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Abstract: The separation of rare-earth elements (REEs) has increasingly developed, especially using a complexing 
ligand of dibutyl dithiophosphate (DBDTP) that has numerous advantages as an extractant in the extraction process. 
Through technology development, this separation utilizes computational chemistry design to scheme the DBDTP ligand 
and its derivatives. One of the computational chemistry applications is a quantitative structure-property relationship 
(QSPR), which is useful for designing ligand derivatives by calculating molecular descriptors and connecting molecular 
structure with its physicochemical properties. In the present study, we aimed to get a dominant factor affecting complex 
stability formed from the REEs with DBDTP ligands and the REEs with DBDTP derivative ligands using principal 
component analysis for the QSPR study. The analysis results demonstrated that the stability of gadolinium, terbium, and 
dysprosium complex compounds was influenced by seven, seven, and six factors with a total variance of 93.93, 93.17, 
and 91.63%, respectively.
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PLSR partial least square regression
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1. Introduction
Along with technological development, the advance in separation of complex compounds has been progressively 

carried out. Since elements in the complex compounds have similar physicochemical properties, they are difficult 
to separate individually. An example in this regard is rare-earth elements (REEs). The main issue in obtaining pure 
REEs is to separate a component from others due to similar characteristics.1-2 Consequently, several techniques like 
crystallization, fractionation, ion exchange, and solvent extraction are tough. However, solvent extraction is the most 
successful technique used so far.3

To extract REEs, plentiful studies have been carried out using organic solvents containing complex-forming 
ligands. Solvent extraction is one of the robust techniques to separate the REEs. The innovation in extraction is the 
development of the extractant that can form complexes with transition metals and the REEs.4 In a chromatography study 
of transition metals, dialkyl dithiophosphate was used as a complexing ligand in the extraction stages of those metals.5 
On the other hand, the separation ability of dibutyl dithiophosphate (DBDTP) as a complexing ligand in the extraction 
of gadolinium and samarium by the solvent extraction technique is still lacking. Therefore, it is of great importance to 
develop new derivatives of the DBDTP ligand as a better chelating agent for gadolinium. The fact is that lanthanide 
elements can form a better chelate compound when combined with phosphate acid, phosphoric acid, or tributyl 
phosphate. Accordingly, such compounds can be used to extract the lanthanide elements.6-7

Quantitative structure-property relationship (QSPR) is one of the applications of computational chemistry. It can 
be used to help design derivatives of a ligand through the calculation of molecular descriptors, constitutional, topology, 
electrostatic, geometry, quantum chemistry, and thermodynamics. The relationship between molecular structure and 
its physicochemical properties can also be predicted.8 The QSPR is a math equation that connects the response of 
characteristics with the structure information and physicochemical characteristics in the form of numerical descriptors. 
It is a statistical approach that connects the physicochemical properties with the structure of a compound. Generally, a 
relationship studied in the QSPR/quantitative structure-activity relationship (QSAR) analysis is multivariate, yet it also 
can be done through the relationship among the variables. The statistical approach used to run the QSPR is multiple 
linear regression (MLR), principal component analysis (PCA), principal component regression (PCR), and partial least 
square regression (PLSR). These methods have been successfully set to predict a wide range of chemical and physical 
properties.9-10

2. Literature review
2.1 Quantitative structure-property relationship (QSPR)

The QSPR is based on the math relationship between the characteristics and one or more descriptors linked to 
the structure of molecules. The QSPR models are an empirical equation used to predict various physical properties or 
thermodynamics of a molecule expressed in the following MLR equation (Equation 1).

P = a + b·D1 + c·D2 + d·D3 + …                                                                  (1)

where P is the physical property; a, b, c, … is coefficient regression; and D1, D2, D3, ... is the parameters derived from 
the structure of a molecule (also called descriptors).11
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2.2 Rare-earth elements (REEs)

The REEs are a scarce element of its existence, yet they have high demand. They consist of lanthanide: La 
(lanthanum), Ce (Cerium), Pr (Praseodymium), Nd (Neodymium), Pm (Promethium), Sm (Samarium), Eu (Europium), 
Gd (Gadolinium), Tb (Terbium), Dy (Dysprosium), Ho (Holmium), Er (Erbium), Tm (Thulium), Yb (Ytterbium), and 
Lu (Lutetium). Besides, Y (Yttrium) and Sc (Scandium) which respectively have the atomic numbers 39 and 21 are 
also classified into the REEs due to often being found along with lanthanide.12 In the future, they are strategic elements 
that are necessary to develop their separation approach continually. The REEs have very similar properties from one 
element to others causing geologically they are not found in the form of free elements but rather in the form of complex 
compounds. The main source of the REEs comes from the mineral bastnaesite, monazite, and xenotime.13-14

