN₃, substitution of both isopropoxy groups of complex 18 with Me₃SiN₃ takes place.

Small molecules like CO, CO₂, CS₂, SO₂, SOCl₂, SO, COS, NO, NO₂, N₂O, are the usual partners in these insertion reactions, along with several click reagents such as nitriles, isonitriles, alkenes, alkynes, aldehydes, ketones, etc. The insertion reactions constitute a prime advantage, and they are introduced here for the first time in organotitanium click chemistry. Among the advantages of the insertion reactions are: (a) A substantial increase of the number of new material combinations to be created, (b) Improvement of their thermal stability, sensitivity to air and moisture, and (c) Increase of complex solubility in selected solvents, particularly water under physiological conditions. Consequently, ease of handling in planned click reactions and enhanced reactivity may be realized.

Figure 12. Insertion reactions enhancing organotitanium click chemistry

To further simplify our discussion, we will select as base reactants organotitanium frameworks (included in Figure

Fine Chemical Engineering

2) modified previously by an insertion reaction with any one of the above mentioned small molecules, as represented by complex **49** or **50**.

2.4 Organotitanium diazide click reactions

Selected click reactions starting with diazide complex **55** are depicted in Figure 13. Complex **55** is prepared from dichloride **49** following the procedure outlined in Figure 9. The reaction of complex **55** with nitriles RCN²⁶ yields three isomers, compare with the analogous reaction with Cp₂Ti(N₃)₂, Figure 6. Complex **56** is one of the three isomers with a mixed coordination mode for the two tetrazole rings to titanium (one ring with α -N and the other with β -N). The second isomer (not shown) has both tetrazole rings with α -N bonding to titanium, and the third isomer (also not shown) has both rings β -N bonding. This statistical bonding distribution may be rationalized on the basis of each of the three isomers deriving from the transient ionic resonance structure **62**. Likewise, three isomers are formed by the reaction of **55** with an alkyne¹⁹ R¹ - C \equiv C - R², with product complex **57** showing two different N-triazole coordination modes to the titanium central atom. Reaction with CS₂ initially forms the N-coordinated thiotriazole rings **58**, which transform to S-coordination **59**. By comparison, the isothianate²¹ RNCS reaction result in N- coordination **60**, and both N- and S-coordination, complex **61**.

Figure 13. Click reactions of diazide complex 55 with unsaturated compounds

2.5 Organotitanium monoazide click reactions

An interesting example of adding a new functionality into a chloroazide **50** is shown in Figure 14. The lithiated o-tolunitrile **63** reacts with complex **50** to afford the azido-complex **64**, stable in the solid state, but in solution it undergoes an intramolecular 1,3-cycloaddition²³ yielding the tetrazole complex **65**. Chlorozide **50** interacts further with the alkyne group of complex **66** to produce the bimetallic complex **67**, linking the two reagents through the newly created triazole ring in the 1,5-positions, Figure 15.

Figure 14. Substitution reaction of chloro-azide 50 with lithiated tolunitrile 63. Internal cycloaddition of azido complex 64, rearranging to complex 65 in solution

Figure 15. Cycloaddition of the azido-complex 50 with the alkyne ligand of complex 66

2.6 Heterobimetallic complexes through click chemistry

A heterobimetallic (Ti, Al) complex **70** with potential applications in α -olefin polymerization catalysis is prepared from the alkyne/alkane complex **68** and diethylaluminum azide **69**, Figure 16. Other bimetallic complexes may be considered, by engaging titanium click complexes **66**, **68** and related synthons with metal azides, for example $M(N_3)_2(PR_3)_2$ (M = Pd, Pt, Ni, Cu, etc., R = Ph, Me, Et), Au(N₃)PPh₃ and multiple others.²⁵ The click heterobimetallic complexes of titanium with other metals is an important and wide-open topic to be discussed in a separate report.

Figure 16. Cycloaddition of Et₂AlN₃ 69 with complex 68

2.7 Internal cyclization of azido azo(binitrile) titanium complexes

Another illustrative example of the multiple available possibilities from utilizing complex 50 or its counterpart from a CO_2 insertion 71 is the reaction with sodium dicyanamide $NaN(CN)_2$ to form the transient intermediate azido azo(bisnitrile) 2-phenyl carboindole titanium complex 72, which promptly undergoes a click intramolecular cycloaddition forming a terazole ring to yield complex 73. The latter reacts further with an organic azide interacting with the remaining nitrile group, to form a pendant second tetrazole ring, complex 74, Figure 17.

Figure 17. Reaction of complex 71 with sodium dicyanamide $NaN(CN)_2$, formation of transient intermediate 72, internal cyclization to 73, and external cylization to form complex 74

Figure 18. Double intramolecular cycloaddition

A double intramolecular cycloaddition is enacted by the transient product 76, from the substitution reaction of the chloro-diazide complex 75 with $NaN(CN)_2$ under NaCl elimination, to afford the most unusual complex 77, featuring a fused titanadiazetidine-di-tetrazolato ring, and a carbonated 2-phenyl benzoxazole ligand, Figure 18.

2.8 Click reactions with di- and tri-acetylides

The reaction of dimethyl diacetylide Me-C \equiv C-C \equiv C-Me with complex **49** in the presence of Mg yields the titanacyclocumulene²⁵ **78**. Interaction with B(C₆F₅)₃ creates the zweitterionic complex **79**, a promising polyolefin catalyst. Further reaction with an organic triazide RN₃ will afford the coordinated triazole derivative 80, maintaining its zweitterionic character Figure 19. Phenyl or -SiMe₃ substituted titanacyclocumulenes will follow a different reaction pathway upon interaction with B(C₆F₅)₃.

