Acetonitrile synthesis via ammoxidation: Mo/zeolites catalysts screening

Faouzi Ayari^{a*}, Emna Mannei^{a,b}, Esther Asedegbega–Nieto^c, Mourad Mhamdi^{b,d}, Gérard Delahay^e

^a University of Monastir, Faculty de Pharmacy of Monastir, Laboratory of chemical, galenic and pharmacological development of drugs, 5000 Monastir, Tunisia

^b University of Tunis El Manar, Faculty of Sciences of Tunis, Material chemistry and catalysis laboratory, Tunis El Manar, 2092 Tunis, Tunisia

^c The National Distance Education University (UNED), Faculty of Sciences, Department of inorganic and technical chemistry, 28040 Madrid, Spain

^d University of Tunis El Manar, Higher institute of medical technologies of Tunis, 1006 Tunis, Tunisia

^e Charles Gerhardt Institute in Montpellier, CNRS–UM–ENSCM–MACS, 34296 Montpellier Cedex 05, France

* Corresponding author. Tel.: +21650646504.

E-mail address: faouzi.ayari@fst.utm.tn

ORCID ID: orcid.org/0000-0003-0684-424X

Catalysts characterization and catalytic tests

The chemical analyses were performed by ICP (Optima 3300 DV Perkin Elmer spectrometer) and EDX (JEOL-JEM 2100F instrument, X-MAX detector, accelerating voltage of 200 kV and energy resolution of 20 eV). Nitrogen physisorption at -196 °C was carried out with an automatic ASAP 2020 apparatus (Micromeritics) after dehydration at 250°C overnight. BET model was used to calculate the specific surface area (S_{BET}), while *t*-plot method was employed to determine the external surface area and micropore volume (V_{micro}). However, the porous volume (V_p) was calculated at the end of the step corresponding to the filling of the pores (at $P/P^{\circ} = 0.98$). XRD features were collected from a Siemens D–500 diffractometer throughout the 2θ range of 2–70°. TEM and SEM images were collected from a JEOL JEM-2000 FX and a HITACHI 4800 S electron microscope, respectively. H₂-TPR analysis was performed on an Autochem II 2920 V3.05 analyzer with H_2 /He flow (30 cm³ min⁻¹) and 70 mg of sample. NH₃-TPD analysis was carried out with the same H₂-TPR equipment. The sample was first exposed to an air flow then saturated with flowing NH₃ at 100 °C and flushed with helium at the same temperature. Finally, the temperature was ramped to 550 °C (10 °C min⁻¹). XPS analyses were performed with an OMICRON photoelectron spectrometer using the magnesium as anode. The deconvolution of each spectrum was made using Casa XPS software. DRIFTS spectra were recorded on a Bruker IFS 55 spectrometer equipped with a Thermo Spectra Tech reacting cell. UV/Vis DRS analysis was performed with a Perkin Elmer Lambda 45 spectrophotometer using BaSO₄ as reference material.

A series of catalytic tests was carried out using m = 200 mg of catalyst and the following gas composition: 10 % of C₂H₆, 10 % of NH₃ and 10 % of O₂. The total flow rate was maintained at 100 cm³ min⁻¹ by balancing with helium (contact time = 0.08 *s*). Another series of runs was performed for ethylene ammoxidation using m = 50 mg of catalyst (0.02 *s*) and the same gas composition. The mass of catalyst as well as the total flow rate were carefully optimized in order to avoid internal and external diffusions. The outlet gases were analyzed by two chromatographic units (flame ionization and thermal conductivity detectors). During ammoxidation, insignificant amounts of CO, CH₄ and NO were also produced and they were not included in the calculations.