2.3 Dibutyl dithiophosphate (DBDTP)

The ligand of DBDTP is used as a complexing agent in the separation and purification of metal ions through the 
extraction method. Meanwhile, the dialkyl dithiophosphate ligand combines with metal ions to form a neutral complex 
with a low water solubility due to its hydrophobicity and low polarity. On the other hand, di-n-butyl dithiophosphate 
acid extracts more metal ions as compared with diethyl dithiophosphate acid. Therefore, di-n-butyl dithiophosphate 
or derivatives of dithiophosphate with a longer alkyl chain have several advantages when used as an extractant. The 
distribution ratio in the extraction will be higher when organic solvents with oxygen atoms in the structure like ethyl 
acetate and isopropyl ether are used.4,15-16 Figure 1 shows the chemical structure of the DBDTP ligand.
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Figure 1. The chemical structure of dibutyl dithiophosphate (DBDTP)

2.4 Principal component analysis (PCA)

One of the methods for running the QSPR is PCA. The PCA will be obtained from new free variables that are not 
correlated, free of each other, but can absorb most of the information contained in the original variables or contribute to 
the whole of the variant variables. The following are the advantages of using the PCA:17-18 (1) Being able to eliminate 
the correlation (correlation = 0) cleanly, so the multicollinearity issue can be completely resolved; (2) Being able to be 
used for all conditions of the data; (3) Being able to be used without reducing the number of the origin variables; and (4) 
Despite being highly difficult to use, the PCA provides a more accurate conclusion than that of other methods.

3. Materials and equipment
The hardware consists of a Laptop with a Processor Core i7 CPU 980@3,33 GHz, Memory RAM 8 GB, GPU 

NVIDIA Ge Force GTX 970 4 GB, Hard drive of 2 TB. The software used in this study was ChemBio 3D Ultra 
12.0, BIOVA Discovery Studio 2016, AMBER14, AmberTools 14, MOPAC 2012, Molecular Dynamics (MD), and 
MATLAB-based algorithm PCA. Meanwhile, the materials used were the structure model of DBDTP ligands and 
DBDTP derivative ligands obtained from the Statistica package program.
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4. Research methods
4.1 Modeling of DBDTP derivative design

The DBDTP derivatives’ structure was drawn manually using ChemBio3D 12.0 with minimum energy. Those 
twenty different structures of ligand derivatives are shown in Figure 2.
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Figure 2. The chemical structure of DBDTP derivatives

4.2 Modeling of metal complex structure and calculation of descriptors
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Figure 3. Molecular structure of [Gd(DBDTP)3(H2O)2] complex compound
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All of the DBDTP derivatives were linked to each central atom, including Gd, Tb, and Dy on the ChemBio3D 
12.0, then they were optimized by MOPAC 2012 with the keyword command “SPARKLE” using the PM7 method. 
The optimization results were in the form of data descriptors such as the total energy, bond length, bond angle, etc. A 
representative structure of the metal-ligand complex is shown in Figure 3, where the structure formed in the reaction 
between the Gd(III) ion and the DBDTP ligand was proposed through molecular modeling.

4.3 Preparation of data matrix

All the descriptor data obtained was then arranged to be a data matrix with the dimension of m × n, where m is the 
number of rows (the result of descriptor calculation, 20 rows) and n is the number of columns (complex compounds of 
gadolinium, terbium, and dysprosium, 57 columns for each).

4.4 Data processing using PCA and PCR

Firstly, the data matrix was processed by PCA using the MATLAB-based algorithm program. After grouping, the 
PCA data were analyzed by PCR. The error and good models obtained were then used to estimate which ligand is the 
most suitable for analysis of the Gd complex. At last, the experimental data were used to validate the mathematical 
model by estimating the correlation and ratio graph.

5. Results and discussion
Based on the modeling of 20 artificial DBDTP derivative ligands and 57 variables of Dy, Gd, and Tb descriptor 

data, it could be obtained descriptor data for each with the dimension of 20 × 57. Of the corresponding data, the 
structure descriptors possessed similar data between metals and ligands. Meanwhile, the energy descriptors had a 
far gap between ligands and metals yet owned a clear characteristic difference between the complexes either energy 
descriptors or structure descriptors. Since the measurement unit of the descriptor was different, the descriptor data were 
standardized to avoid the variance between different predictors, so the component determination used a correlation 
matrix. By applying the correlation matrix, eigenvalues (variance) of descriptor principal components (PCs) of Gd, 
Tb, and Dy were determined. Afterward, correlation matrix Z, eigenvalues, eigenvector, number of components, and 
component elements of Gd, Tb, and Dy are presented in Table 1.