Figure 19. Dimethyl diacetylide reaction with complex 49, after reduction with Mg. Formation of zweitterionic complex 79

The dichloro complex 17 after carbonation forms 81, which, as in the previous example, reacts with di-t-butyl hexatriyne, in the presence of magnesium, to afford a titanacyclopropene ring di-substituted with t-butyl alkynyl groups. These functionalities form triazole rings in the presence of two equivalents of RN_3 , Figure 20. Using a di-t-butyl tetradiyne instead, will generate complexes with one alkynyl group which reacts with one equivalent RN_3 to yield a single triazole ring.

Figure 20. Di-t-butyl hexatriyne with complex 81 in the presence of Mg

2.9 The alkynylonitrile ligand

Formation of an uncommon carbon-to-carbon connected triazole-tetrazole ligand, coordinated to titanium by the

Fine Chemical Engineering

second triazole carbon, is accomplished by a two step [3 + 2] cycloadditions of two RN₃ equivalents to the titanium coordinated alkynylonitrile ligand of complex **84**, affording complexes **85** and **86**, Figure 21. We project the tetrazole rings are produced first, because of the end location of the nitrile and the perceived higher reactivity of RN₃ with the polar nitrile group over the triple bond. Complex **85** or even **84** could react with azide-functionalized biological molecules, e.g., peptides, to form a peptide-substituted anticancer drug.²⁶

Figure 21. Cycloadditions to the alkynylonitrile ligand of complex 84

2.10 SPAAC reactions

Strain-Promoted Azide-Alkyne Cycloadition (SPAAC) reactions are widely employed in modifications of biomolecules in living systems, in many bioorthogonal applications, and in new drug development. The great advantage of this approach is the high energy of the strained cyclooctyne molecule as the reaction driving force, thus avoiding the use of cytotoxic copper (I) catalyst (CuAAC). The energy of cyclooctyne increases dramatically with two fused benzene rings (DBCO dibenzocyclooctyne) and a nitrogen atom in the ring, as in the commercially available DBCO-sulfo-NHS ester **88**, Figure 22. This product reacts further with complex **87** under NaCl elimination, to create the novel potential anticancer drug **89**, available also for site-selective cysteine-cyclooctyne conjugation.²⁷

Figure 22. Potential anticancer drug 89

Complex 87 derives from 50 after reaction with Dimethyl Acetylenedicarboxylate (DMAD), as in Figure 3. Needless to say, any related chloro-azide complex, for example 51, modified with DMAD or a different alkyne, would react with 88 similarly, affording unique bioorthogonal products.

2.11 A potent inhibitor of human α -1,3-fucosyltransferase

The acetylene derivative of guanosine diphosphate β -L-fucose (GDP-fucose) Figure 23 is available for a click [3 + 2] coupling reaction with titanium azide complexes (71, Figure 24), producing a potent inhibitor of human α -1,3-fucosyltransferase²⁸ 90.

Figure 23. Guanosine diphosphate β-L-fucose (GDP-fucose)

Figure 24. Cycloaddition of GDP-fucose with azido complex 71, producing 90, a potent inhibitor of human α -1,3-fucosyltransferase

This reaction requires the presence of either a soluble copper(I) (CuAAC), or more efficiently a heterogeneous copper-cluster-based Metal-Organic Framework (MOF) catalyst,²⁹ used for CO_2 chemical fixation and azide-alkyne cycloaddition. The presence of the heterogeneous MOF catalyst may be recommended/required in several other alkyne-azide cycloadditions described in the present account.

2.12 Carboxylate titanocene azides and related compounds

Carboxylate containing titanocene building blocks **91** react with SOCl₂ to form the corresponding acid chlorides, restoring the $[TiCl_2]$ group as well, **92**, Figure 25. The acid chloride group is more electrophilic than the $[TiCl_2]$ fragment and therefore many titanocenes containing ligands with pending ketone, ester, and amide groups can be prepared with classical organic acylation reactions (Friedel-Crafts reaction, esterification, amide synthesis).³⁰ The amide **93** (and ketone) substituted catalysts are cationic due to the intramolecular coordination of the carbonyl group. This feature is essential for the cytostatic and catalytic activity of these complexes. The titanocene acid chlorides react with amino azides in the presence of NaH without purification of the acid chlorides, producing the azides **93**, generally in good yields.

Figure 25. Carboxylate titanocene chloride 91 reacting with $SOCl_2$ to form acid chloride 92. Further reaction with H_2N -R-N₃ and NaH yields complex 93

The above described reaction sequence may be duplicated starting with complex 94, the 7-carbolylate 2-phenyl indole ortho-titanated complex, deriving from 1-*H*-2-phenyl indole-7-carboxylic acid and TiCl_4^{13} after insertion of SO₂ into the Ti-C bond. Reaction with three different aninoazides in the presence of NaH (Figure 26) afford the corresponding novel azides 95, 96, and 97. These azides undergo a strain-driven 1,3-cycloaddition with cyclooctyne and derivatives under mild conditions, yielding products available for biorthogonal applications. For example, complex 98 is the reaction product of azide 97 with cyclooctyne.