The conversion (Eq. 1), selectivity (Eq. 2) and activity (Eq. 3) were defined as follow:

Conversion of hydrocarbon H (C₂H₆ or C₂H₄): $X_{H} = \frac{\sum_{i} y_{i}n_{i}}{y_{H}n_{H} + \sum_{i} y_{i}n_{i}} \times 100$ (1) $i = AN, C_{2}H_{4} \text{ and } CO_{2} \text{ (for } H = C_{2}H_{6} \text{) and } i = AN \text{ and } CO_{2} \text{ (for } H = C_{2}H_{4} \text{).}$ Selectivity of product $P_{i} (i = AN, C_{2}H_{4} \text{ and } CO_{2})$: $S_{i} = \frac{y_{i}n_{i}}{\sum_{i} y_{i}n_{i}} \times 100$ (2)

Here, y_i and y_H are the mole fractions of product P_i (AN, C_2H_4 and CO_2) and reactant H, respectively, while n_i and n_H are the number of carbon atoms in each molecule of product P_i and reactant H, respectively.

Activity of product
$$P_i$$
: $Ac_i (mol \ s^{-1}g^{-1}) = \frac{Hydrocarbon \ flow \ (cm^3 \ s^{-1}) \times X_H \times S_i}{Molar \ volume \ (STP, cm^3 mol^{-1}) \times 10^4 \times m \ (g)}$ (3)

The turnover frequency (TOF), *i.e.* the activity per each Mo specie molecule:

$$\text{TOF}(s^{-1}) = \frac{\text{Ac}_i \;(\text{mol } s^{-1} g^{-1})}{\text{Amount of Mo specie by gram of sample}(\text{mol } g^{-1})}$$
(4)

Table S1: List of the prepared solids

No	Sample	Zeolite	Provider	Precursor	Provider
Ι	Mo-OFF	H ⁺ -OFF	_	MoCl ₃	Merck
II	Mo-FER	NH4 ⁺ -FER	Zeolyst	MoCl ₃	Merck
III	Z26(MoCl ₃)	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	MoCl ₃	Merck
IV	Z15(MoCl ₃)	H ⁺ –ZSM-5	Zeolyst CBV3024E	MoCl ₃	Merck
V	MOR(MoCl ₃)	NH4 ⁺ –MOR	Zeolyst CBV21A	MoCl ₃	Merck
VI	BEA(MoCl ₃)	NH4 ⁺ –BEA	Zeolyst CP814E	MoCl ₃	Merck
VII	Z26(MoOCl ₄)	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	MoOCl ₄	Sigma– Aldrich
VIII	Z26(MoCl ₅)	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	MoCl ₅	Alfa Aesar
IX	Z26(MoCO)	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	Mo(CO) ₆	Aldrich Chem Co.
X	Z26(MoAcac)	NH ₄ ⁺ –ZSM-5	Zeolyst CBV5524G	$MoO_2(C_5H_7O_2)_2$	Merck Schuchardt
XI	Z26(MoO ₃)6%He	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	MoO ₃	Merck Schuchardt
XII	BEA(MoO ₃)	NH4 ⁺ –BEA	Zeolyst CP814E	MoO ₃	Merck Schuchardt
XIII	BEA(MoAcac)	NH4 ⁺ –BEA	Zeolyst CP814E	$MoO_2(C_5H_7O_2)_2$	Merck Schuchardt
XIV	BEA(MoCO)	NH4 ⁺ –BEA	Zeolyst CP814E	Mo(CO) ₆	Aldrich Chem Co.
XV	BEA(MoCl ₅)	NH4 ⁺ –BEA	Zeolyst CP814E	MoCl ₅	Alfa Aesar
XVI	BEA(MoOCl ₄)	NH4 ⁺ –BEA	Zeolyst CP814E	MoOCl ₄	Sigma– Aldrich
XVII	BEA(Mo ₇ O ₂₄)	NH4 ⁺ –BEA	Zeolyst CP814E	$(\mathrm{NH}_4)_6\mathrm{Mo}_7\mathrm{O}_{24}\cdot4\mathrm{H}_2\mathrm{O}$	Merck Schuchardt
XVIII	Z26(MoO ₃)10%He	NH4 ⁺ –ZSM-5	Zeolyst CBV5524G	MoO ₃	Merck Schuchardt
XIX	Z140(MoO ₃)6%He	NH_4^+ –ZSM-5	Zeolyst (CBV28014)	MoO ₃	Merck Schuchardt
XX	Z15(MoO ₃)Imp2%	H ⁺ –ZSM-5	Zeolyst CBV3024E	MoO ₃	Merck Schuchardt
XXI	Z15(MoO ₃)Imp4%	H ⁺ –ZSM-5	Zeolyst CBV3024E	MoO ₃	Merck Schuchardt
XXII	Z40(MoO ₃)Imp2%	H ⁺ –ZSM-5	Zeolyst (CBV8014)	MoO ₃	Merck Schuchardt
XXIII	Z40(MoO ₃)Imp4%	H'-ZSM-5	Zeolyst (CBV8014)	MoO ₃	Merck Schuchardt
	$Z26(MoO_3)6\%O_2$	NH ₄ '–ZSM-5	Zeolyst CBV5524G	MoO ₃	Merck Schuchardt
XXV	Z140(MoO ₃)6%He	NH_4 – ZSM-5	Zeolyst (CBV28014)	MoO ₃	Merck Schuchardt

