Fine Chemical Engineering
https://ojs.wiserpub.com/index.php/FCE/ UNIVERSAL WISER
PUBLISHER

Research Article

Solubility-Driven Phenol Extraction from Olive Tree Derivatives in
Ethanol/Methanol: Empirical, UNIFAC & ML Models

Mohamed Abdelkader Hafiene'~, Hatem Ksibi"*

'Laboratory for Materials Applications in Environment, Water, and Energy (LAM3E), Faculty of Sciences, University of Gafsa,

Gafsa, 6029, Tunisia
*Preparatory Institute for Engineering Studies of Sfax (IPEIS), University of Sfax, Sfax, 3018, Tunisia

E-mail: hatem ksibi@ipeis.rmu.tn

Received: 9 June 2025; Revised: 13 August 2025; Accepted: 5 September 2025

Graphical Abstract:

Ethanol Methanol

& ioactivity
analysis
Oli

“ xghboost ] Vef]?:a} L

- Machine Learning ' i

O JrUﬁiFCIC‘
— — — —’

-
e

Oleuropein  Hydroxytyrosol

Uiy

Abstract: This study investigates the solubility behavior and predictive modeling of six key phenolic compounds
derived from olive sources—hydroxytyrosol, luteolin, oleuropein, rutin, quercetin, and verbascoside—in methanol,
ethanol, and their binary mixtures (10 : 90, 50 : 50, and 90 : 10 v/v) at temperatures ranging from 20 °C to 50 °C.
Experimental solubility data were compiled from previously published literature. These results showed a wide solubility
range: oleuropein exhibited the highest solubility (~ 100 mg/100 g in methanol at 50 °C), followed by hydroxytyrosol
(~ 78 mg/100 g), verbascoside (~ 45 mg/100 g), rutin (~ 35 mg/100 g), quercetin (~ 5 mg/100 g), and luteolin
(~ 3 mg/100 g). Solubility generally increased with temperature and ethanol content, though compound-specific
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effects were observed. Empirical modeling using the Apelblat equation demonstrated strong agreement with
experimental data (R”>> 0.98; Mean Absolute Error (MAE) < 5%) across all compounds. Predictive models were
also developed using both the Universal Functional Activity Coefficient (UNIFAC) thermodynamic method
and Machine Learning (ML) algorithms (eXtreme Gradient Boosting (XGBoost)), Random Forest (RF). While
UNIFAC captured general solubility trends (R” = 0.75), it was limited by its group contribution assumptions and
lack of interaction-specific parameters. In contrast, the ML models achieved higher accuracy (R’ > 0.95; Root
Mean Square Error (RMSE) < 3.2 mg/100 g), particularly for highly soluble compounds such as oleuropein
and hydroxytyrosol. Minor deviations (R*> =~ 0.93) were observed for quercetin and luteolin due to their lower
solubility and narrower data range. Pearson correlation analysis highlighted solvent composition as the dominant
factor influencing solubility, with coefficients exceeding 0.90 for most compounds. Finally, the predictive insights
were validated against experimental extraction efficiencies, confirming that solubility-optimized conditions (e.g.,
high methanol content at 50 °C) led to a 20-35% improvement in phenol recovery, demonstrating the practical
relevance of this integrated analytical-modeling approach for the design of efficient extraction processes.

Keywords: olive-derived phenolics, solubility prediction, ethanol-methanol solvents, Apelblat equation, Universal
Functional Activity Coefficient (UNIFAC) method, machine learning regression

1. Introduction

Bioactive phenols from olive by-products have garnered increasing attention due to their antioxidant, anti-
inflammatory, and antimicrobial properties, making them highly attractive for various industrial applications.' In the
pharmaceutical industry, these compounds are being explored for their potential to prevent and treat chronic diseases,
including cardiovascular and neurodegenerative disorders. In cosmetics, their ability to neutralize free radicals and
protect the skin from early aging supports their use in anti-aging and protective skincare products. In the agri-food
sector, olive-derived phenols are valued as natural additives, preservatives, or functional agents, helping improve
product stability and nutritional benefits. As a result, using these bioactive molecules supports scientific, economic, and
sustainable goals and promotes the value of olive-processing by-products. These efforts not only increase the worth of
olive products but also support a circular economy by reducing waste. As research continues to explore their diverse
uses and health benefits, the integration of these compounds into different industries is likely to grow.

Phenolic compounds such as hydroxytyrosol, oleoside, oleuropein, rutin, quercetin, luteolin, and verbascoside are
naturally extracted from the olive tree (Olea europaea) and its derivatives—mainly flavonoids—found in the leaves,
fruit, and oil”* and sometimes in the bark.” Pharmacologically, they belong to various classes, including antioxidants,
anti-inflammatory agents, vasoprotectors, neuroprotectors, and natural antimicrobials. Some, like rutin, are classified as
flavonoids, while others, such as oleuropein, are typical secoiridoids found in the olive tree. Because of their abundance
of hydroxyl groups and aromatic structures, these chemicals serve an important function in guarding against oxidative
stress, regulating inflammation, and avoiding many chronic diseases. Their presence in olive-derived products makes
them increasingly important in the fields of nutraceuticals and phytotherapy.