For Gd descriptors, the first eigenvalue (variance) of 38.3673 could explain the data variance of 67.50%, which 
is the first principal component (PC). The second PC with the second largest eigenvalue of 4.5799 could describe a 
data variance of 8.06% and a total second variance of 75.55%. The third PC with the third largest eigenvalue of 2.9262 
could account for a data variance of 5.15% and a total second variance of 80.70%. The fourth PC with the fourth largest 
eigenvalue of 2.3586 could explain a data variance of 4.15% and a total second variance of 84.85%. The fifth PC with 
the fifth largest eigenvalue of 2.0351 could define a data variance of 3.58% and a total second variance of 88.43%. The 
sixth PC with the sixth largest eigenvalue of 1.6848 could explain a data variance of 2.96% and a total second variance 
of 91.40%. The seventh PC with the seventh largest eigenvalue of 1.4425 could explain a data variance of 2.54% and 
a total second variance of 93.93%. In this regard, only seven components had eigenvalues larger than 1, where such 
eigenvalue can retain all factors. The logic dictates that factors worth retaining should have at least a larger variance 
than any of the original measured variables contained in the factor. Otherwise, an eigenvalue of less than one implies 
that the score on that component will have negative reliability.19 For k (clustering) = 7, the scree plot, a line plot of the 
eigenvalues of factors or PCs in an analysis, owned a sloping shape on the right side as shown in Figure 4 (A). The 
number of components that explain 57 descriptors was seven components, where the eigenvector (components) suitable 
with those of seven eigenvalues from the largest to the smallest was C1, C2, C3, C4, C5, C6, and C7, respectively.
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Table 1. Eigenvalues (variance) of complex data correlation matrix of gadolinium, terbium, and dysprosium

Gd Tb Dy

Eigenvalue Proportion Cumulative Eigenvalue Proportion Cumulative Eigenvalue Proportion Cumulative

