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Abstract: Precision polishing is difficult for advanced materials like silicon carbide and boron carbide. Magnetic 
abrasive flow machining (MAFM) has become an effective method for cleaning, deburring, and polishing metal and 
high-tech engineering parts. By finishing hybrid Al/SiC/B4C-metal matrix composites (MMCs), this research uses 
MAFM for experimental readings. The present work is innovative due to the aluminum workpiece fixture, hybrid 
composites, and response surface methodology (RSM) modeling. The neural simulation of the MAFM process and 
nature-inspired error reduction make it unique. Using six input and two output parameters, a generic framework is 
created. Box-Behnken design (BBD) of response surface methodology plans and executes 54 runs of experimentation. 
The hybrid artificial neural network (ANN) technique is used to compare the MAFM process systematically. ANN is 
used to model parameter input-output relations. To anticipate the created surface accurately, regression models must be 
precise. These hybrid particle swarm optimization (PSO)-genetic algorithm (GA)-simulated annealing (SA) algorithms 
optimize the MAFM process. Additionally, trained ANN models outperform the BBD model in prediction. For optimal 
error reduction, the neural network uses Bayesian regularization with 112 iterations. The ANN model regression 
graph shows a correlation between inputs and outputs. A scanning electron microscope (SEM) with 300-magnification 
examines the workpiece surface. According to SEM, MAFM provides fine surface textures, thus reducing abnormalities.

Keywords: magnetic abrasive flow machining, Al/SiC/B4C composites, precision polishing, response surface 
methodology, hybrid artificial neural network

Abbreviations
MAFM Magnetic abrasive flow machining
ANN Artificial neural networks
RSM Response surface methodology
MRR Material removal rate
BBD Box-Behnken design
MMCs Metal matrix composites
SEM Scanning electron microscope
Trainbr Bayesian regularization training algorithm
MSE Mean square error
ΔRa  Change in surface roughness
PSO Particle Swarm Optimization
PS  Pattern Search
GA  Genetic Algorithm
SA  Simulated Annealing

1. Introduction
Magnetic abrasive flow machining (MAFM) is one of the novel non-traditional machining approaches that excels 

in finishing off difficult-to-reach component regions. Precision components are successfully deburred, radiused, and 
recast layers removed using this technique. For a variety of parts, high levels of surface polish and adequate close 
tolerances have been attained.1 A semi-solid media comprising of abrasives and polymer-based carrier, is pushed across 
the machining surfaces in abrasive flow machining (AFM) under pressure. During a restriction, the media behaves as a 
deformable grinding tool. To direct the media to the proper areas in the workpiece, a specific fixture is typically needed. 
The AFM process was developed by Extrude Hone Corporation in the United States during the 1960’s. Several empirical 
researches have been carried out since then.1-5 Williams and Rajurkar,6 gained insights into process mechanisms, process 
monitoring, and surface generation modeling of AFM in the late 1980s. Their study mainly focused on stochastic 
process modeling and online supervision of AFM via acoustic emission.7 The impact of the machining operation on the 
surface quality created by AFM and the process was analyzed by Loveless and Kozak et al.8-9 Studies on the rheological 
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characteristics and impact of temperature of media in AFM were suggested by Fletcher and others.10-11 SiC/Al-MMCs 
surfaces were examined by Wang et al.12 using the wire electrical discharge machining (WEDM) technique. Przyklenk13 
carried out parametric analysis on the AFM setup. Using the finite elements in neural simulation, various researchers 
focused their study on the removal of material, mathematical modeling along with the generation of surface.14-16 To 
reduce the WEDM surface roughness, Wang and Weng introduced a more affordable and efficient abrasive media.17 A 
silicone-based polymer was blended with abrasive particles to generate a flexible media, selected as a carrier for this 
purpose. AFM was used by Sankar et al.18 to generate various media from abrasives, plasticizers and styrene butadiene-
based polymers. Rotational abrasive flow finishing was employed to carry out the experiments for finishing Al alloy and 
its MMCs to study the impact of storage, modulus of stress relaxation, percentage viscous component and shear stress 
on ΔRa and MRR as separate parameters. 

According to Steif and Haan,19 the existence of “dispersive stresses” facilitates surface wear during AFM. In order 
to machine blind cavities, Jones and Hull20 modified the current AFM by using ultrasonic vibrations in the medium. It is 
claimed that Gilmore’s orbital flow machining method is superior to AFM.21 These procedures fall under the category of 
hybrid machining processes (HMP), a relatively new idea developed in the area of non-traditional machining. Ahmad et 
al.22 finished Ti-6Al-4V/Titanium (Grade-5) material by conducting the experimentation on DC based magnetic abrasive 
finishing (MAF) setup. The input-output parameters were modeled using ANNs. For reducing/optimizing the MAF 
process errors, genetic algorithms (GAs) were employed. Sharma et al.23 aimed to develop a Box-Behnken design (BBD) 
model with a three-level factorial design for various parameters to predict the ΔRa of Al-6061/SiC/Al2O3/rare earth 
oxides (REOs) hybrid composites. Oh and Lee24 conducted an analysis of data from force sensors and acoustic emission 
to predict the surface finish in the MAF process using ANN. Djavanroodi25 utilized ANN modeling to predict the surface 
roughness of the MAF process. 

Neural networks were utilized for surface roughness parameter prediction by El-Sonbaty et al.26 and Abburi et 
al.27 Jain et al. optimized the AFF process using ANN and evolutionary algorithms.28 The findings obtained using the 
ANN model and the projected machined surface quality and MRR values were found to be in good agreement. Lam and 
Smith29 investigated the cascade-correlation neural network methodology for modeling the AFF and it was superior to 
the back-propagation technique. Teimouri et al.30 developed the adaptive neuro-fuzzy inference system (ANFIS) and 
feed forward back-propagation neural network (FFBP-NN) to forecast the performance of the MAF process. To increase 
the rate of finishing and material removal, Sankar et al.31 proposed rotating the medium along its axis. To perform 
parametric analysis and fully comprehend the drill bit-guided abrasive flow finishing (DBG-AFF) process, modeling 
employing non-linear multi-variable regression analysis and ANN is used. The neural network simulation data exhibit 
good agreement with the experimental outcomes. 

Jain and Jain32 employed neural networks for modeling to make the best possible choice of AFM process input 
parameters. The effectiveness of this approach has been validated by AFM process optimization data generated using 
genetic algorithms. Around fifteen such procedures have been reported by Rajurkar and Kozak.33 A lower rate of 
material removal is a common issue in most of the novel machining procedures (such as electrochemical machining, 
electric discharge machining and laser beam machining, etc.). Shinmura and Yamaguchi,34 and more recently Kremen et 
al.,35 Kim et al.,36 Khairy,37 and Shan et al.38 have reported studies on the MAFM process. 