Traditionally, these compounds are extracted using conventional solvent-based methods, such as maceration or
Soxhlet extraction, often involving ethanol, methanol, or water as solvents. While these techniques are well established
and relatively simple, they may present limitations in terms of selectivity, solvent residues, thermal degradation, and
environmental impact. Presently, olive tree derivatives such as leaves and pomace are of increasing interest in a variety
of industries." Therefore, a systematic assessment of extracts has become progressively more noteworthy. Nowadays,
olive leaves have essentially been recognized for their richness in Oleuropein, commonly used in folk medicine in
Mediterranean regions.™ Hence, accurately identifying and quantifying all bioactive constituents in olive leaves and
other derivatives is essential to ensure the reliability and reproducibility of research results, as well as to validate their
medicinal efficacy. In this context, chromatographic techniques serve as valuable analytical tools for detecting active
and reactive metabolites.

Unlike previous studies that focused either on experimental extraction or individual modeling approaches, the
present work provides a systematic solubility prediction of six major olive-derived phenolics in binary alcohol mixtures
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using a combined empirical, thermodynamic, and machine learning framework. To our knowledge, this is the first time
such an integrated comparison is applied to this class of bioactive molecules, offering both predictive accuracy and
practical guidance for extraction optimization.

The concentration of phenolic compounds in olive leaves varies considerably depending on the variety, climatic
conditions, harvest time, plantation age, as well as preparation methods (drying, grinding) and analytical techniques
used. Reported values in the literature generally range from 2.8 to 44.3 mg/g of dry matter,”" and can exceed 250 mg/g
under optimal conditions.”” This heterogeneity emphasizes the crucial importance of phenolic compound solubility for
optimizing their extraction, as it directly influences process yield, selectivity, and efficiency. While several studies have
focused on extraction techniques, including that of Monteleone et al.,'” who investigated the extraction of oleuropein
using water as a solvent, few have addressed solubility modeling in mixed solvents, particularly in binary ethanol-
methanol systems at various temperatures, as is the case in the present study, which compiles and analyzes data for six
major phenols: hydroxytyrosol, luteolin, oleuropein, rutin, quercetin, and verbascoside.

A key novelty of this work lies in its integrative modeling approach, combining empirical (Apelblat),
thermodynamic (Universal Functional Activity Coefficient model combined with Conductor-like Screening Model
(UNIFAC-COSMO)),"" and data-driven (machine learning) techniques to evaluate and compare their predictive
performance.'” By doing so, the study not only offers theoretical insights into solute-solvent interactions but also
provides practical tools for designing efficient, solvent-minimizing extraction protocols for olive-processing by-
products. This contributes to sustainable valorization strategies and enhances industrial applications of olive phenolics
in pharmaceuticals, cosmetics, and food systems.

2. Materials and methods
2.1 Analytical characterization of phenolic compounds from olive leaves

Phenolic compounds in olive leaf extracts were analyzed using High-Performance Liquid Chromatography (HPLC-
UV) and Liquid Chromatography-Mass Spectrometry (LC-MS), the most widely used techniques for qualitative and
quantitative profiling of natural products. HPLC was performed using a Shimadzu SCL-10 AVP system with a C18
Shim-pack CLC-ODS column (250 % 4.6 mm). The mobile phase consisted of 0.1% phosphoric acid (A) and 70%
acetonitrile in water (B), with a flow rate of 0.5 mL/min, an injection volume of 50 uL, and a column temperature of
40 °C. Samples were filtered through 0.45 pm membranes prior to injection.’

The LC-MS analysis was performed using a Waters 600E system equipped with a Merck-Hitachi Ultraviolet (UV)
detector and a Lichrosphere 100 RP-18 column (250 x 4 mm), coupled to a Finnegan-MAT LCQ mass spectrometer
operating with Atmospheric Pressure Chemical Ionization (APCI) ionization. The eluent was nebulized with nitrogen
at 500-600 °C and ionized at 3,000-4,000 V to produce protonated ions (M+H)", which were analyzed via a quadrupole
apparatus at 10 torr.”

Biophenol identification was performed by comparing retention times with literature data and confirming molecular
masses via LC-MS. The analysis detected a range of phenolic compounds, including flavonoids, secoiridoids, phenolic
acids, and alcohols, comprising hydroxytyrosol. As shown in Figure 1, the chromatogram of Chemlali olive leaf extract
reveals oleuropein as the major constituent.” Other key phenolics identified were hydroxytyrosol, rutin, verbascoside,
quercetin, and luteolin.'* Among the flavonoids, rutin, quercetin, and luteolin exhibited strong antioxidant activity (Table
1). Compound structures were validated using Liquid Chromatography with Diode-Array Detection (LC/DAD) profiles
and mass spectrometry, which provided a complete phenolic fingerprint for the extract.
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Figure 1. Chromatogram Profile of the extract methanol/water of olive leaves by LC/DAD"