38.3673 67.50% 67.50% 38.872 68.38% 68.38% 39.154 68.82% 68.82%

4.5799 8.06% 75.55% 4.3829 7.71% 76.09% 4.307 7.57% 76.39%

2.9262 5.15% 80.70% 2.859 5.08% 81.11% 3.683 6.47% 82.87%

2.3586 4.15% 84.85% 2.4669 4.34% 85.45% 2.479 4.36% 87.23%

2.0351 3.58% 88.43% 1.7834 3.14% 88.59% 1.397 2.45% 89.68%

1.6848 2.96% 91.40% 1.4682 2.58% 91.17% 1.111 1.95% 91.63%

1.4425 2.54% 93.93% 1.1327 1.99% 93.17% 0.987 1.73% 93.37%

0.9567 1.68% 95.62% 0.9778 1.72% 94.89% 0.947 1.67% 95.03%

0.6508 1.14% 96.76% 0.8951 1.57% 96.46% 0.85 1.49% 96.53%

0.5064 0.89% 97.65% 0.6178 1.09% 97.55% 0.568 1.00% 97.53%

0.4027 0.71% 98.36% 0.4213 0.74% 98.29% 0.387 0.68% 98.21%

0.3434 0.60% 98.97% 0.3548 0.62% 98.91% 0.361 0.64% 98.84%

0.2065 0.36% 99.33% 0.24 0.42% 99.33% 0.247 0.43% 99.28%

0.1524 0.27% 99.60% 0.157 0.28% 99.61% 0.175 0.31% 99.58%

0.1249 0.22% 99.82% 0.1427 0.25% 99.86% 0.128 0.22% 99.81%

0.1045 0.18% 100.00% 0.0791 0.14% 100.00% 0.109 0.19% 100.00%

In the case of Tb descriptors, the first eigenvalue of 38.872 could describe data variance of around 68.38%, which 
is the first PC. Then, the second PC with the second largest eigenvalue of 3.829 could explain a data variance of 7.71% 
and a total second variance of 76.09%. After that, the third PC with the third largest eigenvalue of 2.859 can describe 
a data variance of 5.03% and a total second variance of 81.11%. Next, the fourth PC with the fourth largest eigenvalue 
of 2.4669 could elucidate a data variance of 4.34% and a total second variance of 85.45%. The fifth PC with the fifth 
largest eigenvalue of 1.7834 could describe a data variance of 3.14% and a total second variance of 88.59%. Afterward, 
the sixth PC with the sixth largest eigenvalue of 1.4682 could explain a data variance of 2.58% and a total second 
variance of 91.17%. Finally, the last PC with the seventh largest eigenvalue of 1.1327 could clarify a data variance of 
1.99% and a total second variance of 93.17%. Here, only seven components also possessed eigenvalues larger than 1. 
Meanwhile, for k = 7, the scree plot had a sloping shape on the right side as demonstrated in Figure 4 (B). The number 
of components that describe 57 descriptors was seven components, where the eigenvector (components) suitable with 
those of seven eigenvalues from the largest to the smallest was C1, C2, C3, C4, C5, C6, and C7, respectively.
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Figure 4. Scree plot of eigenvalues for (A) gadolinium, (B) terbium, and (C) dysprosium

Different from the other two, only six components have possession of eigenvalues larger than 1 in the Dy 
descriptors. The first eigenvalue (variance) of 39.154 could describe a data variance of about 68.82%, which is the first 
PC. The second PC with the second largest eigenvalue of 4.307 could explicate a data variance of 7.57% and a total 
second variance of 76.39%. The third PC with the third largest eigenvalue of 3.683 could explain a data variance of 6.47% 
and a total second variance of 82.87%. The fourth PC with the fourth largest eigenvalue of 2.479 could define a data 
variance of 4.36% and a total second variance of 87.23%. The fifth PC with the fifth largest eigenvalue of 1.397 could 
clarify a data variance of 2.45% and a total second variance of 89.68%. The sixth PC with the sixth largest eigenvalue 
of 1.111 could explain a data variance of 1.95% and a total second variance of 91.63%. Meantime, for k = 7, the scree 
plot possessed a sloping shape on the right side (depicted in Figure 4 (C)). The number of components that explain 57 
descriptors was six components, where the eigenvector (components) suitable with those of six eigenvalues from the 
largest to the smallest was C1, C2, C3, C4, C5, and C6, respectively.



Fine Chemical EngineeringVolume 5 Issue 2|2024| 341

Table 2. Correlation of C1 with 57 complex data of gadolinium, terbium, and dysprosium