No	Catalyst	X (%)	S (%)	, in 02110		ACCILICN	Ac _{c u}
	,					$(umol s^{-1} a^{-1})$	$(\mu m o l a^{-1} a^{-1})$
			CUCN	СИ	CO	(µmors g)	(µmors g)
т	M. OFF	((500°C)	CH ₃ CN	C ₂ H ₄	02	0.10	0.10
I II	MO-OFF Mo-FFR	$-(500^{\circ}C)$	-	<u> </u>	92	0.10	0.10
III	726(MoCl.)	$=(500^{\circ}C)$	40	0	42	1 30	0.20
111	220(1v10C13)	7 (300 C) 5 (475°C)	13	5	42 82	0.24	0.11
		4 (450°C)	9	3	89	0.13	0.04
		4 (425°C)	7	2	91	0.10	0.03
IV	Z15(MoCl ₃)	6 (500°C)	35	10	55	0.80	0.20
		5 (475°C)	18	6	76	0.33	0.11
		5 (450°C)	11	2	87	0.20	0.04
N	MOD(M. Cl.)	4 (425°C)	8	1	91	0.12	0.01
v	$MOR(MOCI_3)$	$6(500^{\circ}C)$	4	8	88	0.10	0.20
		6(473 C)	3	4	95	0.07	0.09
		$6(425^{\circ}C)$	2	1	97	0.04	0.02
VI	BEA(MoCl ₂)	7 (500°C)	15	17	68	0.40	0.40
	× 5/	6 (475°C)	13	8	79	0.29	0.18
		6 (450°C)	10	5	85	0.22	0.11
		4 (425°C)	11	2	87	0.16	0.03
VII	Z26(MoOCl ₄)	4 (500°C)	20	10	70	0.30	0.15
		4 (475°C)	19	6	75	0.28	0.09
		4 (450°C)	12	4	84	0.18	0.06
VIII	$70(M_{\odot}C1)$	4 (425°C)	8	2	90	0.12	0.03
VIII	$Z_{20}(MOCI_5)$	$9(500^{\circ}C)$	83 83	9	0	5.00 1.85	0.30
		$4(450^{\circ}C)$	83 78	5	10	1.05	0.10
		2 (425°C)	68	4	28	0.51	0.03
IX	Z26(MoCO)	6 (500°C)	42	13	45	0.90	0.30
		6 (475°C)	27	5	68	0.60	0.11
		4 (450°C)	20	4	76	0.30	0.06
		3 (425°C)	14	2	84	0.16	0.02
Х	Z26(MoAcac)	4 (500°C)	27	14	59	0.40	0.21
		$2(4/5^{\circ}C)$	25	23	52	0.19	0.17
		2(430 C) $1(425^{\circ}\text{C})$	17	37 47	40	0.15	0.28
XI	Z26(MoO ₂)6%He	6 (500°C)	54	24	22	1.21	0.54
	(3 (475°C)	35	30	35	0.39	0.33
		2 (450°C)	23	41	36	0.17	0.31
		1 (425°C)	12	25	63	0.04	0.09
XII	BEA(MoO ₃)	8 (500°C)	35	27	38	1.00	0.80
		6 (475°C)	31	16	53	0.69	0.36
		5 (450°C)	29	8	63	0.54	0.15
VIII		$5(425^{\circ}C)$	19	<u> </u>	/8	0.35	0.06
ЛШ	DEA(MOACac)	9 (300 C) 6 (475°C)	47	19	54 70	0.71	0.00
		$4 (450^{\circ}C)$	24	8	69	0.36	0.12
		4 (425°C)	18	3	79	0.27	0.04
XIV	BEA(MoCO)	8 (500°C)	34	16	50	1.00	0.50
		7 (475°C)	30	8	62	0.78	0.21
		6 (450°C)	24	4	72	0.55	0.09
		4 (425°C)	19	3	79	0.28	0.04
XV	BEA(MoCl ₅)	5 (500°C)	39 26	4	57	0.70	0.10
		$4(4/5^{\circ}C)$	20	5	69 76	0.39	0.07
		4 (425°C)	14	4	84	0.21	0.03
XVI	BEA(MoOCl ₄)	4 (500°C)	16	10	74	0.20	0.15
	(4 (475°C)	9	6	85	0.13	0.09
		4 (450°C)	8	3	89	0.12	0.04
		4 (425°C)	6	1	93	0.09	0.01
XVII	BEA(Mo ₇ O ₂₄)	8 (500°C)	26	21	53	0.80	0.60
		6 (475°C)	23	21	56	0.51	0.47
		4 (450°C)	25	7	68	0.37	0.10
		4 (425°C)	24	2	/4	0.36	0.03