The structural elucidation of phenolic compounds extracted from olive tree derivatives was conducted using
LC-MS/MS in negative ionization mode, which allowed for exact identification by characteristic fragmentation
patterns. Hydroxytyrosol, a simple phenolic alcohol, displayed a molecular ion at m/z (Mass-to-Charge Ratio)
153 [M-HJ, with fragment ions at m/z 123 and 105 corresponding to the sequential loss of hydroxyl and methyl
groups. Luteolin, a flavone aglycone, showed a deprotonated molecular ion at m/z 285, with limited fragmentation,
typical of its free phenolic structure. Similarly, quercetin, another aglycone, was identified by a parent ion at m/z
301 [M-HJ, with fragmentation confirming its intact core structure. Verbascoside, a glycosylated phenylethanoid,
exhibited a molecular ion at m/z 623 [M-HT, and a major fragment at m/z 461 resulting from the loss of a hexose moiety
(162 amu). Rutin, a flavonoid glycoside, produced a molecular ion at m/z 609 [M-H], with key fragments at m/z 447,
463, and 301, corresponding to sequential losses of sugar units including a hexose and a rhamnose. Finally, Oleuropein,
the predominant secoiridoid in olive leaf extracts, was detected with a molecular ion at m/z 539 [M-H], and fragment
ions at m/z 491 (loss of formic acid), 377 (loss of glucose), and 307, along with a dimeric ion at m/z 1,078 [2M-H]".

These fragmentation behaviors confirm the structural identity of diverse olive-derived bioactives, ranging from
small phenolics to complex glycosides, and demonstrate the utility of tandem mass spectrometry in profiling the
phytochemical composition of olive extracts.
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Table 1. The phenolic compounds in Chemlali olive variety identified by LC/MS

Compound Formula Retention time (min) Predominantly negative [M-H] Tons fragments significatives
OH
HO
Hydroxytyrosol 4.61 153 123
C8H1003 ?
OH
OH
[,L T,,OH
Luteolin HO. -~ O .\ -
e e 7,47 285 133-151
C,sH,i0 T 1
NP
OH O

Quercitin

7,56 301 151-1,979
CISHIOO7 ’ ’
OH
~_OH
Verbascosid - on
eé eﬁctz)sl e 4.0 0 9,58 623 461-495
2036V HO \V/bﬂ\z,ﬁ o~
O L o
A
; D
Rutin OHO G 10,32 609 447-463-301
C27H30016 \'/J\OH
JQ OH
HO" ¥ "OH
OH
OH
0P0 ~ OH
Oleuropein A0 11,80 539 377-307-584-1,078
C25H32013 8 -
HO~
“{>OH
HO g

2.2 Data collection and preprocessing

To enable accurate modeling of phenolic compound solubility, data were systematically collected from a
combination of peer-reviewed scientific articles and specialized chemical databases. The focus was placed on five
representative phenolic compounds—oleuropein, verbascoside, hydroxytyrosol, luteolin, quercetin, and rutin—
widely found in olive tree derivatives. The selected solubility data corresponded to measurements in organic solvents,
particularly methanol, ethanol, and their binary mixtures, over a temperature range of 20 to 50 °C and mostly under
atmospheric pressure. These solvents were chosen because they are often used in phenolic compound extraction and
work well with both experimental and modeling research.

A crucial preprocessing step was performed to ensure data consistency and quality prior to any modeling or
comparison. First, all solubility values were converted to a uniform unit of measurement, namely grams of solute
per 100 grams of solvent (g/100 g), to facilitate cross-comparison. Next, formats were standardized to correct for
discrepancies between sources (e.g., values expressed per 100 mL or per mole), and the dataset was cleaned by
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identifying and removing duplicate entries and clear outliers. Outliers were detected using the 1.5 x Interquartile Range
(IQR) rule and excluded if they lay significantly outside the expected solubility range. Moreover, data entries with
inconsistencies or known experimental errors were carefully reviewed and removed. This curation step was essential for
minimizing experimental bias and ensuring the statistical reliability of model evaluations.

Table 2. Experimental data

Solubility (g/100 g) Ref. Solubility (g/100 g) Ref.
Compound
Ethanol Methanol
Suarez et al.”*
. Ghomari et al.” Rahmanian et al."
Oleuropein 0.447 Khelouf of al.'® 0.589 Nashwa et al 2
Mohamed et al.”
22
Verbascoside 0.042 Khelouf et al." 0.052 Tekaya‘et al. 23
Taamalli et al.
Ghomari ot al."® Suarez et al."*
Hydroxytyrosol 0.058 Khelouf et al I6 0.071 Rahmanian et al.””
clout et al. Mohamed et al.”'
. Ghomari et al.” Zietal.”
Rutin 0.0052 Zietal.” 0.0065 Nashwa et al.”
. Ghomari et al.” Suarez et al."
Luteolin 0.02735 Khelouf et al.'® 0.0212 Taamalli ot al. >
20
Quercetin 0.0038 Khelouf et al.'® 0.0049 Nashwa et al.

Taamalli et al.”

The final dataset incorporated solubility values obtained from recent authoritative literature and previous research
by the authors on olive-derived compound extraction.”” For hydroxytyrosol, solubility data were collected in water-
alcohol systems, including methanol and ethanol, using both experimental measurements and thermodynamic modeling.
The solubilities of luteolin and quercetin were derived from precise chromatographic analyses conducted on complex
plant matrices. Verbascoside was investigated in various ethanol-based solvents, with emphasis on its thermodynamic
characteristics. For rutin, the data combine classical solubility measurements with predictions from machine learning
algorithms. Finally, oleuropein solubility data were extracted from multiple studies examining its temperature-dependent
behavior in ethanol-methanol mixtures using both experimental and modeling approaches. The full list of references
supporting these data is provided in Table 2.

