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Abstract: In this study, the synthesized is nanocomposite (CAU-10-H) all samples were characterized by Scanning 
electron microscope (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform 
infrared spectroscopy (FTIR). The (nanofiltration (NF)) membranes were constructed by interfacial polymerization 
of 1, 3, 5-benzenetricarbonyl trichloride and Piperazine using different loading of (CAU-10-H) (0.250, 0.50% wt.). 
The removal of color from the water by membranes with Solution filtration showed that the membrane containing 
0.50% wt. of the nanocomposite (CAU-10-H) had the best. The removal of color from the water flux rejection of the 
thin-film nanocomposite (TFN) membrane which the removal of color from the water flux was 25.45 L/m2.hr and 
Tirmethylcyclohexan-1-one rejection was 99.35% at 6 bar. 
Keywords: thin-film nanocomposite (TFN), nanofiltration (NF), metal-organic framework, removal color

1. Introduction
Membrane separation methods have high efficiency, low cost and less side effects than other separation methods 

such as distillation, evaporation, adsorption, ion exchange, etc. [1-5], due to these advantages and the high separation of 
colored compounds from water. This laboratory sample is expected to use the results of this research in color-related 
industries such as dyeing, textiles, automotive, food industry or any industry that produces stained wastewater by 
completing experiments [6-10]. The wastewater from Raze paint industry is one of the sewage that is not easy to clean. These 
wastewaters contain significant amounts of organic dyes [11-13]. The presence of organic dyestuffs in industrial wastewater, 
due to the prevention of light penetration into the water, disrupting the photosynthesis process, reducing the oxygen 
transfer to inside the water and the solubility of the gases and their toxic effects, they cause irreparable damage to the 
environment. Therefore, the treatment of colored wastewater from textile wastewater is necessary before they are ejected 
into the environment [14-20]. Biological purification processes are generally effective for the removal of oxygen required 
for biochemical and suspended solids [21-22]. For the hijack, the color of this wastewater is not very effective because the 
colored compounds have robust and complex structures that cause the rate of biodegradation of the colors to slow down, 
which has led to the use of other methods such as membrane filtration [23-25]. Membrane filtration is a physical separation 
process [26-28]. Where the driving force is the pressure difference on both sides of the membrane [29-31]. Separation in this type 
of process is performed based on the particle size and molecular characteristics of the membrane, which acts as a physical 
barrier and divides the flow into two parts [32-34]. These membranes are usually made of synthesized polymers or minerals, 
and to isolate proteins, the removal of colloid materials, food industry, dairy, pharmaceuticals, industrial wastes, and 
valuable particle separation is used [35-39]. Due to the rapid development of membrane technology, there is a strong interest 
in the development of high-performance membranes to meet current and future requirements and challenges [40]. Some 
materials, including carbon nanotubes, graphene, metal-organic frameworks (MOFs), covalent-organic materials [41-48], 
zeolites [49-50], and double-layered hydroxide, have considerable potential for high-performance membranes due to 
their high potential [51-54]. The presence of color in water results from the presence of natural colorants or the entry of 
industrial wastewater into the water. Synthetic paints are common pollutants in industrial wastewater. Textile and dyeing 
industries are the most important consumers of synthetic paints and chemicals for the color process. The concentration 
of colorants in the wastewater of these industries is lower than other chemicals, but the color intensity of this sewage 
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is high due to the presence of dye remaining in the wastewater of these industries, which are even visible at very low 
concentrations [55-57]. The characteristics of colored sewage produced in the textile industry, brightness, visibility of color at 
very low concentrations, diverse chemical structures, resistance to light and chemicals, and variable pH domains that make 
them resistant to biodegradation. Some types of colors, especially azo paints, maybe carcinogens and mutated [28-29]. This 
paper aimed to use an nanofiltration (NF) membrane made of (CAU-10-H) Nano composition polyamide layer with Nano 
composition (CAU-10-H) of metal-organic framework (MOF) to improve the function of the thin-film nanocomposite (TFN) 
membrane. The yield membrane for removal of color from the water was tried to be enhanced by adding nanocomposite 
(CAU-10-H) to the alloy membrane (TFN) and then improve a membrane structure.

2. Experimental
2.1 Materials

Piperazine (PIP, > 99%, Merck), n-hexane ( > 99%, Merck) and 1, 3, 5-benzenetricarbonyl trichloride (TMC, 
> 98%, Merck) were the monomers used for the synthesis of PA selective layer for TFC membranes. Aluminium nitate 
(Al (N3O)3.9H2O, 98% Merck), Isophthalic acid (C8H6O4, 99% Merck) and isophthalic acid (98%, Merck) were used for 
synthesizing metal-organic frameworks (MOFs) nanoparticles. Tirmethylcyclohexan-1-one (98%, Sigma).Were used for 
preparing salt solution at different concentrations nanofiltration (NF) experiments.
2.1.1 Iso phthalic acid / aluminum nitrate nanocomposite synthesis