The primary stimulus for using MAFM is to overcome the limitations of conventional abrasive flow machining 
(AFM). Traditional AFM often struggles with low material removal rates and suboptimal surface finishes due to the 
ineffective engagement of abrasive particles with the workpiece. MAFM addresses these challenges by utilizing a 
variable magnetic field to enhance the movement and interaction of abrasives, thereby improving machining efficiency 
and quality, especially for complex geometries and hard-to-reach areas. 

The MAFM process has several benefits, including increased material removal rate, better surface finish, 
accessibility to complex geometries, decreased tool wear, and versatility. However, there are also some drawbacks, 
including complicated setup, higher initial costs, magnetic field limitation, operational restrictions, and the possibility of 
abrasive agglomeration.

The current study utilizes the neural network approach to simulate the MAFM process, as presented by different 
researchers, by way of utilizing various simulation techniques. The feed-forward and back-propagation configurations 
of the neural network ensure stability and are capable of modeling real-time systems, apart from bearing good 
approximation abilities. The prominent research papers have been included in the tabular form in Table 1, to showcase 
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the findings on a comparative basis. The table clearly illustrates the changes in the choice of material used, the research 
findings as well as the types of workpiece material and the methodology adopted. The gaps have been identified from 
the research papers, and the same has been employed to devise the methodology for the current research work. 

In the present study, an attempt has been made to optimize the MRR and ΔRa, by using the nature-inspired 
optimization techniques of simulated annealing (SA), particle swarm optimization (PSO) and genetic algorithm (GA). 
These methods help to minimize the mean square error (MSE) and thus facilitate better and more efficient modelling. 
The neural modeling is done with an emphasis on optimizing the response parameters like the MRR and ΔRa.

Table 1. Literature-based comparison of finishing parameters and optimization techniques

Authors Workpiece 
material

Abrasive/
Abrasive size

Type of magnetic 
source

Voltage 
or current 

supply
Machining 

gap/mm
Magnet flux 

density
Rotational 

speed/RPM Remarks

Chaurasia et al.39
AZ91 

magnesium 
alloy

Alumina/600# 
(~ 25.7 μm)

Iron particle/320# 
(~ 50 μm)

Permanent
magnet 0.4-0.8 A 1-2 0-0.35 T 90-220

Employs MAF using 
AZ91 magnesium 
alloy plate for the 
finishing process. 

Kataria et al.40 Al/Al2O3 
MMCs Iron particle Cylindrical-

shaped poles
10 V
8 A - - -

Grey relational 
analysis (GRA) 
is employed for 

obtaining machining 
parameters.

Kumar et al.41 SS316L SiC/800# Permanent
magnet 1.25-2.25 V 0-2 0.22 T 30-150

It utilizes the RSM to 
investigate the process 

performance using 
COMSOL Multi-
physics software, 
which is based on 

FEM analysis. 

Sirwal et al.42

Ferro-
magnetic
P20 tool

steel

SiC/800#, 1,000#
Electrolytic 
iron particle/
400#-1,200#

Permanent
magnet - 2 0.58-0.61 T 300-1,500

RSM design 
method is used for 

experimentation and 
process parameters 

are analysed through 
ANOVA.

Zhang et al.43 Rubber stern 
bearing NBR particles Permanent

magnet - - 10.0-50.0 mT 200

Reynolds equation 
calculates the 

lubrication 
performance of the 

test rig using process 
parameters, and the 
solution is obtained 
through the finite 

difference method.

Singh et al.44 Aluminium 
6060

SiC
iron powder - 10-18 V 1-2 0.65-1.02 T 100-300

The mouth-flame 
optimization 
algorithm for 

optimizing the MAF 
parameters using 

the hybrid ANN is 
employed using the 
back-propagation 

algorithm. 

Ali et al.45 Brass Al2O3/180# - 0-16 A 0.25 - 100-300

The thermal additive 
centrifugal AFM 
process takes a 

simulation model of 
ANSYS to predict

its MRR. 
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Table 1. (cont.)

Authors Workpiece 
material

Abrasive/
Abrasive size

Type of magnetic 
source

Voltage 
or current 

supply
Machining 

gap/mm
Magnet flux 

density
Rotational 

speed/RPM Remarks

Heng et al.46 SUS 316L 

Fe powder/
#200 µm

Al2O3 & iron-
based composite 

abrasives/
#320 µm

Permanent
magnet - - 0.41-0.48 T 50-600 

It takes the aluminium 
and iron-based 

composites on the 
MAF process along 

with an ANN model to 
compute and simulate 
the surface roughness. 

Verma et al.47 Stainless steel
(SS304) 

Ferromagnetic
abrasive brush/
400#-1,200#

Permanent
magnet - - 0.4-0.8 T 200-600

The MAF process is 
applied for the surface 
finish of SS304 pipes 
are simulated using 

the Maxwell software.

Azizi et al.48 Inconel 718 
(super alloy)

SiC/1,000#
(15 μm) 

Iron particles
Electric magnet

poles - 1, 0.5 0.14 T
2,000,
1,500,
1,000 

The MAF process has 
been investigated on 
Inconel 718 shaft for 
studying the effects of 
surface roughness and 

feed rate. 

Judal et al.49 Aluminium

Al2O3/#1,200 
(12.67 µm), #800 

(19 µm), #600 
(25.33 µm)

Ferromagnetic/ 
#100 (152 µm)

DC supply 0.5-2 A 1.25 0.29-0.58 T
250,
420,
710,
1,200

The surface finishing 
of aluminium 

workpiece is studied 
using MAF process, 

leading to low-energy 
consumptions. 

Kala et al.50 Copper
alloy (C70600)

Al2O3/#600, 
#800, #1,000, 

#1,200
Fe powder/#300

DC supply 70-100 V 2 0.15 T
112,
140,
180,
224

The MAF process 
is employed for 

machining the non-
ferrous materials in an 
efficient manner, with 
a view to investigate 
the effect of surface 

roughness on the 
workpiece material.

Kala et al.51 Copper alloy
Alumina/#800
Iron powder 

(#300)
Permanent magnet 
(Magnetic disks) - 1.5-2.5 50-650 mT 200-400

The MAF process 
has been investigated 
using the ANOVA and 
Taguchi L9 array with 
the experimental data. 

2. Material and methods
2.1 MAFM experimental set-up

The setup for experimental analysis (Figure 1(a)) has been taken up after making the necessary changes in design 
and tested under laboratory conditions.

Figure 1(b) demonstrates the diagrammatic depiction of the MAFM process mechanism through the CAD model. 
The process variables may be varied in the setup for instance the extrusion pressure is allowed to vary till 10 MPa. The 
material required for the hydraulic cylinders was EN8. The diameter of 90 mm for the internal cylinder, stroke length 
of 250 mm and hydraulic oil no. 68 was taken. The workpiece fixture is made of aluminium, which is a non-magnetic 
material. It is specifically made to accept electromagnet poles so that the workpiece’s inner surface experiences the 
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greatest magnetic force. 