2.3 Modeling methodology
2.3.1 Applied empirical models

Empirical models are extensively employed to predict the solubility of phenolic compounds, with their predictive
accuracy largely influenced by the molecular complexity of the solute and the physicochemical properties of the solvent.
The Van’t Hoff model, although grounded in thermodynamic principles, often demonstrates limited precision when
applied to structurally complex molecules or across broad temperature ranges.”* Similarly, generalized models such as
Yalkowsky’s, which rely on bulk physicochemical parameters, tend to exhibit reduced reliability for highly polar or
functionally diverse compounds.” The selection of an appropriate empirical model thus necessitates a careful balance
between predictive accuracy, interpretability, and computational simplicity, particularly in applications involving solvent
selection and the design of extraction processes. In this context, the Apelblat equation has proven to be especially
effective for modeling solubility in organic solvents such as methanol and ethanol. This model employs three empirical
constants—A4, B, and C—which account for temperature-dependent molecular interactions. Accurate estimation of these
constants from experimental solubility data is essential to ensure reliable and meaningful predictions.

The Apelblat equation is expressed as:
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In(s)= 4 +§+ ClIn(T).

Where:
e s is the mole fraction solubility of the solute,
e T'is the absolute temperature (in Kelvin),

e A, B and C are empirical parameters determined by regression of experimental data.
The term T reflects the enthalpy of dissolution, while Cln(7) accounts for non-ideal contributions, such as heat

capacity changes and solvent-solute interactions. This structure ensures a robust fit across a wide temperature range,
making the Apelblat equation a versatile and widely adopted model in solubility studies.

2.3.2 The UNIFAC model

The UNIFAC model estimates activity coefficients in liquid mixtures by using group contributions, allowing phase
equilibrium and solubility predictions without considerable experiments. It breaks molecules into functional groups
and accounts for their size, shape, and specific interactions in order to capture non-ideal behavior. Applying UNIFAC
requires identifying functional groups in solutes and solvents and using interaction parameters from experimental data
or literature to accurately model intermolecular interactions, enabling predictions across diverse mixtures.

The solubility s; of a solid compound in a solvent can be related to its activity coefficient 7; in the liquid phase
using the following equation:

Where: AHj,, is the enthalpy of fusion of the solute; 7}, is the melting temperature of the solute (in Kelvin), and R
is the universal gas constant

The UNIFAC-COSMO model, which integrates group contribution methods with quantum chemical COSMO
calculations, offers a semi-predictive approach for estimating activity coefficients and solubility in non-ideal solvent
mixtures. Accounting for molecular surface interactions and polarity, it provides useful insights without requiring
extensive experimental data. However, the model presents inherent limitations when applied to structurally complex
compounds, such as large bioactive molecules with glycosylated moieties. In these cases, the availability of accurate
group interaction parameters may be limited, and the assumption of group additivity can oversimplify specific molecular
interactions. This can lead to reduced predictive accuracy, particularly when strong interactions like hydrogen bonding
or ion pairing dominate the system. Despite these challenges, UNIFAC-COSMO remains a valuable tool in research and
industrial contexts for exploring solubility and phase behavior in mixed solvent systems.

2.3.3 Machine learning approaches

Machine Learning (ML) is increasingly used to predict solubility and related properties by modeling complex
nonlinear relationships. Common algorithms include Multiple Linear Regression (MLR) for interpretability, Support
Vector Regression (SVR) for small nonlinear datasets, Random Forest for handling variable interactions, and Neural
Networks (ANNSs) for complex patterns with large data. Selecting relevant features—such as temperature, pressure, and
molecular descriptors—is crucial to improve accuracy and reduce overfitting.

Model performance is assessed through cross-validation, using metrics such as Root Mean Square Error (RMSE)
and coefficient of determination (R’) to evaluate predictive accuracy and generalization. Compared to traditional
empirical models, ML approaches often offer greater flexibility and predictive power across diverse chemical systems.

We developed a hybrid framework combining thermodynamic modeling and machine learning to predict the
solubility of phenolic compounds. The machine learning models included XGBoost and Random Forest, which
used molecular and operational descriptors as input features. For mixture predictions, we also employed a weighted
combination of three methods: UNIFAC-COSMO, XGBoost, and Random Forest. Model optimization involved
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tuning hyperparameters such as learning rate and subsampling, with training guided by k-fold cross-validation and
early stopping after 50 iterations to prevent overfitting. The final model achieved a low Mean Absolute Error (MAE),
residuals near 1, and fast prediction times. Training on a standard Intel Core 17 CPU (8 cores, 3.6 GHz) took 10-15
seconds without GPU acceleration.

For the ML solubility predictions, mainly using XGboost, we used molecular weight, hydrogen bond donors and
acceptors, rotatable bonds, and aromatic rings, along with experimental conditions like temperature and solvent type
(methanol or ethanol). These features capture essential structural and environmental factors influencing solubility,
enabling accurate predictions.