Figure 26. The carboxylate titanium complex 94 forming azide 95, followed by reaction with various amine azides to yield new bioorthogonal complexes 96, 97, and 98, which click with octyne derivatives under mild conditions

Easily accessible carboxylate 81 will react with $SOCl_2$ to form a complex represented by the resonating structures 99A and 99B. Reaction with one equiv. of $H_2N(CH_2)_nN_3$ + NaH is expected to yield a mixture of azides 100 and 101.

The [Ti-Cl] fragments in 100 and 101 are amenable to several desirable substitution reactions.³⁷

Figure 27. Organotitanium azides 100 and 101, starting from complex 81

The chemistry outlined in Figure 27 may be performed with any individual complex included in Figure 2 after CO_2 insertion, highlighting the wide range of possible applications available by this approach.

2.13 Double cycloadditions with oxindole 1,6-heptatriene and fumaronitrile

The oxindole based 1,6 heptatriene³⁸ **102** reacts with complex **55** in a double, CuAAC-catalyzed [3 + 2] cycloaddition to yield complex **103**, Figure 28, featuring two different indole frameworks. An electron- withdrawing acetyl group in N-protecting group R² of **102** favors the production of the ditriazole **103** over the asymmetric monotriazole derivative, which is expected to be optically active. Moreover, 3,3-disubstituted oxindoles (**102** framework) are widely present in natural products, drugs, and pharmaceutically active compounds.

Figure 28. Double cycloaddition of diazidotitanium complex 55 with oxindole 1,6-heptatriene and fumaronitrile

The reaction of complex **55** with an excess of fumaronitrile in refluxing acetone affords complex **105**, which contains a bidentate ligand 5-(1,2,3-triazol-4-yl)-1,2,3,4-tetrazolate coordinated through the N(1) of the tetrazole ring and the N(3) of the triazole ring³⁹ (Figure 28). Complex **105** is the result of the cycloaddition reaction of the two azide groups of complex **55** with the C = N and C = C of fumaronitrile. The first cycloaddition involves one Ti-N₃ moiety with the double bond of fumaronitrile, forming the transient intermediate **104**. The second cycloaddition occurs internally with the second Ti-N₃ moiety and the adjacent C = N group.

2.14 Orthogonal modifications of Titanocene Y

Titanocene Y, used in initial clinical trials against breast and renal-cell cancer, has been modified by introduction of a targeting substituent, an alkyne³⁰ (complex **106**). The latter could be easily undergo [3 + 2] "click" cycloaddition with an azide and subsequently with an octyne-substituted biological molecule such as a protein. Similarly, incorporation of a pendant diazo group³⁷ (complex **107**) may enable Titanocene Y to become cysteine-selective through the activated alkene group. However, there are numerous other modifications of Titanocene Y, by introducing different targeting substituents into the molecule. Titanocene Y will react with Me₃SiN₃ to prepare the monoazide **109**, Figure 29. The corresponding diazide could be prepared by substitution of both chlorides in Titanocene Y, forming the diisopropoxide derivative, and then performing the reaction with Me₃SiN₃. The Ti-N₃ functionality of Titanocene Y would undergo a SPAAC reaction with a cycloalkyne, in this case with the most powerful known agent **108**,⁴⁰ Figure 29.

Figure 29. Orthogonal modifications of titanocene Y

Additional modifications of product **110** are available through substitution reactions of the chloride ligand, underlying the versatility of the approach. Moreover, the **106** Titanocene Y modification may react with diazide complexes **55**, **113** and the like to perform a double [3 + 2] click cycloaddition.

2.15 Di(trimethylsilyl)acetyline titanium complex with heteroaromatic nitriles

The reaction of complex **81** with di(trimethylsilyl)acetyline $Me_3Si-C \equiv C-SiMe_3$ in the presence of Mg will afford complex **111**, a starting material for homocoupling reactions with heteroaromatic nitriles like 2,6-dicyanopyridine⁴¹ (Figure 30), 2-cyanofuran, or 2-cyanothiophene. Product **112**, carrying two cyano groups, is amenable to a double reaction with the titanium di(triazide) **113** to form the unusual bimetallic complex **114**, a potential therapeutic agent, originating from the two indole scaffolds connected by two tetrazole rings.

Figure 30. Complex 114, featuring two indole scaffolds connected by two tetrazole rings

Figure 31. Reactions of mono- and di-propargyl phosphonates with diazido carboxylate titanium 2-phenyl indole complex 113, producing complexes 116 and 118, with improved aqueous solubility

164 | Gregory G. Arzoumanidis

2.16 Double cycloadiition of dipropargil bisphosphonate with diazido carboxylate titanium 2-phenyl indole

Dipropargyl bisphosphonate⁴² **115** (Figure 31) is an interesting molecule in terms of increasing aqueous solubility and biocompatibility, when partnering with a bioactive molecule. Accordingly, the bis-triazide complex **113** will undergo a double [3 + 2] click cycloaddition to produce complex **116**, a potential drug candidate. Two equiv of propargyl bisphonate **117** will react similarly with bis-diazide **113**, introducing four phosphonate groups per Ti in the **118** molecule.