Figure 1. (a) Pictorial view of MAFM set-up. (b) CAD model shows the mechanism of MAFM

An aluminium fixture with slots is employed for holding the workpiece, as depicted in Figures 2(a) and 2(b). The 
intended use of such a fixture is to facilitate machinability, thus allowing for the slots to be accurately aligned with the 
shape of the workpiece. The cross-section of passage is reduced gradually to enable smooth passing of medium with 
a reduced vibration. Two plates have been attached in the fixture enabling variation in the vertical axis for holding the 
medium in a tight manner.

The coil-type electromagnet has been fabricated in its location surrounding the cylindrical workpiece. It comprises 
two poles which are enclosed by the coils. These poles are arranged so as to provide the presence of a strong magnetic 
field near the periphery of the workpiece. Table 2 enlists the specifications for the electromagnet.

The medium under consideration comprises polymer based on silicon (white color RTV-2615), hydraulic oil (68 
nos.), and abrasive grains. The abrasive considered for this experiment must primarily be magnetic in nature. The 
medium has been run through a dummy workpiece two or three times, in order to accomplish a thorough mixing. 
Material removal has been accomplished using a loosely bonded magnetic abrasive medium composed of silicon 
carbide (SiC) and the experiments have been carried out on an MAFM experimental setup. The different compositions 
of constituents used for preparing the media for the MAFM process are depicted in Table 3. Upon the completion of 
desired cycles, the workpiece along with the fixture has been removed. Subsequently, another workpiece has been 
placed in the respective slots. A digital meter is employed to quantify the number of cycles. Acetone [(CH3)2CO] is 
applied to each finished sample for cleaning purposes.

Upper hydraulic cylinder

MRP fluid 
container

Coil type 
electromagnets

MRP fluid 
container

Bottom hydraulic cylinder

Workpiece
fixture

(b)

Upper hydraulic 
cylinder

Counter meter

Piston rod

Electromagnet coils

A. C. Dimmer

Lower media cylinder

Lower hydraulic cylinder
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Piston rod

Hydraulic unit
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fixture
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Transformer with 
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Figure 2. (a) Workpiece fixture, (b) Fixture holds the workpiece

Table 2. Coil type electromagnet specifications

Sr. No. Constituents Description

1. Core material Mild steel (M.S.)

2. Core size
Core length = 175 mm
Core radius = 25 mm

Core rod diameter = 35 mm

3. Electromagnet coils Copper wire, 23 gauge, ɸ 0.5733 mm No. of turns = 2,500 per coil, Coil weight = 3.820 kg

4. Power supply (DC) 0-240 V

5. Magnetic flux density (Mf ) 0.15 T     0.3 T      0.45 T

6. Current applied (Amp.) 1.3      2.0     2.5

Table 3. Composition of magnetic abrasive media
 

Sr. No. Constituents Value of the constituents % Volume concentration in media

1. Silicon carbide (SiC) abrasive particle
150 mesh size
220 mesh size
400 mesh size

45%, 50%, 55%

2. Iron (Fe) particle 300 mesh size 10%

3. Hydraulic oil 68 number 10%

4. Liquid silicon rubber White colour (RTV-2615) 35%, 30%, 25%

2.2 Mechanism of material removal in MAFM

There are many ideas that attempt to explain how abrasive particles cause abrasion.52-54 With specific modifications, 
Finnie’s solid particle erosion theory has been acknowledged as a crucial component in the material removal process 
during the machining by AFM process.52 Due to the medium stream’s high speed during the machining using an 
abrasive jet, the abrasive particles that strike possess more energy. However, in AFM, strong pressure applied on the 
viscoelastic carrier media supplies the necessary energy to the abrasive particles. Due to the pressure operating in the 

To hold 
workpiece

Fixture
(Aluminum)

Workpiece

Fixture first half Fixture second half

(a) (b)
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restriction, the abrasive particles and the medium dilates experience significant strain. The surface that is in contact with 
the abrasive is micro-ploughed and micro-chipped by the momentum that abrasive particles gain in these circumstances. 
The metal’s surface experiences plastic deformation as a result of micro-ploughing. No material is subjected to initial 
erosion, but as time goes on, the surface atoms grow more susceptible to being stripped away by succeeding abrasive 
grains. Repeated strikes by more abrasive particles on the surface result in material separation. A common term for this 
is “cutting wear”. Applying a strong magnetic field around the edge of the workpiece causes the abrasive particles in 
motion to undergo a sideways pull, which redirects their path. Surface micro-chipping happens when they impinge at a 
slight angle on the work surface. Abrasive distribution patterns at the machining surface as the workpiece are predicted 
to be impacted by the magnetic field as well. As a result, particles that would have previously flown by without touching 
the surface now follow a different path. Material removal has been improved as these particles play an active role in the 
process of abrasion. Even though the magnetic field’s mechanical pull is weak, this is enough for deflecting the abrasive 
particles. These particles are pacing at high velocity. So, it appears that a greater quantity of abrasive particles hit the 
surface when a magnetic field is applied. At the same time, some of them make little angles as they impact the surface. 
As a result, cutting wear is enhanced. Consequently, it leads to an overall improvement in the material removal rate. The 
mechanism of material removal during the process of MAFM is depicted in Figure 3.

Figure 3. MAFM mechanism

2.3 Methodology and design of experiments

The design approach of Box-Behnken method related to RSM55-57 is applicable to the experimental design as 
depicted in Table 4.

RSM technique is applied to simulate the relationship between the machining parameters. The purpose of 
the analysis is to investigate the impact of the parameters on the efficiency of the model. The design approach is 
implemented using the model equation and expressed as:

Fluid
motion Abrasive 

particles

Workpiece 
surface

South plole

Fixture

Magnetic
coils

SN

North plole

Fixture

Iron
particles chain
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2
0 1 1

k k
i i ii i ij i ji i i j

y x x x xβ β β β
= = <

= + + +∑ ∑ ∑

Here y refers to the preferred response. xi (1, 2, ..., k) are the independent k quantitative process parameters, β0 is a 
constant and, βi, βii and βij are the coefficients of linear, quadratic and interaction terms, respectively. Design Expert® 
(6.0.8 version) software has been employed for computing the process variables’ effect values on MRR and ΔRa. The 
RSM model is developed at 95% confidence level. Terms having ‘Prob > F’ less than 0.05 are considered as significant. 
A two-way MAFM set-up, conceived and designed in-house, has been used for the experiments. Experimental 
investigation has been done for Al/SiC/B4C-hybrid MMCs with different percentages of SiC (9, 8, and 7%), B4C (1, 2, 
and 3%) and aluminum-6063 as base material. The element’s percentage composition is depicted in Table 5. 