Table S2: Catalytic behaviour of Mo containing solids in C₂H₆ ammoxidation at different temperatures

Conditions: 0.2 g of catalyst, 10 % C₂H₆, 10 % NH₃, 10 % O₂, 70 % He. Contact time: 80 ms

No	Catalyst	Т	Х	S	2 7	Ac _{CH} CN
	·	(°C)	(%)	(%)		$(umol a^{-1}a^{-1})$
				CH ₂ CN	CO	(µmorsg)
T	Mo-OFF	500	4	5	95	0.30
II	Mo-FER	500	4	11	89	0.70
III	Z26(MoCl ₃)	500	10	91	9	13.70
		475	6	86	14	7.75
		450	3	77	23	3.50
117	715() ((01))	425	2	50	50	1.50
IV	$\Sigma 15(MOCI_3)$	500 475	9 4	84 79	10 21	11.40
		450	2	60	40	1.80
		425	1	40	60	0.60
V	MOR(MoCl ₃)	500	5	63	37	4.73
		475	5	49	51	3.68
		450	5	25	/5 87	1.88
VI	BEA(MoCl ₂)	500	6	74	26	6.70
		475	3	60	40	2.70
		450	2	44	46	1.32
		425	1	22	78	0.33
VII	Z26(MoOCl ₄)	500	11	87	13	14.40
		475	9	39	61 72	5.27
		450 425	6	28 16	12 82	2.52
VIII	Z26(MoCl ₅)	500	23	98	2	33.80
	- (5)	475	12	93	7	16.74
		450	7	81	19	8.50
***		425	4	79	21	4.75
IX	Z26(MoCO)	500 475	17	82 67	18	20.90
		450	8	46	55 54	5.52
		425	4	39	61	2.34
Х	Z26(MoAcac)	500	8	45	55	5.40
		475	6	39	61	3.51
		450 425	5	29	/1 81	2.18
XI	Z26(MoO ₃)6%He	500	10	59	41	8.85
		475	7	45	55	4.73
		450	4	37	63	2.22
	-	425	2	19	81	0.57
XII	BEA(MoO ₃)	500	14	92 86	8	19.30
		475	9	80 81	14 19	7 30
		425	4	65	35	3.90
XIII	BEA(MoAcac)	500	13	93	7	18.10
		475	7	86	14	9.03
		450	4	74	26 28	4.44
XIV	BEA(MoCO)	<u>423</u> 500	<u> </u>	92	<u> </u>	15 20
	DER (MOCO)	475	6	86	14	7.74
		450	3	74	26	3.33
		425	2	60	40	1.80
XV	BEA(MoCl ₅)	500	9	68	32	9.20
		475	5 5	42	58 71	3.15 2.18
		425	4	15	85	0.90
XVI	BEA(MoOCl ₄)	500	8	79	21	9.50
		475	6	57	43	5.13
		450	4	39	61	2.34
VVII	PEA(Ma O)	425	2	25	75	0.75
AVII	$DEA(WI07O_{24})$	475	6	89	11	8.00
		450	4	77	23	4.62
		425	3	61	39	2.75