2.17 Titanium complexes derived from N-alkynylheterocycles

N-alkynylheterocycles of benzimidazole (119A) and indazole (124A) are converted to triazoles (119, 121, 124, Figure 32) by click chemistry.⁴³ These triazoles react with $TiCl_4$,³⁸ $Ti(NMe_3)_2Cl_2$ or $TiCl_3(THF)_3^{39}$ under specified reaction conditions to yield the corresponding titanium complexes, each one with its own individual titanium-toligand coordination pattern. Thus, benzimidazole complex 119 dissolved in toluene reacts with one equiv of $TiCl_4 \cdot NEt_3$ at elevated temperature to afford the five-coordinated organotitanium complex 120. Carbene 121 reacts with $TiCl_4^{44}$ [or $Ti(NMe_3)_2Cl_2^{45}$] at -15 °C to RT to form the hexa-coordinated complex 122 (Figure 32), with a prominent Ti-C σ -bond as well. Whereas room temperature for click reactions is the norm, lower starting temperature for carbene 121 is required, since it is highly reactive. The same carbene 121 in the presence of $TiCl_3(THF)_3$ creates the Ti^{+3} five-coordinated complex 124 forms a hexa-coordinated chelate compound 125.

Figure 32. Titanium complexes of N-alkynylheterocycles

Titanium azides of these N-alkynylheterocycles are formed by reaction with Me₃SiN₃ as previously described, making them attractive building blocks for bioorthogonal applications.

Indolizines are also versatile building blocks for natural product synthesis, possessing a large range of bioactivities and interesting photophysical properties.⁴⁶ Commercially available 5-bromo-indolizine **126**, reacts with NaN₃ to form azide **127**, Figure 33. Further reaction with a nitrile RCN affords the 5-tetrazole-indolizine **128**. The latter forms a hexacoordinated titanium tetrachloride complex **129**, which, at elevated temperature in the presence of NEt₃ or pyridine, transforms to the organotitanium complex **130**, a novel building block for bioorthogonal synthetic applications.

Figure 33. From 5-bromo-indolizine 126 to the organotitanium complex 130

2.18 An organotitanium aminoacid

Two equivalents of L-propargyl glycine⁴⁷ **131** "click" with the diazide complex **49** (Figure 34) to form an organotitanium aminoacid **132**, which could find bioorthogonal application participating in peptide synthesis. Several other variations of this approach may be considered, including monosubstitution and the use of alternate titanium azides (**113**).

Figure 34. Synthesis of organotitanium aminoacid 132

2.19 Titanium complex from the cycloaddition of 3-cyanoindole with benzoyl azide

3-Cyanoindole (indole 3-carbonitrile) **133** reacts with benzoyl azide **134** producing the indole-3-tetrazole-4benzoyl ligand **135**, coordinating with $TiCl_4$ in toluene to afford complex **136**, Figure 35. Acyl azides like **134** are conveniently synthesized by the one-step conversion of esters with diethylalumnum azide.⁴⁸

Figure 35. Cycloaddition of 3-cyanoindole 133 with benzoyl azide 134. Ligand 135 reacting with TiCl4 to afford complex 136

2.20 Diethylaluminum azide azidation of 1-indanone-2-carboxylic acid ester. Azide and other potentially bioactive heterocyclic titanium complexes

1-Indanone-2-carboxylic acid ester 137 will undergo azidation with diethylaluminum azide Et_2AIN_3 affording 138, which will interact with TiCl₄ to form the hexacoordinated complex 139, Figure 36. Both products 138 and 139 are prone to an α -alkynylation in the 2-position of the indanone framework by Br-C=C-EWG (EWG = Electron Withdrawing Group, i. e. alkyl esters, ketones, amides, and sulfones).⁴⁹

Figure 36. 1-Indanone-2-carboxylic acid ester 136 azidation with Et₂AlN₃ to afford azide 138, complexing with TiCl₄

The reaction between phenyl propargyl ether and benzylazide⁵⁰ in the presence of 5 mol% of sodium ascorbate and 1 mol% of copper(II) sulfate in a 2:1 mixture of water and tert-butyl alcohol furnished the 1,4-disubstituted triazole product **140** in 91% yield after stirring for eight hours at RT. Product **140** ligates promptly with TiCl₄ affording the hexacoordinated complex **141**, Figure 37.

Figure 37. 1,4-Disubstituted triazole-ether 140 forming titanium complex 141

The cyclic amide-azide 142^{51} undergoes a similar facile ligation with TiCl₄ to produce complex 143, Figure 38.

Figure 38. Coordination of amide-azide 142 with TiCl₄

Pyrazolinethiocarbamoyl complexes have shown antivirus activity,⁵² including coronavirus. A representative ligand 144 coordinates with $TiCl_4$ to form the corresponding titanium coordination compound 145, Figure 39.

Figure 39. Pyrazolinethiocarbamoyl ligand 144, corresponding TiCl₄ complex 145

Reaction with Me_3SiN_3 with anyone of the above mentioned titanium coordination compounds (136, 139, 141, 143, 145) will introduce the [Ti-N₃] functionality into the molecule, transforming them into attractive partners in a variety of click reactions. For example, complex 143 will form 146, which reacts the dialkyne oxindole 102 affording the ditriazole complex 147, Figure 40. The cycloaddition reaction is expected to take place stepwise, with one of the azide functionality reacting with a triple-bond first creating a transient intermediate, which reacts further intramolecularly to yield 147 as the final product.

Figure 40. A common reaction pathway of an easily accessible diazide with a dialkyne

Fine Chemical Engineering

168 | Gregory G. Arzoumanidis

The chiral lithium complex 148^{53} was converted to the chiral benzenesulfonylpyrrolidine titanium dichloride complex 149 by treatment with an equivalent amount of TiCl₄. Complex 149 converts to the diazide 151, Figure 41, over the intermediate formation of the di-isopropoxide 150, reminiscent of Figure 4. Reaction of complex 151 with dipolarophile DMAD may follow.