Table 4. Design of experiments and results

Run No. Extrusion
pressure (Ep)

Mesh No. (M) Concentration of 
abrasives (C) 

Type of work 
material (Wp)

Number of 
cycles (N)

Magnetic flux 
density (Mf) 

MRR (μg/s) ΔRa (μm)

1 5 220 45 1 150 0.15 6.31 1.52

2 7 400 50 1 150 0.3 6.78 2.24

3 5 150 55 2 200 0.3 7.78 2.68

4 3 400 50 3 150 0.3 2.32 0.79

5 3 150 50 1 150 0.3 5.01 1.42

6 5 220 50 2 150 0.3 6.28 1.73

7 7 220 50 1 100 0.3 6.79 1.91

8 5 400 55 2 200 0.3 6.94 2.21

9 3 400 50 1 150 0.3 4.56 1.31

10 7 220 50 3 100 0.3 4.87 1.72

11 5 150 45 2 200 0.3 7.66 2.51

12 3 220 55 2 150 0.45 4.97 1.39

13 5 400 45 2 200 0.3 6.82 1.98

14 5 220 45 3 150 0.45 4.94 1.73

15 5 220 45 1 150 0.45 6.83 1.98

16 5 400 50 2 100 0.45 7.08 2.19

17 7 220 50 3 200 0.3 5.87 2.13

18 7 220 50 1 200 0.3 8.21 2.79

19 5 400 50 2 200 0.15 6.58 1.27

20 5 400 45 2 100 0.3 6.35 1.81

21 3 220 45 2 150 0.15 4.68 1.12

22 5 220 55 1 150 0.15 6.49 1.65

23 5 220 50 2 150 0.3 6.42 1.75

(1)
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Table 4. (cont.)

Run No. Extrusion
pressure (Ep)

Mesh No. (M) Concentration of 
abrasives (C) 

Type of work 
material (Wp)

Number of 
cycles (N)

Magnetic flux 
density (Mf) 

MRR (μg/s) ΔRa (μm)

24 5 400 55 2 100 0.3 6.45 1.87

25 3 220 50 3 200 0.3 3.29 1.07

26 7 220 55 2 150 0.45 8.24 2.83

27 5 150 50 2 100 0.45 7.62 2.74

28 5 220 55 3 150 0.45 5.02 1.96

29 5 220 55 3 150 0.15 4.37 1.38

30 3 150 50 3 150 0.3 3.37 1.01

31 5 150 50 2 200 0.15 7.29 2.15

32 3 220 50 1 200 0.3 4.98 1.38

33 5 400 50 2 200 0.45 7.23 2.41

34 7 220 45 2 150 0.45 7.93 2.61

35 5 150 45 2 100 0.3 7.2 2.01

36 5 150 50 2 100 0.15 6.82 1.89

37 5 220 50 2 150 0.3 7.05 2.01

38 5 220 55 1 150 0.45 6.95 2.29

39 3 220 50 3 100 0.3 3.21 0.73

40 3 220 45 2 150 0.45 4.89 1.21

41 5 400 50 2 100 0.15 5.74 1.03

42 5 150 55 2 100 0.3 7.32 2.17

43 3 220 50 1 100 0.3 4.91 1.19

44 5 220 50 2 150 0.3 6.93 1.76

45 5 150 50 2 200 0.45 8.41 2.88

46 7 150 50 1 150 0.3 7.69 2.68

47 7 400 50 3 150 0.3 3.93 1.91

48 5 220 50 2 150 0.3 6.86 1.89

49 7 150 50 3 150 0.3 5.28 2.1

50 3 220 55 2 150 0.15 3.95 1.13

51 5 220 45 3 150 0.15 4.12 1.19

52 7 220 45 2 150 0.15 7.41 2.16

53 5 220 50 2 150 0.3 7.11 2.15

54 7 220 55 2 150 0.15 6.68 2.23
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Table 5. The weight percentage of material composition

Element Al Fe Mg Cu Si Zn Mn Pb B Cr Ti

Workpiece-1 Balance 0.28 0.76 0.03 9.15 0.0010 0.0064 0.0025 1.01 0.0016 0.0096

Workpiece-2 Balance 0.16 0.53 0.02 8.02 0.0012 0.0050 0.0026 1.96 0.0021 0.0090

Workpiece-3 Balance 0.18 0.72 0.04 6.82 0.0012 0.0068 0.0027 2.86 0.0021 0.0091

The fabricated rods of different compositions were initially faced, drilled and reamed using a lathe machine. 
Finally, the samples were finished by the MAFM setup. Cylindrical workpieces made of Al/SiC/B4C-hybrid MMCs 
were selected as the test specimen. The size of a cylindrical workpiece is taken as external diameter (20 mm), internal 
diameter (12.5 mm) and length (40 mm) as depicted in Figures 4(a) and 4(b), on the basis of the guidelines.38 Some 
finished specimens are shown in Figure 5.

Figure 4. (a) Finished workpieces, (b) Job profile

Figure 5. Finished workpieces after MAFM process

40 mm

(a) (b)

φ 12.5 mm
φ 20 mm

Finished Surface 
after MAFM Process

Cross-Sectional View
of Test Specimens
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The weight and surface roughness of every sample is computed before and after each trial. Electronic balance BL-
220H, with an accuracy of 10-3 g, is employed to measure the sample weight. The surface roughness of both the initial 
and final samples is measured using a digital handy surface roughness tester E35-B. The values of surface roughness 
were computed by taking the average of the readings at various surface points. Pilot experimental work was done by 
employing the one-variable-at-a-time (OVAT) approach with Al/SiC/B4C-MMCs as workpieces. Extrusion pressure 
(Ep), mesh number (M), concentration of abrasives (C), workpiece material (Wp), number of cycles (N) and magnetic 
flux density (Mf) are taken as input process parameters. The MRR and ΔRa were taken as the response parameters. The 
factors were adopted based upon the exhaustive literature review and pilot experimentation and their levels are depicted 
in Table 6. 

Table 6. Factors with their levels (actual and coded)

Parameter Symbols Units Lower range Upper range Coded low Coded high Mean SD

A Ep MPa 3.00 7 ‒1 ↔ 3 +1 ↔ 7 5.00 1.35

B M Number 150 400 ‒1 ↔ 150 +1 ↔ 400 244.44 88.52

C C Wt. % 45 55 ‒1 ↔ 45 +1 ↔ 55 50.00 3.36

D Wp type 1 3 ‒1 ↔ 1 +1 ↔ 3 2.00 0.6729

E N - 100 200 ‒1 ↔ 100 +1 ↔ 200 150.00 33.65

F Mf Tesla 0.15 0.45 ‒1 ↔ 0.15 +1 ↔ 0.45 0.3000 0.1009

A total of 54 runs were conducted at stipulated conditions using the RSM technique.58 The results (obtained through 
Design Expert® (6.0.8 version) software) have been compared with a newly created model having a bio-inspired 
neural network algorithm. In general, nature-inspired algorithms are used for fine tuning of the industrial systems, 
either in terms of minimization of error or optimal tuning of controllers. The PSO is a population-based nature-inspired 
algorithm that utilizes the social behavior of the swarm of particles to search effectively to reach the optimal solution. 
Global and best particle positions are some of the characteristics that define these particles. These swarms of particles 
employ their velocity to move within the search space. The PSO approach was inspired by the way a school of finish or 
a flock of birds behaves. The simulated annealing (SA) method owes its widespread use to a metallurgical process. The 
SA relates to the heating of metal and then subsequently cooling in order to attain a minimum energy state. Developed 
by John Holland in the 1970s, genetic algorithms (GA) derive their abstraction of the problem information, using 
Darwin’s theory of biological evolution.  These incorporate the principles of natural selection for the fittest among all 
the candidates. GAs are advantageous as they do not take into consideration the problem information. At the same time, 
they do not correlate with the problem parameters. Genetic algorithms have the ability to deal with complex problems. 