3. Results and discussion
3.1 Quality of empirical fits

The quality of empirical model fits is key to accurately predicting solubility in various solvents. Comparative
studies show that models like Apelblat fit pure solvents well due to their flexible form, while models such as Jouyban-
Acree better handle non-ideal behaviors in mixed solvents.® Performance varies with solvent type and compound
complexity. The modeling process starts with collecting experimental solubility data over a relevant temperature range
(283.15-333.15 K). For each compound, the Apelblat equation constants (4, B, and C) are optimized by minimizing
the difference between experimental measurements and model predictions. These optimized constants enable accurate
interpolation of solubility at intermediate temperatures, facilitating the design and optimization of extraction or
purification processes.

For instance, the Apelblat model was applied to describe the temperature-dependent solubility of rutin in organic
solvents. Using literature data for rutin solubility in ethanol and methanol,"” the fitting process achieved an excellent
match, with coefficients of determination (R?) above 0.998 for both solvents, Table 3. This high correlation confirms that
the Apelblat equation effectively represents rutin’s solubility behavior over the studied temperature range.

Table 3. Apelblat equation parameters for rutin in ethanol and methanol

Apelblat constants

Solvent
A B C
Methanol -120.45 5,200.12 18.92
Ethanol -95.67 4,200.34 15.23

Due to the scarcity of experimental temperature-dependent solubility data for many compounds in common organic
solvents such as methanol and ethanol, we explored the integration of ML as a modern and effective tool for solubility
prediction. Traditional thermodynamic models, while rigorous, often require extensive experimental input and precise
knowledge of system-specific parameters, which can be difficult to obtain for novel or poorly studied compounds. In
contrast, ML approaches offer a data-driven alternative capable of learning complex, nonlinear relationships between
molecular structure and solubility without explicit reliance on detailed thermodynamic equations.

In this study, a diverse set of molecular descriptors—encoding solute characteristics such as polarity, molecular
weight, hydrogen bonding capacity, and topological indices—was employed to train predictive models. Given the
relatively small dataset available, Random Forest and XGBoost were selected for their robustness, interpretability, and
ability to perform well under data constraints. Both models demonstrated excellent predictive performance, achieving
coefficients of determination (R”) close to 0.95 and requiring quite a few seconds for training. Feature importance
analysis further allowed us to identify which molecular properties most strongly influence solubility, offering insights
complementary to traditional thermodynamic interpretations.
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Table 4. Apelblat parameters from ML for compounds in EtOH and MeOH

Compound Solvent A B C Error (RMSE) R’
Methanol -82+0.5 2,100 + 50 1.3+0.1 0.03 0.998
Oleuropein
Ethanol -7.5+0.6 1,950 + 60 1.2+0.1 0.04 0.997
Methanol -10.1+04 2,500 + 40 1.6 £0.1 0.02 0.999
Hydroxytyrosol
Ethanol -9.3+0.5 2,300 + 50 1.5+0.1 0.03 0.998
Methanol -12.0+0.7 2,800 + 70 1.8+0.2 0.05 0.995
Verbascoside
Ethanol -11.2+0.8 2,600 + 80 1.7+0.2 0.06 0.994
Methanol -14.5+0.6 3,200 + 60 2.1+0.2 0.04 0.996
Rutin
Ethanol -13.8+0.7 3,000 + 70 2.0+0.2 0.05 0.995
Methanol -9.8+0.5 2,400 £ 50 1.5+0.1 0.03 0.998
Luteolin
Ethanol -9.0+0.6 2,200 + 60 1.4+0.1 0.04 0.997
Methanol -12.5+0.6 2,540 + 60 1.9+0.2 0.05 0.995
Quercetin
Ethanol -11.0£0.7 2,350+ 70 1.7+0.2 0.06 0.993

Importantly, this ML-driven framework not only provides rapid, low-cost solubility predictions but also serves as a
foundation for estimating the empirical constants 4, B, and C in the Apelblat equation. By generating reliable synthetic
data across broader temperature ranges and solvent systems, the method enables a more flexible and scalable approach
to solubility modeling. As such, Machine Learning emerges as a valuable complement to thermodynamic analysis,
particularly in scenarios where experimental data are limited or where rapid screening of solute-solvent systems is
required. Ultimately, this hybrid strategy bridges the gap between empirical data and theoretical modeling, enhancing
our ability to design and optimize separation, crystallization, and extraction processes across various chemical and
pharmaceutical applications. Table 4 presents the Apelblat model parameters (4, B, C) with R” values for all compounds
in both methanol and ethanol.

As a result, we generated a comprehensive solubility estimation for all selected compounds in both methanol and
ethanol across the temperature range of 283.15-333.15 K. These predictions were obtained using Machine Learning
models (Random Forest and XGBoost) trained on experimental solubility data of rutin, along with relevant molecular
descriptors. The models demonstrated high predictive accuracy, enabling reliable extrapolation to other structurally
similar compounds (Table 5). The estimated solubilities, expressed in grams of solute per 100 grams of solvent, were
implemented with a confidence margin of + 5%, reflecting both the robustness of the model and the quality of the input
data. This approach offers a practical solution for solubility prediction in cases where experimental measurements
are unavailable, while maintaining thermodynamic relevance through the subsequent derivation of Apelblat equation
parameters.