Figure 41. Synthesis of chiral organotitanium diazide 151

2.21 The essential role of Ti(NMe₂)₄ in complex formation

Two equivalents of the isopropoxy tosylsulfonamide **152** undergo an exchange reaction with $Ti(NR_2)_4$ (R = Me or Et) to form complex **153**.⁵⁴ The bis-azide complex **154** is obtained from **153** in the presence of excess Me₃SiN₃,⁵⁵ Figure 42.

Figure 42. Exchange reaction of Ti(NMe₂)₄ with isopropoxy tosylsulfonamide 152

In a similar fashion, the cyclopentadienylsulfonamido ligand 155^{56} reacts with Ti(NMe₂)₄ at RT in toluene to form the intermediate 156, by elimination of one equivalent HNMe₂. The reaction is completed at RT by a second equivalent HNMe₂ elimination, and formation of the cyclopentadienylsulfonamido complex 157. It reacts further with Me₃SiN₃ to afford the corresponding diazide 158, Figure 43.

More than a dozen sulfonylamines carrying a pendant triazide group in the β -alkyl position, formed in a regioselective manner, have been prepared by the ring opening of several aziridines with NaN₃ in a DMF/H₂O solution, under specified conditions.⁵⁷ Representing the group, β -azidosulfonylamine **159** reacts as described above with Ti(NMe₂)₄ to produce complex **160**, having a characteristic azide bridge bonding, Figure 44. Additional triazide functionalities may be introduced into the coordination sphere of complex **160** by an exchange reaction using Me₃SiN₃.

Figure 43. Synthesis of the cyclopentadienylsulfonamido diazide 158

Figure 44. β -Azidosulfonylamine 159 undergoing exchange with Ti(NMe₂)₄

2.22 Titanium complexes with pharmacologically active heterocyclic compounds

Several heterocyclic compounds, in particular those known for their pharmacological properties, coordinate promptly with $TiCl_4$ in toluene under mild conditions to afford 1:1 coordination complexes, precursors to additionally planned click reactions, as described previously in this review article. Among them, 1-phenyl indazolle⁵⁸ forms the hexacoordinated complex **161**, 1-benzyl-4-phenyl triazole⁵⁹ forms complex **162**, the products of 4-fluorobenzonitrille with different alkenes and alkynes⁶⁰ will afford complexes of the type **163**, and 1,4 disubstituted 1,2,3-triazoles⁵⁵ will produce complex **164**.

2.23 Proposed beneficial effect of the azide group in ortho-metallation

A TiCl₄ complex formed with 2-phenyl pyridine **165** is expected to undergo phenyl titanation at elevated temperature, in a similar fashion as its Pd, Rh and Ir counterparts, mimicking the orthotitanation mechanism of 2-phenylindole.^{16,17} It is proposed that phenyl titanation of 2-phenyl pyridine will be greatly facilitated by an exchange of a chloride with an azide group to yield **166**. The organotitanium azide **167** will form at an elevated temperature in the presence of NEt₃, Figure 45.

Figure 45. Orthotitanation of 2-phenyl pyridine titanium tetrachloride complex 165, aided by the azide intermediate 166

3. Conclusions and future perspectives

Organotitanium click chemistry is intertwined with azide click chemistry, originating from the facile creation of $[Ti-N_3]$ moieties in multiple organotitanium complexes. Azide click chemistry is widely used in pharmaceutical and biotech fields, due to its mild conditions, fast speed, and biocompatibility. Moreover, unlike other transition metals, the high tolerance of titanium in the human body³⁶ is a determining factor in pharmaceutical applications of organotitanium click complexes.

Over three dozen documented new examples of organotitanium click chemistry have been proposed, responsible for synthesis of a plethora of new organotitanium complexes and derivatives, suitable for pharmacological and bioorthogonal applications. The majority of these proposals were inspired by the comparative chemistry of titanium and other transition metals, an approach supported by recent findings, e.g., the synthetic pathway illustrated in Figure 3 applicable to several transition metals, and the orthometallation of 2-phenyl indole, enacted separately by Ti, Rh, Ir, and Pd reactants.

After considering the click chemistry prospects of existing titanium azides, both inorganic and metallocene-based, we introduce a recently discovered class of organotitanium chloride complexes shown in Figure 2, easily replacing a chloride ligand with an azide via Me_3SiN_3 exchange, forming monoazide complexes. Diazide complexes may be formed starting with a $[Ti(O^iPr)_2]$ moiety and applying excess Me_3SiN_3 . These new azides undergo cycloaddition reactions with nitriles, isonitriles, cyanates, isocyanates, isothiocyanates, CS_2 , alkynes, alkenes, etc.

A notable synthetic approach is the exchange reaction between $Ti(NR_2)_4$ (N = Me, Et) and several sulfonylamides, affording complexes with the general formula (sulfonylamide)_x $Ti(NR_2)_{4x}$. The [Ti-NR₂] functionality converts readily to [Ti-N₃] in the presence of Me₃SiN₃.

Insertion of small molecules (SO₂, CO₂, even RN₃ among several other) into the active Ti-C σ -bond of the organotitanium complexes has now been introduced to click chemistry protocol for the first time. Insertion improves the properties (aqueous solubility, thermal and air stability) of the complexes, making them attractive for targeted applications, and increases the number of possible product variations almost exponentially.