2.4 Mathematical relations for MRR, ΔRa , and C

The mathematical expressions (2), (3) and (4), respectively, are used to evaluate the response characteristics MRR 
and ΔRa and the abrasive concentration in the media.

2.4.1 Material removal rate (MRR)

MRR stands for the volume of specimen material removed from the surface during the process of MAFM finishing. 
At the beginning and end of each trial, the duration of each procedure is recorded, and the weight of the workpiece is 
calculated. Microgram per second (μg/sec) is the unit of measurement for this type of removal rate MRR. 

Mathematically, MRR is determined as follows:
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 (Initial weight Final weight) MRR
 Time 

−
=

2.4.2 Change in surface roughness (ΔRa)

Ra of both initial and final specimens has been measured using the digital handy surf roughness machine, model 
E35-B. The ΔRa is calculated in micrometers (μm). 

Mathematically, ΔRa is determined as follows:

a a a(initial) (final)R R R∆ = −

Where: 
Ra (initial) and Ra (final) are the values of surface roughness before and after finishing procedures.

2.4.3 The abrasive concentration (C) in media 

The abrasive concentration (C) in the media is calculated as follows:

 Weight of the abrasives in media Abrasive concentration in media 100
 (Weight of the abrasives in media Weight of the carrier media) 

= ×
+

2.5 Applications of AFM and its variants

The AFM process is used to achieve a high-quality inner wall polishing of micro bores (diameter < 500 µm) of 
various miniature parts such as micro pumps, ink-jet printer nozzles, micro filters and fuel injectors. Furthermore, it 
improves the surface quality of the non-linear tube carriers, a component often utilized in the military and civil sectors 
for certain exit passages of important components. The finishing of free-form components to the nanometer level that 
is used in aerospace, electronics, turbine blades, optical and automobile components can also be achieved by the AFM 
process and its variants. Additionally, it finds wide applications in medical fields for finishing free-form surfaces (Knee 
joint implants) in biomedical and surgical instruments.59-65

3. Results and discussions
3.1 Artificial neural network (ANN)

Neural networks have been recognized as the versatile procedures that are employed for regression as classification 
problems. One kind of such network that is widely used is the feed-forward network. Such an architecture comprises 
layers of neurons, so connected that there exists a definite relation between neurons in each layer and its previous layer. 
This feed-forward configuration of a neural network is capable of approximating a broad range of functions. Due to 
these flexible characteristics, these are also termed as “universal approximators”.66 The neural model comprises three 
neuron layers. Here, the first layer neurons pertain to input parameters. The input layer comprises six neurons that are 
akin to the input variables. The second layer forms the hidden layer. The next task is to determine the number of hidden 
layers and the quantity of neurons in these for multilayer perceptrons. The experimental tweaking of learning rate 
parameters employs a number of methods. This refers to simulating existing models along with training that employs 
algorithms such as the Bayesian Algorithm. In such case, a for-loop is employed to iterate over multiple configurations 
of ANN architecture. Thereafter, the mean square error (MSE) is computed. The neural model’s architecture is defined 
by the learning rate that corresponds to the lowest MSE value.

3.2 Training of artificial neural network 

The MRR and ΔRa values are obtained to correspond to the initial and final finished surfaces. These are then 

(2)

(3)

(4)
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modeled by using the neural network. The ANNs have been individually developed for preparing the model of MRR 
and ΔRa. The present research focuses on modeling the process of MAFM that has been implemented by employing the 
ANN architecture. To accurately express its output in terms of input parameters, the neural model uses a feed-forward 
back propagation technique. Experimental data values have been trained through the neural model, the configuration of 
which is shown in Table 7. 

Table 7. Experimental and ANN predicted results for MRR and ΔRa

Run 
No.

Input parameters and their values Experimental ANN predicted Error Absolute error %

Extrusion
pressure

(Ep)

Mesh 
No.
(M)

Conc. of
abrasives

(C) 

Type of 
work

material
(Wp)

Number 
of cycles

(N)

Magnetic
flux

density
(Mf) 