Table S3: Catalytic behaviour of Mo containing solids in C₂H₄ ammoxidation at different temperatures

Conditions: 0.05 g of catalyst, 10 % C_2H_4 , 10 % NH_3 , 10 % O_2 , 70 %. Contact time: 20 ms

Table S4: Catalytic behaviour of the reference materials in C₂H₄ ammoxidation at different temperatures

No	Catalyst	T (°C)	X (%)	S (%)		Ac_{CH_3CN} (µmol s ⁻¹ g ⁻¹)
				CH ₃ CN	CO_2	(viller's g)
XVIII	Z26(MoO ₃)10%He	500	21	84	16	26.50
		475	11	48	52	7.92
		450	8	38	62	4.56
		425	6	19	81	1.71
XIX	Z140(MoO ₃)6%He	500	5	74	26	5.60
		475	2	47	53	2.22
		450	1	41	59	0.62
		425	1	24	76	0.36
XX	Z15(MoO ₃)Imp2%	500	11	91	9	15.00
		475	9	63	37	8.55
		450	7	34	66	3.57
XXI	Z15(MoO ₃)Imp4%	500	20	99	1	29.50
		475	8	95	5	11.40
		450	5	95	5	7.13
		425	2	98	2	2.94
XXII	Z40(MoO ₃)Imp2%	500	11	94	6	15.50
		475	8	88	12	10.56
		450	4	72	28	4.32
		425	2	53	47	1.59
XXIII	Z40(MoO ₃)Imp4%	500	12	99	1	17.80
		475	6	95	5	8.55
		450	3	98	2	4.41
		425	1	98	2	1.47

Conditions: 0.05 g of catalyst, 10 % C_2H_4 , 10 % NH_3 , 10 % O_2 , 70 % He. Contact time: 20 ms

Table S5: OFF and FER issued solids: Textural and chemical analyses results

Sample	S_{BET}/S_{micro}	V _p /V _{micro}	Si/Al			Mo/Al		
	(m^2g^{-1})	$(cm^3 g^{-1})$	ICP ^a	XPS^{b}	EDX^b	ICP ^a	XPS^{b}	EDX^b
H ⁺ –OFF	5/_**	_/_**	3.34	_	_	_	_	_
NH4 ⁺ -FER	**	**	9.11	_	_	_	_	_
Mo-OFF	108/103	0.05/0.05	3.44	0.50	3.57	0.32	4.00	0.33^{*}
Mo-FER	**	**	8.77	0.50	_	0.48	8.50	_

^{*a*} mol/mol, ^{*b*} atomic ratio

* Average value obtained from Table S6 ** Value too low to be interpreted. According to Breck et *al.* (In Molecular Sieves, Chapter 29, 319–329. *Advances in Chemistry*, Volume 121, ACS Washington DC), the presence of cations in the exchange sites increases the density of nitrogen by 20 % over the normal liquid density (*i.e.* 0.95 g cm⁻³ as compared with 0.80 g cm⁻³ for liquid nitrogen at its boiling point). This value (0.95 g cm⁻³) would correspond to the density of liquid nitrogen at a temperature of -227 °C. However, at this temperature, liquid nitrogen has a vapor pressure of 0.14 torr and the adsorbed nitrogen behaves as if its boiling point was 31°C below normal.

.