The new organotitanium click chemistry described in the present review will enrich our knowledge in this important area of chemistry, with expected desirable ramifications in bioorthogonal and pharmacological applications.

Acknowledgment

I thank Dr Phil Martino and the reviewers for useful suggestions and corrections of the original manuscript.

Conflict of interest

The author declares that he has no conflict of interest.

References

- [1] Fehlhammer, W. P.; Beck, W. Azide chemistry an inorganic perspective, part I metal azides: Overview, general trends and recent developments. Z. Anorg. Allg. Chem. 2013, 639, 1053.
- [2] Haiges, R.; Boatz, J. A.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O. The binary group 4 azides $[Ti(N_3)_4]$, $[P(C_6H_5)_4][Ti(N_3)_5]$, and $[P(C_6H_5)_4]_2[Ti(N_3)_6]$ and on linear Ti-N-NN coordination. *Angew. Chem.* **2004**, *116*, 3210-3214.
- [3] Seal, T.; Deokar, P.; Christe, K. O.; Haiges, R. The binary group 4 azide adducts $[(bpy)Ti(N_3)_4]$, $[(phen)Ti(N_3)_4]$, $[(bpy)_2Zr(N_3)_4]_2$ ·bpy, and $[(bpy)_2Hf(N_3)_4]_2$ ·bpy. *EurJIC*. **2019**, *18*, 2388-2391.
- [4] Taw, F. L.; Clark, A. E.; Mueller, A. H.; Janicke, M. T.; Cantat, T.; Scott, B. L.; Hay, P. J.; Hughes, R. P.; Kiplinger, J. L. Titanium(IV) trifluoromethyl complexes: new perspectives on bonding from organometallic fluorocarbon chemistry. *Organometallics*. 2012, 31, 1484-1499.
- [5] Shekar, S.; Twamley, B.; Wehrmschulte, R. J. Facile synthesiis of monoazidotitanium isopropoxide. *Inorg. Chem.* 2008, 47, 10804-10806.
- [6] Choukroun, R.; Gervais, D. Reactivity of new azido-complexes of titanium and vanadium. J. C. S. Dalton. 1980, 1800-1802.
- [7] Gross, M. E.; Siegrist, T. Molecular precursor chemistry for TiN: synthesis and structure of $[Ti(NMe_2)(N_3) (\mu -NMe_2)]_3(\mu_3-N_3)(\mu_3-NH)$. *Inorg. Chem.* **1992**, *31*, 4898-4899.
- [8] Carmalt, C. J.; Whaley, S. R.; Lall, P. S.; Cowley, A. H.; Jones, R. A.; McBurnett, B. G.; Ekerd, J. G. Titanium(IV) azido and imido complexes as potential precursors to titanium nitride. J. Chem. Soc. Dalton Trans. 1998, 553-558.
- [9] Wu, Y. T.; Ho, Y.-C.; Lin, C.-C.; Gau, H.-M. Stepwise reactions of TiCl₄ and Ti(OiPr)Cl₃ with 2-propanol. Variabletemperature NMR studies and crystal structures of [TiCl₂(OiPr)(HOiPr)(μ-Cl)]₂ and [TiCl₂(OiPr)(HOiPr)(μ-OiPr)]₂. *Inorg. Chem.* **1996**, *35*, 5948-5952.
- [10] Kirschbaum, K.; Giolando, D. M. Structure of the μ-Azido-dichloro(η⁵-methylcyclopenta-dienyl)titanium(IV) Dimer. Acra. Cryst. 1992, C48, 1837-1839.
- [11] Quadri, C. C.; Lalrempuia, R.; Hessevic, J.; Törnroos, K. W.; Le Roux, E. Structural characterization of tridentate N-heterocyclic carbene titanium(IV) benzyloxide, silyloxide, acetate, and azide complexes and assessment of their efficacies for catalyzing the copolymerization of cyclohexene oxide with CO₂. Organometallics. 2017, 36, 4477-4489.
- [12] Langford, C. H.; Aplington, J. P. Kinetics of substitution reactions of diacidodicyclo-pentadienyltitanium(IV) compounds in acetone. J. Organomet. Chem. 1965, 4, 271-277.
- [13] Coutts, R. S. P.; Wailes, P. C. Azido derivatives of bis(cyclopentadienyl) zirconium and bis(cyclopentadienyl) titanium. Aust. J. Chem. 1971, 24, 1075-1078.
- [14] Choukroun, R.; Gervais, D.; Jon, R. Dilworth, azido- and phosphiniminato-complexes of titanium and vanadium. *Trans. Metal Chem.* **1979**, *4*, 249-251.
- [15] Popova, E. A.; Trifonov, R. E.; Ostrovskii, V. A. Advances in the synthesis of tetrazoles coordinated to metal ions. *ARKIVOC.* 2012, *i*, 45-65.
- [16] Arzoumanidis, G. G.; Chamot, E. Direct ortho-metallation of aryl substituted heteroaromatic ligands with TiCl₄ and ZrCl₄- an experimental and DFT study with 2-Phenyl indole as the ligand. *ChemRxiv*. 2019.
- [17] Arzoumanidis, G. G. Direct metallation of 2-phenyl-1H-indole (PI) with MCl_4 (M = Ti or Zr). Effect of the PI: MCl_4 molar ratio on the formation of two different metallated complexes. Presentation at the 2021 ACS National Spring Meeting. 2021.
- [18] More than seventy proposed ligands, candidates for orthometallation with TiCl₄ or ZrCl₄ are listed in patent application US 20200392254.