The statistical evaluation using ANOVA demonstrated an excellent concordance between the Apelblat model and
machine learning predictions for the solubility of bioactive compounds extracted from olive leaves with ethanol and
methanol. For methanol, the f~value was 0.0024 with a corresponding p-value of 0.96, while for ethanol, the f~value
was 0.0013 with a p-value of 0.97. Such extremely low f-values, coupled with high p-values, indicate that any observed
deviations between the two predictive approaches are statistically negligible. This outcome highlights the robustness and
reliability of both models across different solvent systems, confirming their potential for accurate solubility prediction in
natural product extraction processes. In an industrial context, this predictive accuracy can facilitate solvent selection and
process optimization, ultimately improving extraction yields while reducing experimental costs and development time.

When comparing empirical models with the UNIFAC-COSMO thermodynamic model and ML techniques, several
factors such as predictive accuracy, robustness to extrapolation, and applicability to different solvent systems must be
considered. Empirical models generally perform well within the range of conditions for which they were calibrated,
often achieving high precision on test datasets composed of similar solvent compositions and temperature ranges.
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However, their ability to extrapolate beyond the calibration domain tends to be limited due to their fixed functional
forms and reliance on fitted parameters.

Table 5. Multi-model solubility prediction comparison (all values in g/100 g solvent)

Compound Temp (K) Methanol (Apelblat/Pred) Ethanol (Apleblat/Pred) Best mode

Best moel 0.0048/0.0049 0.0062/0.0064
(Apleblat/Pred) 298.15 0.0051/0.0053 0.00656/0.0067 HybrigRgg%l\g%-XGB

313.15 0.0061/0.0062 0.0078/0.0079
283.15 0.0447/0.0450 0.0589/0.0595

Oleuropein 298.15 0.0580/0.0585 0.0720/0.0728 (ﬁzc‘fg_"gsg)
313.15 0.0755/0.0760 0.0905/0.0910
283.15 0.0015/0.0016 0.0019/0.0020

Quercetin 298.15 0.0018/0.0019 0.0022/0.0023 é?fggj)
313.15 0.0024/0.0025 0.0029/0.0030
283.15 0.0012/0.0013 0.0015/0.0016

. XGBoost

Luteolin 298.15 0.0014/0.0015 0.0017/0.0018 ooos
313.15 0.0019/0.0020 0.0022/0.0023
283.15 0.0042/0.0043 0.0052/0.0053

Verbascoside 208.15 0.0050/0.0051 0.0060/0.0061 Hybr(igzc:oosg/IS?-RF
313.15 0.0065/0.0066 0.0078/0.0079
283.15 0.00229/0.00230 0.00372/0.00375
. Apelblat
Rutin 298.15 0.00301/0.00305 0.00444/0.00448 P frl
313.15 0.00399/0.00402 0.00592/0.00595

The UNIFAC model, based on molecular group contributions and thermodynamics, offers strong extrapolation
capabilities, especially for mixed solvent systems. Its mechanistic foundation enables reasonable prediction of activity
coefficients for untested solvent combinations, given accurate group interaction parameters. This makes UNIFAC well-
suited for modeling solubility in complex mixtures where empirical models often fall short in capturing non-ideal
interactions.

Machine learning methods like Random Forest and Neural Network excel at modeling nonlinear and complex
relationships, achieving high precision on test data. However, their ability to generalize beyond the training domain
depends on the diversity and coverage of the data, with performance potentially declining without careful regularization
or domain knowledge.

For pure solvents, empirical models, UNIFAC, and ML approaches generally perform well, with empirical
and UNIFAC models offering more physically interpretable results. In solvent mixtures, UNIFAC and ML methods
typically outperform empirical models by better capturing synergistic or antagonistic solvent effects. Moreover,
hybrid models that combine COSMO-based thermodynamic calculations with machine learning, often using weighted
ensemble approaches, show promising improvements in mixture predictions. Integrating empirical, thermodynamic,
and ML techniques with weighted calculations can thus leverage the strengths of each method, enhancing accuracy and
reliability across diverse solvent systems and conditions
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3.2 Extrapolation for ethanol/methanol mixtures

Modeling solubility in ethanol/methanol mixtures aims to balance solubilization efficiency with health and safety
concerns by using hybrid approaches combining thermodynamic modeling and machine learning. After validating
solubility predictions with the UNIFAC-COSMO model and ML algorithms, the study extended to predicting solubility
for five phenolic compounds in binary ethanol/methanol mixtures. These mixtures, used in several studies with varying
proportions (e.g., Cho et al.”’ and Almeida et al.”*), help identify the optimal solvent blend, considering methanol’s
strong solvation but toxicity and regulatory limits, versus ethanol’s lower toxicity and easier recovery, key factors for
industrial and pharmaceutical applications. In this context, it becomes particularly valuable to use machine learning
to guide the selection of solvent composition for a given compound and to predict the optimal concentration required,
supporting more informed and efficient decision-making. Empirical models are simple and quick to apply but lack
generalizability beyond their calibration range. UNIFAC offers a more robust, theory-based approach with better
extrapolation for mixtures, though it depends on the availability of accurate group interaction parameters. Machine
learning provides high predictive accuracy by capturing nonlinear relationships through diverse descriptors, but its
reliability depends on the quality and diversity of training data (Table 6). For this reason, a hybrid modeling strategy
becomes particularly relevant, seeking a compromise between simplicity, physicochemical rigor, and predictive
performance. By combining empirical, thermodynamic, and ML approaches, such models can harness the strengths of
each method to improve solubility predictions across a wide range of solvents and conditions.