Chemical anal	ysis of NH ₄ '–	FER, H –OFF, N	IO-FER and Mo-	-OFF solids by	/ ICP		
Sample	Al	Si/Al	Mo/Al	Mo	Al <i>wt</i> . %	Mo <i>wt</i> . %	
	(wt. %)	(mol/mol)	(mol/mol)	(<i>wt</i> .%)	(ICP)	(ICP)	
Mo-OFF	7.12	3.32	0.28	7.12	6.85	7.29	
	6.04	3.77	0.34	7.23			
	6.22	3.22	0.38	8.45			
	6.41	3.98	0.30	6.87			
H^+ –OFF	_	_	_	_	7.61	_	
Mo-FER	_	_	_	_	3.43	5.87	
NH4 ⁺ -FER	—	_	_	_	3.72	_	
							_

Table S6: EDX results obtained with Mo-OFF solid at four surface points

Fig. S1 Scanning electron microscopy micrograph of NH₄⁺-FER sample

Fig. S2 (A) TPR profiles of Mo–OFF and Mo–FER solids, and (B) Deconvolution of the TPR profile of Mo–OFF solid. The reduction was performed with $H_2(3 \%)/Ar$ flow (30 cm³ min⁻¹) using 70 mg of sample previously treated (in–situ) for 1 hour at 450 °C under air stream (30 cm³ min⁻¹). Mo–FER solid was obtained by solid–state exchange of MoCl₃ into NH₄⁺–OFF (9 *wt.* % Mo). See Page S1 for more details about the techniques

Fig. S3 TEM image of Mo–OFF solid. The sample was suspended and dispersed by ultrasonic treatment in acetone. A drop of the fine suspension was placed on a copper TEM grid, which was then loaded into the microscope

Fig. S4: Optical absorption spectrum of Z15(MoCl₃), Z26(MoCl₃), MOR(MoCl₃) and BEA(MoCl₃) solids. E_g : Edge energy value determined from the Schuster–Kubelka–Munk function (see Mannei et *al.* (2019) Chem Papers 73:619–633) for details)

Z15(MoCl₃) solid was obtained by solid–state exchange of MoCl₃ into H^+ –ZSM-5 (Si/Al = 15; 9 *wt*. % Mo)

Z26(MoCl₃) solid was obtained by solid–state exchange of MoCl₃ into NH_4^+ –ZSM-5 (Si/Al = 26; 6 *wt*. % Mo)

MOR (MoCl₃) solid was obtained by solid–state exchange of MoCl₃ into NH_4^+ –MOR (9 *wt*. % Mo) BEA(MoCl₃) solid was obtained by solid–state exchange of MoCl₃ into NH_4^+ –BEA (9 *wt*. % Mo) See Page S1 for more details about the technique

Fig. S5: Optical absorption spectra of Z26(MoAcac) and Z26(MoOCl₄) solids. E_g : Edge energy value determined from the Schuster–Kubelka–Munk function (see Mannei et *al.* (2019) Chem Papers 73:619–633) for details)

See <u>Fig. S4A</u> for the attribution of each band

Z26(MoAcac) solid was obtained by solid-state exchange of $MoO_2(C_5H_7O_2)_2$ into NH_4^+ -ZSM-5 (Si/Al = 26; 6 *wt*. % Mo)

Z26(MoOCl₄) solid was obtained by solid–state exchange of MoOCl₄ into NH_4^+ –ZSM-5 (Si/Al = 26; 6 *wt*. % Mo)

See Page S1 for more details about the technique

Table S7: NH_4^+ –ZSM-5 (Si/Al = 26) issued solids: Edge energy (E_g) values relative to each Mo specie and the area of the corresponding band Edge energy (E_g) values (eV)/Area (*a.u.*)