Fine Chemical Engineering

- [19] Beckhaus, R.; Lützen, A.; Haase, D.; Saa, W.; Stroot, J.; Becke, S.; Heinrichs, J. Ein neuartiger zugang zu fulvenkoplexen des titans-diastereoselective komplexierung von pentafulvenen an cyclopentadienyltitan fragmente. *Angew. Chem.* 2001, 113, 2112-2114.
- [20] Manßen, M.; Weimer, I.; Adler, C.; Fisher, M.; Schmidtmann, M.; Beckhaus, R. From organic azides through titanium triazenido complexes to titanium imides. *Eur. J. Inorg. Chem.* 2018, 2, 131-136.
- [21] Beck, W.; Fehlhammer, W. Reaktionsweisen von azido-metall-komplexen. Angew. Chem. 1967, 79, 146-147.
- [22] Guilard, R.; Perrot, I.; Tabard, A.; Richard, R.; Lecomte, C.; Liu, Y. H.; Kadish, K. M. Metalloprophyrins containing .sigma.-bonded nitrogen axial ligands. 2. Synthesis and characterization of iron(III) tetrazolato and triazolato porphyrin complexes. Molecular structure of (5-methyltetrazolato)(2,3,7,8,12,13,17,18-octaethylporphin ato)iron(III). *Inorg. Chem.* **1991**, *30*, 27-37.
- [23] Rigby, W.; Bailey, P. M.; McCleberty, J. A.; Maitlis, P. M. Pentamethylcyclopentadienyl-rhodium and -iridium complexes. Part 19. Preparation and reactions of azido-, cyanato-, thiocyanato-, nitrito-, and nitrato-rhodium complexes. J. Chem. Soc., Dalton Trans. 1979, 371.
- [24] Kemmerich, T.; Nelson, J. H.; Takach, N. E.; Boebme, H.; Jablonski, B.; Beck, W. 1,3-Dipolar cycloadditions to coordinated azide in cobalt chelate complexes of the type LCo(chelate)N₃. *Inorg. Chem.* 1982, 21, 1226-1232.
- [25] Fleischer, A.; Roller, A.; Arion, V. B.; Keppler, B. K.; Mohr, F. Synthesis and structures of palladium(II) and platinum(II) complexes containing heterocyclic thiolate ligands formed by cycloaddition reactions of coordinated azides. *Can. J. Chem.* 2009, 87, 146.
- [26] Kreutzer, P.; Weis, C.; Boehme, H.; Kemmerich, T.; Beck, W.; Spencer, C.; Mason, R. [2 + 3] Cycloaddition reactions of azido metal complexes and crystal structure of the cycloadduct of (Ph₃P)₂Pd(N₃)₂ with benzonitrile. Z. *Naturforsch.* 1972, 27b, 745-747.
- [27] Ros, R.; Michelin, R. A.; Boschi, T.; Roulet, R. Cationic cyanobenzylpalladium(II) complexes. Synthesis and reactivity of the CN group towards nucleophiles. *Inorg. Chim. Acta.* 1979, 35, 43-48.
- [28] Fehlhammer, W. P.; Beck, W. Azide chemistry an inorganic perspective, part II. [3 + 2]-cycloaddition reactions of metal qzides and related systems. Z. Anorg. Allg. Chem. 2015, 641, 1599-1678.
- [29] Rosenthal, U.; Pellny, P.-M.; Kirchbauer, F. G.; Burlakov, V. V. What do titano- and zirconocenes do with diynes and polyynes? Acc. Chem. Res. 2000, 33, 119-129.
- [30] Zagermann, J.; Deally, A.; Metzler-Nolte, N.; Müller-Bunz, H.; Wallis, D.; Tacke, M. Towards peptide-substituted titanocene anticancer drugs. *Polyhedron.* 2011, 30, 2387-2390.
- [31] Zhang, C.; Dai, P.; Vinogradov, A. A.; Gates Z. P.; Pentelute, B, L. Site-selective cysteine-cyclooctyne conjugation. Angew. Chem. Int. Ed. Engl. 2018, 57, 6459-6463.
- [32] Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. *Drug Discov. Today.* 2003, 8, 1128-1137.
- [33] Lee, L. V.; Mitchell, M, L.; Huang, S-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C-H. A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc. 2003, 125, 9588-9589.
- [34] Huang, K.; Li, Q.; Zhang, X-Y.; Qin, D-B.; Zhao, B. Copper-cluster-based MOF as a heterogeneous catalyst for CO₂ chemical fixation and azide-alkyne cycloaddition. *Cryst. Growth Des.* 2022, 22, 6531-6538.
- [35] Gansäuer, A.; Okkel, A.; Schwach, L.; Wagner, L.; Selig, A.; Procop, A. Triazol-substituted titanocenes by straindriven 1,3-dipolar cycloadditions. *Beilstein J. Org. Chem.* 2014, 10, 1630-1637.
- [36] Arzoumanidis, G. Novel organotitanium complexes-potential anticancer drugs. Academia Letters. 2022.
- [37] Arzoumanidis, G. New antitumor organotitanium complexes with a pendant biologically active diazo group. *Fine Chemical Engineering.* **2022**, *3*, 171-181.
- [38] Zhou, F.; Tan, C.; Tang, J.; Zhang, Y-Y.; Gao, W-M.; Wu, H-H.; Yu, Y-H.; Zhou, J. Asymmetric copper(I)-catalyzed azide-alkyne cycloaddition to quaternary oxindoles. J. Am. Chem. Soc. 2013, 135, 10994-10997.
- [39] Migguel-Fernandez, S.; Martinez de Salinas, S.; Diez, J.; Lastra, M. P. 1,3-dipolar dycloadditions of ruthenium(II) azido complexes with alkynes and nitriles. *Inorg. Chem.* 2013, 52, 4293-4302.
- [40] Carolyn, R. Bertozzi, presentation. Nobel Prize in Chemistry. 2022.
- [41] Reiß, M.; Reiß, F.; Spannenberg, A.; Arndt, P.; Beweries, T. Group 4 metallocene mediated homo- and heterocoupling of heteroaromatic nitriles. *Organometallics*. 2018, 37, 4415-4423.
- [42] Skarpos, H.; Osipov, S. N.; Vorob'eva, D. V.; Odinets, I. L.; Lork, E.; Röschenthaler, G-V. Synthesis of functionalized bisphosphonates via click chemistry. Org. Biomol. Chem. 2007, 5, 2361-2367.
- [43] Burle, G. A.; Boutadle, Y.; Davies, D. L.; Singh, K. Triazoles from N-alkynylheterocycles and their coordination to iridium. Organometallics. 2012, 31, 1112-1177.
- [44] Ekkkehardt Hahn, E.; von Fehren, T.; Frölich, R. The Ti(IV) complex of a benzannulated N-heterocyclic carbene. Z.