Descriptor
Gd Tb Dy

Descriptor
Gd Tb Dy

C1 C1 C1 C1 C1 C1

Z1 -0.9783 -0.9823 -0.9805 Z30 -0.9595 -0.9607 -0.9616

Z2 -0.7649 0.2727 0.3215 Z31 -0.9582 -0.9589 -0.9608

Z3 -0.8665 -0.8776 -0.8703 Z32 0.8911 0.9013 0.9011

Z4 -0.8482 -0.8408 -0.8476 Z33 0.8975 0.919 0.9202

Z5 0.019 -0.1727 -0.1706 Z34 0.9703 0.974 0.9774

Z6 0.014 0.0036 0.0087 Z35 -0.2478 -0.2961 -0.2790

Z7 -0.8991 -0.9021 -0.9292 Z36 -0.0827 -0.0515 -0.0700

Z8 -0.9597 -0.9708 -0.9646 Z37 -0.9594 -0.9567 -0.9574

Z9 0.7273 0.6849 0.5539 Z38 0.9976 0.9978 0.9977

Z10 -0.0776 0.7274 0.8568 Z39 0.9975 0.9978 0.9977

Z11 -0.0001 0.0016 0.0070 Z40 0.9973 0.9966 0.9970

Z12 0.119 0.1247 0.1190 Z41 0.9896 0.9943 0.9907

Z13 0.9971 0.9971 0.9973 Z42 0.9909 0.9878 0.9917

Z14 0.9971 0.9971 0.9973 Z43 0.9962 0.9974 0.9955

Z15 0.9971 0.9971 0.9973 Z44 0.9941 0.9933 0.9945

Z16 0.9611 0.9964 0.9966 Z45 0.9962 0.9952 0.9954

Z17 0.9969 0.9968 0.9970 Z46 -0.3827 -0.4206 -0.4616

Z18 0.997 0.9971 0.9972 Z47 -0.8154 -0.8078 -0.8112

Z19 -0.9092 -0.9022 -0.8937 Z48 -0.7346 -0.7267 -0.7309

Z20 -0.9971 -0.9971 -0.9972 Z49 0.7296 0.7201 0.7253

Z21 -0.9971 -0.9971 -0.9972 Z50 0.176 0.0964 0.0666

Z22 -0.9534 -0.951 -0.9471 Z51 0.0152 0.2352 0.4371

Z23 -0.9505 -0.9444 -0.9394 Z52 -0.2543 0.0937 0.1898

Z24 -0.9473 -0.947 -0.9484 Z53 0.2542 0.1076 -0.1897

Z25 0.9777 0.9785 0.9793 Z54 0.3759 0.1129 0.0561

Z26 0.6441 0.9843 0.9843 Z55 0.8458 0.8444 0.8442

Z27 0.9369 0.9369 0.9348 Z56 0.9097 0.9167 0.9122

Z28 0.8328 0.8307 0.8300 Z57 0.8774 0.8759 0.8729

Z29 -0.964 -0.9669 -0.9602
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Table 2 presents the calculation results of the correlation between PCs and 57 descriptors. For Gd descriptors, a 
strong correlation with the first PCs was the descriptors Z1 ~ Z4, Z7 ~ Z26, Z22, Z23, Z27 ~ Z34, Z37 ~ Z45, Z47 ~ Z49, Z55 ~ 
Z57, so corresponding descriptors were as component C1. Meanwhile, the strong correlation of Tb descriptors with the 
PCs was the descriptors Z1, Z3, Z4, Z7 ~ Z10, Z13 ~ Z34, Z37 ~ Z49, Z55 ~ Z57. These descriptors were as component C1. In 
Dy descriptors, the strong correlation with the first PCs was the descriptors Z1, Z3, Z4, Z7 ~ Z26, Z22, Z23, Z27 ~ Z34, Z37 
~ Z49, Z ~ Z57. Similarly, these descriptors were also as component C1. According to the descriptors of each complex 
compound of Gd, Tb, and Dy, the same descriptors affect the REE complex stability, namely thermodynamic energy and 
dipole moment. It is in good agreement with the reported work that there is a significant influence of thermodynamic 
and dipole moment toward the stability of Gd with the DBDTP derivative ligands.20

Regression analysis using seven PCs and gadolinium, terbium, and dysprosium response is presented in Equation 
2-4, respectively. Meanwhile, a scree plot of response against prediction for gadolinium, terbium, and dysprosium is 
depicted in Figure 5 (A-C), respectively.

               Y = 77.1599 + 6.8368C1 - 4.4153C2 + 5.4449C3 - 2.0248 C4 + 2.2152C5 - 4.7531C6 + 1.3410C7 (2)

               Y = 77.267 + 6.7696C1 + 3.7722C2 - 0.3020C3 - 7.5792C4 + 0.3486C5 - 5.4903 C6 + 4.9115C7 (3)

               Y = 77.2917 + 6.7446C1 + 4.1182C2 - 1.7449C3 - 7.7165C4 - 1.0080C5 - 2.8312C6   (4)
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Figure 5. Scree plot of response vs prediction for (A) gadolinium, (B) terbium, and (C) dysprosium

According to the plot of three complex compounds, the model prediction graph fits with the observed graph. To 
select the best time series model was required to use several model selection standards. Several methods that could 
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be used to gain the best regression model included the Akaike Information Criterion (AIC) and Schwarz Information 
Criterion (SIC) methods. The AIC is a mathematical method utilized to evaluate how well a model fits the data it was 
created from.21 On the other hand, the SIC is among the most widely known statistical model selection to serve as an 
asymptotic approximation to a transformation of the Bayesian posterior probability of a candidate model.22 In this study, 
the model goodness ratio was determined based on the mean square error (MSE), Akaike information criterion (AIC), 
and Schwarz information criterion (SIC) values, as presented in Table 3. Referring to AIC and SIC methods, the best 
regression model was the one that had the smallest AIC and SIC values.23

Table 3. The MSE, AIC, and SIC values for PCR of Dy, Gd, and Tb complex compounds

Compound MSE AIC SIC

Gd 48,5623 108,0775 160,9576

Tb 19,8986 44,2852 65,953

Dy 53,1805 107,0925 151,7446

6. Conclusion
Three DBDTP complex compounds had the same variables unaffecting the stability, which included bond length 

variable of P number one with O number one, bond length variable of P number one with O number two, bond length 
variable of P number two with O number three, bond length variable of P number two with O number four, bond angle 
variable of P number two with S number for and O number three, bond angle variable of P number two with S number 
four and O number two, gradient norm, dipole, potential ionization, homo, and lumo. The response prediction of Gd, 
Tb, and Dy resulted from response regression with PCs was selected through the plot of three complex compounds 
according to the observation graph. Based on the MSE, AIC, and SIC calculation, the Tb complex compounds possessed 
the smallest value among others, and therefore this complex was the best PCR model.
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