	Euge energy (E _g) values (e v)/AICa (<i>u.u.</i>)		
Sample	[MoO ₄] ²⁻	$[Mo_2O_7]^{2-}$	[Mo ₇ O ₂₄] ⁶⁻	MoO ₃	Mo wt. % (EDX)
Z26(MoCl ₅)	_	4.20/2.45	_	2.85/1.87	3.06
Z26(MoCl ₃)	5.36/0.1268	4.15/1.65	_	2.96/1.36	4.90
Z26(MoCO)	_	4.72/2.33	3.81/1.74	2.96/1.50	3.00
Z26(MoO ₃)6%He	5.56/N.D.	4.70/0.86	3.65/1.65	2.94/0.12	N.D.
Z26(MoOCl ₄)	5.97/0.1253	4.78/2.47	3.67/2.10	2.90/1.27	5.14
Z26(MoAcac)	5.83/0.1544	4.83/1.56	3.97/1.39	2.88/1.44	5.69

Fig. S6: XRD patterns of NH₄⁺–ZSM-5 (Si/Al = 26) reference material and Mo(CO)₆, MoO₂(C₅H₇O₂)₂, MoCl₅ and MoO₃ issued solids: $\lambda = 1.54060$ Å, 40 kV, 40 mA, 0.2° min⁻¹

Table S8: Atomic and *wt*. % of Mo determined by EDX at five surface regions over the solid issued from NH_4^+ -BEA and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (6 *wt*. %), *i. e.* BEA(Mo₇O₂₄) solid BEA(Mo₇O₂₄) solid was prepared by solid–state exchange of $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ into NH_4^+ -BEA (6 *wt*. % Mo)

Spectrum	In stats.	0	AI	Si	Мо	Spectrum	in stats.	0	AI	Si	Мо	Total
Spectrum 1	Yes	70.52	2.25	26.72	0.51	Spectrum 1	Yes	56.75	3.05	37.75	2.45	100.00
Spectrum 2	Yes	71.38	2.26	26.18	0.18	Spectrum 2	Yes	58.40	3.13	37.60	0.87	100.00
Spectrum 3	Yes	68.82	2.32	28.61	0.25	Spectrum 3	Yes	55.30	3.14	40.36	1.19	100.00
Spectrum 4	Yes	70.21	2.27	27.36	0.16	Spectrum 4	Yes	57.07	3.11	39.05	0.77	100.00
Spectrum 5	Yes	74.26	1.85	22.89	1.00	Spectrum 5	Yes	60.09	2.52	32.52	4.87	100.00
Mean		71.04	2.19	26.35	0.42	Mean		57.52	2.99	37.45	2.03	100.00
Std. deviation		2.02	0.19	2.14	0.36	Std. deviation		1.81	0.26	2.98	1.73	
Max.		74.26	2.32	28.61	1.00	Max.		60.09	3.14	40.36	4.87	
Min.		68.82	1.85	22.89	0.16	Min.		55.30	2.52	32.52	0.77	

All results in atomic%

All results in weight%

See Fig. S4A for the attribution of each band

BEA(MoCl₅) solid was obtained by solid–state exchange of MoCl₅ into NH_4^+ –BEA (6 *wt*. % Mo) BEA(MoCO) solid was obtained by solid–state exchange of MoCO₆ into NH_4^+ –BEA (6 *wt*. % Mo) BEA(MoOCl₄) solid was obtained by solid–state exchange of MoOCl₄ into NH_4^+ –BEA (6 *wt*. % Mo) BEA(MoOCl₄) solid was obtained by solid–state exchange of MoOCl₄ into NH_4^+ –BEA (6 *wt*. % Mo) See Page S1 for more details about the technique

Table S9: NH_4^+ -BEA issued solids: Edge energy (E_g) values relative to each Mo specie and the area of the corresponding band

	Edge energy	(E_g) values (eV	')/Area		
Sample	$[MoO_4]^{2-}$	$[Mo_2O_7]^{2-}$	$[Mo_7O_{24}]^{6-}$	MoO ₃	Mo wt. % (EDX)
BEA(MoCl ₃)	5.24/1.20	_	3.46/3.25	2.76/0.95	6.14
BEA(MoO ₃)	5.83/0.47	4.94/1.39	3.82/1.90	2.96/1.36	5.90
BEA(MoAcac)	_	4.84/1.74	3.59/2.21	2.75/1.15	6.07
BEA(MoCO)	5.86/0.09	4.83/1.47	3.87/1.62	2.90/1.15	5.09
BEA(MoCl ₅)	5.85/0.44	4.88/1.59	3.51/2.38	2.88/0.97	6.10
BEA(MoOCl ₄)	5.18/2.03	_	3.96/1.95	2.80/1.13	5.15