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

1 5 220 45 1 150 0.15 6.31 1.52 6.3035 2.0972 0.0065 -0.5772 0.10301 -37.974

2 7 400 50 1 150 0.3 6.78 2.24 6.3437 1.9609 0.4363 0.2791 6.4351 12.4598

3 5 150 55 2 200 0.3 7.78 2.68 7.1767 2.1018 0.6033 0.5782 7.7545 21.5746

4 3 400 50 3 150 0.3 2.32 0.79 2.812 1.014 -0.492 -0.224 -21.207 -28.354

5 3 150 50 1 150 0.3 5.01 1.42 5.0476 1.5966 -0.0376 -0.1766 -0.7505 -12.437

6 5 220 50 2 150 0.3 6.28 1.73 6.0937 2.0668 0.1863 -0.3368 2.96656 -19.468

7 7 220 50 1 100 0.3 6.79 1.91 6.1354 2.1064 0.6546 -0.1964 9.64065 -10.283

8 5 400 55 2 200 0.3 6.94 2.21 6.414 1.9686 0.526 0.2414 7.57925 10.9231

9 3 400 50 1 150 0.3 4.56 1.31 4.7999 2.0319 -0.2399 -0.7219 -5.261 -55.107

10 7 220 50 3 100 0.3 4.87 1.72 4.7657 2.0746 0.1043 -0.3546 2.14168 -20.616

11 5 150 45 2 200 0.3 7.66 2.51 7.157 1.9499 0.503 0.5601 6.56658 22.3147

12 3 220 55 2 150 0.45 4.97 1.39 4.2988 2.2508 0.6712 -0.8608 13.505 -61.928

13 5 400 45 2 200 0.3 6.82 1.98 6.1226 1.9592 0.6974 0.0208 10.2258 1.05051

14 5 220 45 3 150 0.45 4.94 1.73 4.9479 1.966 -0.0079 -0.236 -0.1599 -13.642

15 5 220 45 1 150 0.45 6.83 1.98 6.0776 1.9666 0.7524 0.0134 11.0161 0.67677

16 5 400 50 2 100 0.45 7.08 2.19 6.8954 1.9772 0.1846 0.2128 2.60734 9.71689

17 7 220 50 3 200 0.3 5.87 2.13 6.2676 1.9399 -0.3976 0.1901 -6.7734 8.92488

18 7 220 50 1 200 0.3 8.21 2.79 8.4127 1.9177 -0.2027 0.8723 -2.4689 31.2652

19 5 400 50 2 200 0.15 6.58 1.27 6.9458 1.9659 -0.3658 -0.6959 -5.5593 -54.795

20 5 400 45 2 100 0.3 6.35 1.81 6.8886 1.9812 -0.5386 -0.1712 -8.4819 -9.4586

21 3 220 45 2 150 0.15 4.68 1.12 4.2477 2.367 0.4323 -1.247 9.23718 -111.34

22 5 220 55 1 150 0.15 6.49 1.65 6.8583 2.8593 -0.3683 -1.2093 -5.6749 -73.291

23 5 220 50 2 150 0.3 6.42 1.75 6.0937 2.0668 0.3263 -0.3168 5.08255 -18.103

24 5 400 55 2 100 0.3 6.45 1.87 6.3684 2.2043 0.0816 -0.3343 1.26512 -17.877

25 3 220 50 3 200 0.3 3.29 1.07 3.0594 2.0373 0.2306 -0.9673 7.00912 -90.402
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Table 7. (cont.)

Run 
No.

Input parameters and their values Experimental ANN predicted Error Absolute error %

Extrusion
pressure

(Ep)

Mesh 
No.
(M)

Conc. of
abrasives

(C) 

Type of 
work

material
(Wp)

Number 
of cycles

(N)

Magnetic
flux

density
(Mf) 

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

MRR
(μg/s)

ΔRa
(μm)

26 7 220 55 2 150 0.45 8.24 2.83 8.4916 1.9787 -0.2516 0.8513 -3.0534 30.0813

27 5 150 50 2 100 0.45 7.62 2.74 7.4669 2.1746 0.1531 0.5654 2.00919 20.635

28 5 220 55 3 150 0.45 5.02 1.96 5.8292 2.0378 -0.8092 -0.0778 -16.12 -3.9694

29 5 220 55 3 150 0.15 4.37 1.38 4.0086 2.7685 0.3614 -1.3885 8.27002 -100.62

30 3 150 50 3 150 0.3 3.37 1.01 3.7901 2.492 -0.4201 -1.482 -12.466 -146.73

31 5 150 50 2 200 0.15 7.29 2.15 7.9561 2.1307 -0.6661 0.0193 -9.1372 0.89767

32 3 220 50 1 200 0.3 4.98 1.38 5.1189 2.0513 -0.1389 -0.6713 -2.7892 -48.645

33 5 400 50 2 200 0.45 7.23 2.41 7.0164 1.9602 0.2136 0.4498 2.95436 18.6639

34 7 220 45 2 150 0.45 7.93 2.61 7.1626 1.9596 0.7674 0.6504 9.67718 24.9195

35 5 150 45 2 100 0.3 7.2 2.01 7.4179 2.2182 -0.2179 -0.2082 -3.0264 -10.358

36 5 150 50 2 100 0.15 6.82 1.89 6.6944 1.1468 0.1256 0.7432 1.84164 39.3228

37 5 220 50 2 150 0.3 7.05 2.01 7.0937 2.0668 -0.0437 -0.0568 -0.6199 -2.8259

38 5 220 55 1 150 0.45 6.95 2.29 6.1282 2.0597 0.8218 0.2303 11.8245 10.0568

39 3 220 50 3 100 0.3 3.21 0.73 3.0021 0.777 0.2079 -0.047 6.47664 -6.4384

40 3 220 45 2 150 0.45 4.89 1.21 4.8918 1.986 -0.0018 -0.776 -0.0368 -64.132

41 5 400 50 2 100 0.15 5.74 1.03 5.2717 1.253 0.4683 -0.223 8.15854 -21.65

42 5 150 55 2 100 0.3 7.32 2.17 7.5247 2.0874 -0.2047 0.0826 -2.7964 3.80645

43 3 220 50 1 100 0.3 4.91 1.19 4.772 1.8913 0.138 -0.7013 2.81059 -58.933

44 5 220 50 2 150 0.3 6.93 1.76 6.0937 2.0668 0.8363 -0.3068 12.0678 -17.432

45 5 150 50 2 200 0.45 8.41 2.88 8.1814 1.958 0.2286 0.922 2.71819 32.0139

46 7 150 50 1 150 0.3 7.69 2.68 7.159 1.9973 0.531 0.6827 6.90507 25.4739

47 7 400 50 3 150 0.3 3.93 1.91 4.002 1.9634 -0.072 -0.0534 -1.8321 -2.7958

48 5 220 50 2 150 0.3 6.86 1.89 6.0937 2.0668 0.7663 -0.1768 11.1706 -9.3545

49 7 150 50 3 150 0.3 5.28 2.1 4.993 2.0032 0.287 0.0968 5.43561 4.60952

50 3 220 55 2 150 0.15 3.95 1.13 4.6401 1.2329 -0.6901 -0.1029 -17.471 -9.1062

51 5 220 45 3 150 0.15 4.12 1.19 4.0588 2.0743 0.0612 -0.8843 1.48544 -74.311

52 7 220 45 2 150 0.15 7.41 2.16 7.0509 1.9744 0.3591 0.1856 4.84615 8.59259

53 5 220 50 2 150 0.3 7.11 2.15 7.0937 2.0668 0.0163 0.0832 0.22925 3.86977

54 7 220 55 2 150 0.15 6.68 2.23 6.6069 2.3228 0.0731 -0.0928 1.09431 -4.1614
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There are several stages to follow when using a feed-forward network to build a neural model. One of the steps to 
be undertaken is to generate a dataset that needs to be trained and tested for the given network. In the present case, the 
dataset comprises the 54 observations from the design of experimental model of RSM. This dataset usually comprises 
input and target vectors paired across each other.67 In this research work the neural network has been modeled and 
trained in MATLAB 2016b working environment.

3.2.1 Neural model simulation for MRR

As depicted in Figure 6, the neural simulation results nearly coincide with the corresponding experimental 
observations. In a sense, the neural model has been able to faithfully capture the experimental outputs.

Figure 6. Plot of neural model simulation for MRR

Figure 7. Training performance plot for MRR
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The plot (Figure 7) depicts the performance of neural network training using the Bayesian Regularization function. 
In the plot shown in Figure 7, the training curve coincides with the best value after the start of the iteration. So, the 
neural model possesses the best training performance achieved after only 0 iterations, thus achieving a mean square 
error (MSE) of 0.053438. 