Table 6. Rutin solubility prediction comparison in mixture (EtOH x0.9 + MeOH x0.1) (all values in g/100 g solvent at 25 °C)

Temp (K) UNIFAC-COSMO XGBoost Random Forest Weighted
283.15 0.00295 0.00332 0.00328 0.00325
293.15 0.00348 0.00389 0.00384 0.00380
298.15 0.00382 0.00425 0.00419 0.00415
303.15 0.00418 0.00463 0.00456 0.00452
313.15 0.00502 0.00552 0.00544 0.00540
323.15 0.00595 0.00648 0.00639 0.00635
333.15 0.00698 0.00753 0.00743 0.00738

The solubility curves of phenolic compounds in ethanol/methanol mixtures show a consistent increase with
temperature, in line with expected thermodynamic behavior (Figure 2). While the UNIFAC-COSMO model provides
physically realistic trends, its predictive accuracy remains limited, as indicated by low R* values. In contrast, machine
learning models—particularly XGBoost and Random Forest—offer significantly improved precision, capturing both the
magnitude and direction of solubility variation across different solvent compositions. These predictions are consistent
with earlier experimental studies, reinforcing their validity. To enhance predictive reliability, an optimal hybrid result
was developed by combining the strengths of both mechanistic and machine learning approaches through a weighted
ensemble strategy. The final predictive expression was defined as:

Weighted = 0.15 x UNIFAC + 0.48 x XGBoost + 0.37 x Random Forest.

The weight coefficients were optimized through cross-validation to minimize the overall prediction error,
thereby achieving a balanced trade-off between theoretical consistency and empirical accuracy. The balanced model
outperformed individual models in terms of generalization capacity and statistical indicators like R*, RMSE, and
ANOVA-based significance tests, resulting in robust and reliable solubility estimations across all temperature-solvent
compositions.
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Figure 2. Solubility of different compounds in ethanol and methanol via predictive methods

The evaluation of predictive models across various methanol-ethanol solvent mixtures reveals several key insights.
For mixtures rich in methanol (10 : 90), the XGBoost model demonstrated superior performance, achieving an R* of 0.93
and the lowest RMSE among all tested models. In the balanced 50 : 50 mixture, XGBoost again outperformed others,
with an R” of 0.95, indicating near-perfect interpolation accuracy. Interestingly, in ethanol-rich mixtures (90 : 10), the
UNIFAC-COSMO model provided the best results with an R* of 0.73, making it acceptable for preliminary screening
purposes despite its limitations. However, UNIFAC-COSMO exhibited its weakest performance in the methanol-rich
10 : 90 blend, especially for hydroxytyrosol, where it recorded the highest RMSE of 0.00065.

A notable distinction emerges between low- and high-solubility compounds. For poorly soluble compounds, such
as quercetin or luteolin, ML models—particularly Random Forest and XGBoost—offer accurate approximations, with
R’ consistently above 0.93. This highlights their robustness even when experimental data are sparse or highly variable.
In contrast, for highly soluble molecules such as oleuropein, XGBoost outperforms other methods by providing the
best accuracy and lowest prediction error. This indicates that XGBoost is especially well-suited for capturing trends in
systems involving significant solubility variation.
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Additionally, to rigorously support the claim that ML methods significantly outperform UNIFAC models, we
conducted an ANOVA analysis comparing the RMSE values obtained from both modeling approaches across different
solvent mixtures. The ANOVA results revealed a significant difference between the two methods, with the ML models
consistently exhibiting lower RMSE values than UNIFAC. Specifically, the F-test yielded a value exceeding the critical
threshold, and the corresponding p-value was found to be less than 0.05, indicating that the observed difference in
prediction accuracy is statistically significant and unlikely due to random chance. This confirms that ML models provide
a more precise and reliable prediction of solubility in mixed ethanol/methanol solvents, likely due to their ability to
capture complex, nonlinear relationships that are not fully addressed by the group contribution approach of UNIFAC.

Among all the solvent mixtures tested, the 50 : 50 methanol-ethanol blend emerges as the most favorable
environment for predictive modeling. It not only yielded the best overall prediction accuracy (R* = 0.95 with XGBoost)
but also ensured balanced solubility behavior, aiding in more consistent modeling across compounds (Figure 3). Lastly,
Random Forest, while slightly less precise than XGBoost in some conditions, offered the most stable performance
across diverse compounds and mixtures, making it a reliable fallback model for novel or less-characterized substances.
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Figure 3. Solubility profiles of olive leaf-derived compounds (Hydroxytyrosol and Oleuropein) in ethanol/methanol solvent mixtures

The comparative evaluation of prediction models across various methanol-ethanol mixtures reveals distinct trends,
depending on the solvent composition and compound type. In methanol-rich mixtures, machine learning models—
particularly XGBoost—consistently deliver superior accuracy, outperforming thermodynamic approaches, as evidenced
by the solubility trends shown in Figure 3. This advantage becomes even more pronounced in the balanced 50 : 50
mixture, where ML models effectively capture solubility variations. Conversely, in ethanol-rich systems, the UNIFAC-
COSMO model performs substantially better, but remains lower than ML models in other circumstances.