0.14 g of Iso-phthalic acid, 0.65 g of aluminum nitrate and 10 ml of the distilled water were placed in a hydrothermal 
reactor and heated in a furnace at 220°C for 50 hours. Now, the precipitated material is separated with some distilled water 
by centrifugal and drying the considered nanoparticles at 150°C for 2 hours. For better activation, the nanoparticles were 
re-heated at 220°C for a period of 2 hours.
2.2 Membrane fabrication

The nanocomposite(CAU-10-H) using 2% Piperazine with various amounts of nanocomposite(CAU-10-H)  
(0.250, 0.50) for 2 min and 0.1% 1, 3, 5-benzenetricarbonyl trichloride as the organic solution for 1 min. Depending 
on the nanocomposite(CAU-10-H) loading these membranes are denoted as (Nanofiltration), (Nano filtration-1), and 
(Nanofiltration-2) respectively.
2.3 Membrane performance

Figure 1 shows the Nano filtration system setup. The water flux (J) and the water permeability (A) of the membranes 
were calculated by Equation (1) and (2), respectively.
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Where Am is effective membrane area (33 cm2), and ∆V is permeate volume (ml), ∆t is time and ∆P is transmembrane 
pressure difference. To evaluate salt rejection, R(%) of the membrane, the following equation was employed. 
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Where Cf and Cp are the salt concentrations in the feed and permeate solution, respectively.
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Figure 1. Schematic diagram of Nano filtration 

3. Results and discussion
3.1 Membranes characterization
3.1.1 XRD analysis

Figure 2 indicates the spectra associated with XRD analysis for nanocomposite (CAU-10-H). As can be seen, the 
spectrum has some prominent peaks associated with nanocomposite (CAU-10-H). The relative crystalline mode of this 
catalyst was calculated according to a reference, considering prominent peaks within angles of 10-50° sharp peaks at 17, 
18, 20, 22, 23.1, 25 and 29 are the most predominant peaks for calcined nanocomposite (CAU-10-H). The crystallite sizes  
determined based on the Scherrer’s equation (Eq. 3). In this equation, D is crystallite size (nm), λ is X-ray wavelength ap-
proximately equal to 1.541 A°, β is the line width at half the maximum intensity (Full width at half maximum (FWHM)), 
and θ is bragg angle. Indeed, to determine the crystallite size of catalysts, the XRD diffraction patterns is used and the 
Highscore plus software is capable to calculate this parameter.

D = (0.9λ) / βcosθ                                                                                                             (3)

Figure 2. XRD patterns of the nanocomposite (CAU-10-H), A (Nanofiltration), B (Nano filtration-1), and C (Nanofiltration-2)

3.1.2 Fourier-transform infrared spectroscopy (FTIR) analysis
The FTIR spectra of control and various loading of metal-organic framework (MOF) membrane are shown in Figure 

3. Carbonyl stretching vibrations of amide appears at 1620 cm-1. The peak at 1576 cm-1 corresponding to in-plane N-H 
bending and C-N stretching vibrations and amide functionalities show two bands at 1415 and 1483 cm-1. High intensity 
bands at 699 and 718 cm-1, attributed to C-H-out-of-plane vibrations of the aromatic ring. The above vibrations confirmed 
the polymerization occurred between PIP and TMC monomers and the active skin layer of nanofiltration (NF) membrane 
was polyamide containing different loading of metal-organic framework (MOF) and obviously showed the unchanged 
structure of membrane under softening conditions.
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Figure 3. FTIR patterns of the nanocomposite (CAU-10-H), A (Nanofiltration), B (Nano filtration-1), and C (Nanofiltration-2)

3.1.3 SEM, EDX, TEM analysis
SEM was used to describe the morphology of the membranes. In Figure 4 the surface morphology of nanofiltration 

(NF) membranes is shown. Top surface image of the neat membrane (A) and various nanocomposite (CAU-10-H), loading 
(B to C) possess a nodular surface structure which conforms to the XRD and EDX results [54]. These images reveal that the 
surface layer of the membrane is properly coated and interracially polymerized. SEM pictures of nanocomposite (CAU-
10-H), membranes showed partially changed morphology compared to the reference membrane with no metal-organic 
frameworks (MOFs) addition. Micro voids present in nanofiltration (NF) (Figure 4a, 4b, 4c) were suppressed as increasing 
in nanocomposite (CAU-10-H), loadings [55]. The presence of nanoparticles at the surface of a membranes was investigated 
by EDX, as shown in Figure 5. Presence of element Al with various intensity confirm the loading of different amount of 
iso-phthalic acid / aluminium nitrate nanoparticles on the polymeric layer in b and c membranes. This result suggests that 
the surface of the membrane is covered by various loading of iso-phthalic acid / aluminium nitrate, which is in agreement 
with other achieved analyses. Figure 6 shows the TEM of nanocomposite (CAU-10-H), Morphology and surface roughness 
of the nanocomposite (CAU-10-H), were characterized. The particles have no spherical Piped and their surfaces have 
a porous structure. As a result, it can be expected that nanocomposite (CAU-10-H) have a remarkable antiseptic effect 
compared to common non-porous types.