The plot (Figure 8) of training state indicates the squared error dynamics corresponding to the entire dataset on 
a logarithmic scale. The low gradient value of 0.016141 pertains to back-propagation gradient at each epoch. A lower 
value implies the attainment of the bottom of the local minimum of the objective function. The validation checks 
correspond to the iterations whenever the MSE has an increased value. A low value of zero indicates that the neural 
model is perfectly trained.

Figure 8. Training state plot of neural model for MRR

The y-label of the regression plot (Figure 9) denotes the equation thus signifying the mathematical relation between 
predicted and target values. Here these equations indicate how well this multi-layer perceptron (MLP) network is able to 
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(2) The error residue, frequently expressed as a constant, is the second term and it must be added to the scaled goal 
in order to make it closer to the projected output. A value close to zero would be optimal under these circumstances. 
This value of 0.097 is virtually non-existent in the current plots (Figure 9).

Figure 9. Regression plot of neural model for MRR

3.2.2 Neural model simulation for ΔRa

Figure 10 depicts the near exact capturing of the experimental values by the proposed neural model. In                   
Figure 11, the plot depicting the training performance, the minimum error value of 0.4926 is obtained at 6 training 
epochs. It is observed that the test variations swiftly converge with the best value line. Such results show that the neural 
model has been well trained.
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Figure 10. Plot of neural model simulation for ΔRa

Figure 11. Training performance plot for ΔRa

In Figure 12, the gradient value pertains to a low value of 0.01512, thus reaching the bottom of the local minimum 
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Figure 12. Training state plot of neural model for ΔRa

In Figure 13, the target coefficient has a near unity value of 0.94, thus pertaining to good performance of the MLP 
network. The Second value of 0.26 is a near zero value and this indicates the literal matching of the scaled target with 
the predicted output value.

3.3 Evaluation of experimental and ANN predicted values 
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degree with regard to each other. This is clearly visible in Figures 14 and 15. The maximum error for the neural model-
predicted and experimental values for MRR and ΔRa comes out to 13.51%, and 39.32%, respectively. Figures 14 and 
15 clearly depict the inter-mingling of the plots of ANN and experimental results. It seems as if both the plots are 
superimposed on each other. Figure 14 depicts MRR parameter being simulated on the neural model while Figure 15 
takes ΔRa as a varying parameter. 
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Figure 13. Regression plot of neural model for ΔRa

Figure 14. Graphical representation of experimental and ANN predicted results for MRR
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Figure 15. Graphical representation of experimental and ANN predicted results for ΔRa

Figure 16. ANN architecture

3.4 Proposed neural network architecture and error calculation

The network architecture of the proposed neural model is diagrammatically represented in Figure 16. The input 
layers of the ANN model have 6 inputs namely Ep, M, C, Wp, N and Mf. The present configuration contains two hidden 
layers. These are chosen on the basis of the mean square error (MSE) coefficient at a minimal value. Figure 16 also 
depicts the outputs as MRR and ΔRa. The quantity of the hidden layers and neurons in each hidden layer were chosen 
for a minimum MSE. 

The efficiency of the neural network has been computed in terms of percentage error. The percentage error has been 
computed as per equation (5). The values obtained based on these calculations are shown in Table 7. It can be concluded 
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that the relation which exists among the input values and model outputs is trained through ANN model.

(Experimental value ANN predicted value)Percentage error 100
Experimental value

−
= ×

3.5 Error plots

The MRR of the MAFM process is represented by the neural model outputs overlaid against their investigational 
counterparts in Figure 17. It is also depicted that the error values fall within a limited range. Additionally, the results of 
the experimental study and the neural model almost match closely. 

Figure 17. Error plot for MRR

Figure 18. Error plot for ∆Ra
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Figure 18 depicts the ΔRa values for the experimental and neural model, respectively. The low error values in 
Figure 18 suggest that the neural model has been validated in comparison to the experimental data. The neural model 
outputs are observed to vary in accordance with the experimental values.

3.6 Plot of mean square error

The MSE is then represented as a bar plot (Figure 19) for the values obtained under different optimization 
techniques. 

Figure 19. Mean square error plot

This is based on the learning rate parameter of the neural network. This parameter is optimized using algorithms 
of particle swarm optimization (PSO), genetic algorithm (GA), simulated annealing (SA) and pattern search (PS). The 
numerical values of mean square (MSE) have been tabulated in Table 8. Table 8 clearly indicates the minimum values 
obtained after optimizing the MSE, from the SA algorithm. Moreover, the optimized values obtained from GA and PS 
algorithms are quite close.

Table 8. Modeling error reduction by parameter optimization techniques

Coefficient type Experimental Particle swarm optimization (PSO) Genetic algorithm (GA) Simulated annealing (SA)

Mean square error 4.1919 1.3575 1.9225 1.3561

4. Microstructure analysis 
In the engineering fields, surface morphology is used in hybrid materials to depict the critical response. After 

machining, the MAFM specimens have been analyzed using a scanning electron microscope (SEM) (JSM-6510LV, 
JEOL, USA). Before the SEM could be analyzed, the workpiece was cut into two pieces for taking SEM snaps of 
the processed surface and each specimen was washed with an acetone [(CH3)2CO] solution and then air dried. The 
magnification is done by a factor of 300. Due to the boring process used to prepare the cylindrical samples of Al-
6063/SiC/B4C-MMCs, the inner surfaces of the unfinished specimen are quite rough. Before MAFM process, the 
detection results are shown in Figures 20. After MAFM process, the results detection are depicted in Figures 21 and 
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22 respectively. According to SEM micrograph analysis, the specimen surface witnessed some casting defects and 
irregularities such as cracks, craters, deep boring tool marks, scratches, multi-layers, micro, and big pits before the 
surfaces were machined using MAFM, as shown in Figures 20(a), 21(a) and 22(a). As per the SEM findings, the MAFM 
process revealed fine surface textures. Because of this, the outliers were drastically cut down. There were just a few 
embedded abrasive particles and abrasive grain markings, as illustrated in Figures 20(b), 21(b) and 22(b).

Figure 20. SEM micrograph of (a) unfinished and (b) finished Al-6063/SiC (9 wt. %)/B4C (1 wt. %)-MMC (workpiece-1)

Figure 21. SEM micrograph of (a) unfinished and (b) finished Al-6063/SiC (8 wt. %)/B4C (2 wt. %)-MMC (workpiece-2)

Figure 22. SEM micrograph of (a) unfinished and (b) finished Al-6063/SiC (7wt. %)/B4C (3 wt. %)-MMC (workpiece-3)
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5. Optimization methods for neural modelling parameters
5.1 Neural simulated parameter optimization using genetic algorithm (GA)

Algorithms employed for optimizing the parameters are categorized as intelligent procedures used for the 
evaluation of optimal machining conditions.68 The techniques of ANN and genetic algorithms (GA) broadly can 
be classified as evolutionary optimization methods. These methods have been applied in typical objective function 
problems.69-73 The following steps are initiated in the optimization using GA: 

(1) Setting up the GA parameters constitutes specification of size of population and number of generations. Also, 
the decision has to be taken on upper and lower limits for the process variables.