A distinction is also observed between compound classes: poorly soluble compounds (aglycones) are more
accurately predicted by Random Forest and XGBoost, which effectively capture the complex nonlinear relationships
influencing their solubility. In contrast, highly soluble glycosides benefit particularly from XGBoost’s enhanced
precision and ability to generalize subtle solubility patterns. This differential performance reflects the underlying
physicochemical diversity between aglycones and glycosides, with the latter exhibiting solubility behavior more
amenable to high-resolution statistical modeling.

Among the various solvent mixtures tested, the binary 50 : 50 methanol-ethanol system emerges as the most
favorable medium for predictive modeling. The balanced polarity and intermolecular interactions in this mixture likely
promote uniform solvation effects, simplifying the modeling task and enhancing reproducibility. Consequently, this
binary-solvent system represents an optimal compromise, allowing robust and reliable solubility predictions that are less
sensitive to compound-specific variability.

In addition to R* and RMSE metrics, the accuracy of solubility predictions was further validated using the Pearson
correlation coefficient (r), which quantifies the strength and direction of the linear relationship between predicted and
experimental values. Unlike R’, the Pearson (r) provides a direct measure of how well the predictions track experimental
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trends, irrespective of scale differences or bias.

Figure 4 depicts the strong positive correlations seen in all investigated chemicals and solvent mixes, with (r)
values continuously approaching unity. This demonstrates that the models not only reduce error magnitudes but also
accurately represent the relative ordering and variation in solubility measurements. The Pearson correlation coefficient
thus provides a crucial supplementary dimension to model validation, guaranteeing that the prediction framework
incorporates the underlying physicochemical patterns required for practical applications. In fact, using Pearson’s
coefficient, the study provides a thorough and rigorous evaluation of model performance, bolstering confidence in the
solubility estimates obtained by both individual and hybrid modeling approaches.
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Figure 4. Relative Pearson correlation coefficients of different predictive models for solubility estimation in ethanol-methanol mixtures

Table 7. Compound solubility prediction comparison in mixture (EtOH + MeOH)

Compound class Mixture UNIFAC-COSMO XGBoost Random Forest

10: 90 0.68 0.95 0.93

Glycosides .
(Oleuropein, Rutin) 50:50 0.75 0.97 0.95
90:10 0.79 0.96 0.94
10:90 0.74 0.97 0.95

Aglycones .
(Quercetin, Luteolin) 50:50 0.81 0.98 0.97
90:10 0.83 0.98 0.96
10:90 0.65 0.93 0.91
(S}lln;grlgfyht;‘rlgéﬁ 50: 50 0.73 0.95 0.93
90:10 0.77 0.94 0.92

These correlation coefficients were calculated at 298.15 K for each compound class across the three solvent
mixtures (10 : 90, 50 : 50, and 90 : 10 methanol-ethanol ratios). The resulting coefficients, detailed in Table 7, highlight
the strength of machine learning models—particularly XGBoost—in accurately modeling solubility across diverse
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solvent systems and compound classes.

4. Conclusion

This study provides a comparative assessment of empirical models, the UNIFAC-COSMO thermodynamic
approach, and machine learning techniques for predicting the solubility of olive-derived phenolic compounds. Each
method demonstrates distinct advantages and limitations. Empirical models offer simplicity and high accuracy within
narrowly defined experimental conditions but exhibit limited generalizability to broader solvent systems or compound
classes. The UNIFAC-COSMO approach provides a more mechanistic framework capable of handling solvent mixtures
and extrapolating beyond available data, although its accuracy is constrained by incomplete or uncertain interaction
parameters and the structural complexity of certain compounds. Machine learning approaches achieve superior
predictive accuracy and flexibility by capturing complex, nonlinear relationships, but their reliability depends strongly
on the quality and representativeness of available data, limiting extrapolation to untested solvents or conditions.

To strengthen predictive capabilities, future work should aim to expand experimental solubility datasets to cover
a wider range of solvent types—including greener solvents—and broader temperature ranges, as well as diverse
compound structures. Developing hybrid modeling approaches that integrate mechanistic thermodynamic insights with
machine learning’s adaptability could enhance both accuracy and interpretability. Additionally, refinement of UNIFAC
parameterization and advancement of explainable Al techniques will be necessary to increase trust in machine learning
predictions.

Although the models presented here offer valuable insights, their integration into industrial process simulators
remains a long-term goal. Immediate next steps should include pilot testing the models under realistic process
conditions, benchmarking against standard methods, and conducting techno-economic and environmental impact
assessments to evaluate scalability and cost-efficiency. Addressing these factors will be key to bridging the gap between
academic predictions and industrial applications.

Finally, extending the modeling framework to additional classes of natural bioactive compounds and exploring
alternative solvents will be essential to enhance the environmental and industrial relevance of these predictive tools,
contributing to the sustainable valorization of renewable natural resources.
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