Naturforsch. 2004, 59b, 348-350.

- [45] Li, J.; Schulzke, C.; Merkel, S.; Roesky, H. W.; Samuel, P. P.; Döring, A.; Stalke, D. Synthesis and characterization of N-heterocyclic carbene complexes of titanium(IV) and titanium(III). Z. Anorg. Allg. Chem. 2010, 511-514.
- [46] Tiago, H.; Correia, M.; List, B. Catalytic asymmetric addition of indolizines to α,β-unsaturated ketones. Angew. Chem. Int. Ed. 2017, 56, 1-5.
- [47] Mindt, T. L.; Struthers, H.; Brans, L.; Anguelov, T.; Schweinsberg, C.; Maes, V.; Schibli, R. "Click to chelate": synthesis and installation of metal chelates into biomolecules in a single step. J. Am Chem. Soc. 2005, 128, 15096-15097.
- [48] Rawal, V. H.; Zhong, H. M. One-step conversion of esters to acyl azides using diethylaluminum azide. *Tetrahedron Letters*. 1994, 35, 4947-4950.
- [49] Paulse, T. B.; Bernandi, L.; Alerman, J.; Overgaard, J.; Jorgensen, K. A. Organocatalytic asymmetric direct α-alkynylation of cyclic β-ketoesters. J. Am. Chem. Soc. 2007, 128, 441-449.
- [50] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)catalyzed regioselective "ligation" of azides and terminal alkynes. *Angew. Chem. Int. Ed.* 2002, 114, 2708-2711.
- [51] Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless K. B.; Dong, J. Molecular click chemistry libraries for functional screens using a diazotizing reagent. *Nature*. 2019, 574, 86-89.
- [52] Mohmmed, H. S.; Tripathi, V. D. Medicinal applications of coordination complexes. 1st International Visual Conference on Pure Science. *Journal of Physics, Conference Series*. **2020**, *1664*, 012070.
- [53] Takahashi, H.; Tsubuki, T.; Higashiyama, K. The remarkable effect of titanium tetra-isopropoxide in diastereoselective reaction of carbaldehydes with ciral benzenesulfonamide lithium complexes. *Chem. Pharm. Bull.* 1991, 39, 260-265.
- [54] Hamura, S.; Oda, T.; Shimizu, Y.; Matsubara, K. "Bidentate" and "tridentate" sulfonamide ligands from titanium complexes: crystal structures and solution dynamics elucidating an η^2 or η^3 -coordination mode. J. Chem. Soc., Dalton Trans. **2002**, 1521-1527.
- [55] Car malt, C. J.; Cowley, A. H.; Culp, R. D.; Jones, R. A.; Sun, Y-M.; Fitts, B.; Whaley, S.; Roeski, H. W. Monomeric titanium(IV) azides as a new route to titanium nitride. *Inorg. Chem.* 1997, 36, 3108-3112.
- [56] Lensink, C.; Milestone, N. B. Linked cyclopentadienyl sulfonato complexes of titanium and zirconium. Poster. The New Zealand Institute of Industrial Research and Development.
- [57] Markov, V. I.; Polyakov, E. V. Synthesis of substituted 1,2,3-triazolles via N-sulfonylaziridines. ARKIVOC. 2005, viii, 89-98.
- [58] Cerecetto, H.; Gerpe, A.; Gonzales, M.; Aran, V. J. Pharmacological properties of indazole derivatives: recent developments. *Mini Reviews in Medicinal Chemistry.* 2005, 5, 869-878.
- [59] Kaecprzak, K. Efficient one-pot synthesis of 1,2,3-triazolea from benzyl and alkyl halides. SYNLETT. 2005, 6, 943-946.
- [60] Zlatopolskiy, B. D.; Kandler, R.; Kobus, D.; Mottaghy, F. M.; Neumaier, B. Beyond azide-alkyneclick reaction: easy access to ¹⁸F-labelled compounds via nitrile oxide cycloaddditions. *Chem. Commun.* **2012**, *48*, 7134-7136.