(2) Creation of first random sample.
(3) Assessing the level of fitness for every individual.
(4) After the previous stage the GA is put into action.
(5) The generation count is incremented at each stage.
(6) The process terminates, in case the current generation count exceeds the maximum count of generations. 
(7) If the previous step does not work, the process moves to step (3).

5.2 Parameter optimization using simulated annealing (SA)

It represents the process of metal annealing which consists of re-structuring the metal with minimal energy. This 
happens when the metal is allowed to cool in a slow fashion, after the heating.

It consists of the following steps: 
(1) Start with an initial state z.
(2) Generate a new neighboring state z.
(3) Compute the target function E1 corresponding to state z.
(4) Calculate the target function E2 corresponding to state z.
(5) Get the difference ∆E = E1 − E2.
(6) If the energy is higher, then the new state is accepted with the probability given by:

expz
EP

kT
∆ = − 

 

(7) In case the resulting energy is lower, the new state is accepted with minimal energy E.
(8) The probability computed in step (6) assumes maximal value, for the states having minimal E for lower 

temperature T (near to zero value).
(9) For the above case, the system assumes a relaxed state corresponding to the global minima.
Following the above steps, the minimization of the error has been implemented using the SA algorithm in this 

paper.74

5.3 Parameter optimization using particle swarm optimization (PSO)

Nature-inspired algorithms owe their popularity, in the research circles, to the efficacy in evaluating the objective 
function. These algorithms are free from the derivatives thus obviating the need to calculate the numerical derivatives of 
the objective function.74

The PSO algorithm is inspired by the behavior of animals in groups. It could include intelligence exhibited by a 
swarm of fish, birds or maybe even humans.75-76 

The following steps are required: 
(1) Each group (or swarm) is presented as a point in the Cartesian system. 
(2) Thereafter, the point above is assigned with a value of particle position (xi), previous best position ( pi) and 

initial velocity (vi).
(3) Evaluate the fitness of each particle F (xi).
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(4) Compute the fitness of previous best particle position F ( pi).
(5) In case the fitness value is lower than the previous particle i.e. F ( xi) < F ( pi), then 
(6) Save this current particle position i.e. pi = xi 

(7) As the fitness values of all particles were lower than the current best solutions i.e. F ( xi) < F (G), where G is the 
global best position.

(8) The previous best positions are now the particle positions having better values. So, all the positions need to be 
updated as per the equation:

( 1)  ( )  ( 1)i i ix t x t v t+ = + +

(9) Each particle moves to the next position by updating the velocity.
(10) Due to this, the best solutions corresponding to the new positions were also updated.
(11) Compute the optimal position of each individual. 
(12) Calculate the optimal position of the whole swarm.
(13) The PSO algorithm makes use of the above variables to search for the best solution in the area. The position 

and velocity of the particles are updated after each iteration, to attain the condition, defined by the stopping criterion.

6. Future directions
The present research work focuses on the application of the aluminium composites in the MAFM process. 

However, the quality of research77-86 as well as the future outcomes can be enhanced, if the following measures can be 
adopted to achieve results in new directions: 

(1) According to the literature, various AFM processes have been used to finish homogeneous materials such as 
aluminium, mild steel, brass, copper, gun-metal, Ti-6Al-4V titanium alloy, stainless steel (SUS-304), stainless steel (202), 
AISI stainless steel (316L), AISI 52100 steel, AISI 1045, 1080, and A36 steels. The current research is an attempt to use 
MAFM to investigate the machinability features of hybrid Al/SiC/B4C-MMCs. Considering the huge potential of this 
approach, there is still a need for more research. The study could be expanded to include the heterogeneous materials 
such as Al/SiC/BN3, Al/SiC/CNT, Al/SiC/CBN, Al/SiC/AlN, Al/SiC/Graphite, Al/SiC/Zirconia, etc. 

(2) During the MAFM process, one can examine how several other process factors such as media viscosity, media 
flow speed, oil concentration in media, working gap, finishing time, electromagnet voltage and current, etc. impact 
MRR and ΔRa.

(3) The analysis of media characteristics is one of the challenging areas that further needs to be explored by varying 
process parameters.

(4) Although the current research work on parametric optimization of the MAFM process through neural networks 
approach has been aptly studied, there is still room for more research. To examine and compare the results, other 
optimization approaches such as machine learning algorithms, fuzzy logic, lion optimization algorithm, ant colony 
optimization and others can be employed. 

(5) The sustainability of the MAFM process can be enriched by finishing complex geometries, unsymmetrical and 
free form surfaces, to gain more insights.

(6) A generalized mathematical model for MAFM can be developed to obtain the outcomes in order to assess the 
parametric effect through Finite Element Method (FEM).

7. Conclusion
In this paper, the process of MAFM has been investigated in the paradigm of machining parameters and the 

material composites. The paper analyzes the effectiveness of the machining parameters. Here, the research work has 
been carried out, with a multi-objective approach. Firstly, the experimentation on the abrasive flow machining is done 
by introducing the magnetic field around the workpiece, to enhance the material removal rate, achieved during the 
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surface finish. The SEM morphology of Al/SiC/B4C examination of the finished surfaces revealed the improved surface 
finish of the workpiece. Numerous irregularities and casting defects such as cracks, multi layers, micro and large pits, 
voids and cutting tool marks have been deteriorated or integrated with the irregular debris or craters after finishing with 
the MAFM process. The surface topography of the machined sample has been greatly enhanced. 

The experimental parameters have been obtained using the Design of Experiments software. In the present work, 
the MAFM process is investigated using the hybrid ANN approach. As a result, the neural network method is employed 
to mimic the connectivity between experimentally obtained model parameters. As such, the modeling error computed 
from the neural simulation parameters, is significant enough. Hence it becomes imperative to minimize its magnitude 
by the application of nature-inspired optimization techniques like particle swarm optimization, genetic algorithms and 
the simulated annealing. The resulting model parameters are observed to drastically reduce using the above optimizing 
methods. The neural network training has achieved a minimal training error of 0.053438 and 0.49624 corresponding 
to MRR and ΔRa respectively, as observed through the network training plot. The regression plots depict the excellent 
agreement between the experimental and model parameters as a factor value of 0.98686 and 0.96239 corresponding 
to MRR and ΔRa respectively, which can be considered as closer to 1. The model parameters have been reduced to the 
minimal using the methods of GA, SA and PSO and pattern search discussed earlier. Though these are the powerful 
methods in optimization, the simulated annealing (SA) method has outperformed and has proved to be the most efficient 
and has reduced the error by 67.645%.
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