Figure 4. SEM images of the nanocomposite (CAU-10-H), A (Nanofiltration), B (Nano filtration-1), and C (Nanofiltration-2)
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Figure 5. EDX images of the nanocomposite (CAU-10-H), A (Nanofiltration), B (Nano filtration-1), and C (Nano filtration-2)

Figure 6. A TEM image of nanocomposite (CAU-10-H)
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3.1.4 Preparation of nanocomposite membranes
The lining method has been used to make nanocomposite membrane. For this purpose, first, the iso-phthalic acid / 

aluminum nitrate nanocomposite in dimethylacetamide solvent were added to the solvent in different weight percentages 
of the total weight of the polymer and were stirred well at room temperature for 1 h until the homogenous solution of 
nanoparticle-solvent was obtained.

Table 1. Physical properties of iso-phthalic acid / aluminum nitrate nanocomposite nanoparticles

Typical properties iso-phthalic acid / aluminum nitrate nanocomposite

Specific surface area (BET) 190 m2/g

Particle size 5-10 nm

Density 3.26 g/mL 

Color White

Purity (based on metal) > 99.9%

4. Results nanocomposite (CAU-10-H) the removal of color from the water
Results nanocomposite (CAU-10-H) the removal of color from the water flux rejection is completely discussed in this 

study. The water flow values of the membranes containing the different amounts of Nano synthesis are shown in Figure 7. 
The diagram shows that membranes with higher nanoparticles have lower water flow. However, as the test time progress-
es, a slight decrease in flow is observed. This is the main reason for promoting hydrophobicity and observing less flow in 
the cell membrane at 0.250 Nano percent. In fact, the presence of inorganic nanoparticles increases the solvent-insoluble 
exchange rate during the phase inversion process, which leads to the formation of more holes in the membrane. This is the 
main reason for promoting hydrophobicity and observing less flow in the cell membrane at 0.250 Nano percent. Compared 
to membranes that use non-porous particles, Membranes that contain a higher percentage of Nano have less water flow but 
more purity, but by reducing, the amount of Nano more than the amount of water but water that is more pure flows and is 
almost twice the same under laboratory conditions. After the first 30 minutes, the amount of water flow reached 145 and 
the amount remained constant until the end, and the amount of efficiency increased from 72% to 69% and remained almost 
constant in the last 30 minutes. The amount of water flow and efficiency are shown in Figure 6. The removal of color from 
the water flux in all measurements faintly increased with increasing time because of the enhanced driving force for perme-
ation of water. Surviving of all diagrams in Figure 8. Reveal that as the nanocomposite (CAU-10-H) content in the mem-
brane increases, the removal of color from the water flux also increases. The removal of color from the water flux rejection 
of the TFN membrane, which the removal of color from the water flux was 25.45 L/m2.hr and Tirmethylcyclohexan-1-one 
rejection was 99.35% at 6 bar. 

Figure 7. Flux changes against time for the nanocomposite (CAU-10-H), A (Nanofiltration), 
B (Nano filtration-1), and C (Nanofiltration-2)
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Figure 8. Rejection changes against time for the nanocomposite (CAU-10-H), A (Nanofiltration),  B (Nano filtration-1), and C (Nanofiltration-2)

5. Conclusion
In this work, the synthesized is nanocomposite (CAU-10-H) all samples were characterized by SEM, TEM, XRD, 

and FTIR. The Nano filtration membranes were constructed by interfacial polymerization of TMC and Pip using different 
loading of (CAU-10-H) (0.250, 0.50). All tests were carried out at 6 bar and the results of the deep investigation showed 
that with increasing the amount of nanocomposite phthalic acid / aluminum nitrate (CAU-10-H), its performance was 
improved. The removal of color from the water flux rejection of the thin-film nanocomposite (TFN) membrane which the 
removal of color from the water flux was 25.45 L/m2.hr and Tirmethylcyclohexan-1-one rejection was 99.35% at 6 bar.

Nomenclature
MOF: metal-organic framework
CAU-10-H: isophthalic acid / aluminum nitrate
TFN: thin-film nanocomposite
NF: nanofiltration 
(Nano filtration-1): 0.250 isophthalic acid / aluminium nitrate
(Nano filtration-2): 0.50 isophthalic acid / aluminium nitrate
SEM: Scanning electron microscope
TEM: Transmission electron microscopy
XRD: X-ray diffraction
FTIR: Fourier-transform infrared spectroscopy
PFD: Process flow diagram
FWHM: Full width at half maximum
DEX: Samsung DeX
TMC: 1, 3, 5-benzenetricarbonyl trichloride
PIP: Piperazine
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