Fig. S8: XRD patterns of (A) NH_4^+ -BEA zeolite and the issued solids, and (B) BEA(MoO₃), BEA(Mo₇O₂₄) solids and the corresponding support. Solid–square: crystalline MoO₃ diffraction lines ($\lambda = 1.54060 \text{ Å}$, 40 kV, 40 mA, 0.2° min⁻¹)

Table S10: TOF values obtained in ethane ammoxidation over NH_4^+ –ZSM-5 (Si/Al=26) and NH_4^+ –BEA issued solids between 425 and 500 °C

	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)
	Z26MoCl5	Z26MoCl5	Z26MoOCl4	Z26MoOCl4	Z26MoCl3	Z26MoCl3	Z26MoCO	Z26MoCO	Z26MoO3	Z26MoO3	Z26MoAcac	Z26MoAcac
500	0,03802281	136,882129	0,00375	13,5	0,02415094	86,9433962	0,01253333	45,12	0,04321429	155,571429	0,008	28,8
475	0,0234474	84,4106464	0,0035	12,6	0,0045283	16,3018868	0,008	28,8	0,00607143	21,8571429	0,0038	13,68
450	0,01470215	52,9277567	0,00225	8,1	0,00245283	8,83018868	0,004	14,4	0,00607143	21,8571429	0,0026	9,36
425	0,00646388	23,269962	0,0015	5,4	0,00188679	6,79245283	0,00213333	7,68	0,00142857	5,14285714	0,001	3,6

	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)
	BEAMoCl5	BEAMoCI5	BEA(MoOCl4	BEA(MoOCl4	BEAMoCl3	BEAMoCl3	BEA(MoCO)	BEA(MoCO)	BEA(MoO3)	BEA(MoO3)	BEA(MoAcad	BEA(MoAcac
500	0,00503448	18,1241379	0,00237624	8,55445545			0,00179104	6,44776119	0,00818898	29,480315	0,00987421	35,5471698
475	0,00268966	9,68275862	0,00128713	4,63366337			0,00097015	3,49253731	0,00543307	19,5590551	0,00446541	16,0754717
450	0,00255172	9,1862069	0,00118812	4,27722772			0,00089552	3,2238806	0,00425197	15,3070866	0,00226415	8,1509434
425	0,00144828	5,2137931	0,00089109	3,20792079			0,00067164	2,41791045	0,00275591	9,92125984	0,00169811	6,11320755

Table S11: TOF values obtained in ethylene ammoxidation over NH_4^+ –ZSM-5 (Si/Al=26) and NH_4^+ –BEA issued solids between 425 and 500 °C

	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)
	Z26MoCl5	Z26MoCl5	Z26MoOCl4	Z26MoOCl4	Z26MoCl3	Z26MoCl3	Z26MoCO	Z26MoCO	Z26MoO3	Z26MoO3	Z26MoAcac	Z26MoAcac
500	0,42851711	1542,6616	0,1795	646,2	0,25754717	927,169811	0,2788	1003,68	0,31607143	1137,85714	0,108	388,8
475	0,2121673	763,802281	0,065875	237,15	0,14622642	526,415094	0,1608	578,88	0,07928571	285,428571	0,0702	252,72
450	0,10773131	387,8327	0,0315	113,4	0,06603774	237,735849	0,0736	264,96	0,07928571	285,428571	0,0436	156,96
425	0,06020279	216,730038	0,012	43,2	0,02830189	101,886792	0,0312	112,32	0,02035714	73,2857143	0,0228	82,08
	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)	TOF (/s)	TOF (/h)
	TOF (/s) BEAMoCl5	TOF (/h) BEAMoCl5	TOF (/s) BEA(MoOCl4	TOF (/h) BEA(MoOCl4	TOF (/s) BEAMoCl3	TOF (/h) BEAMoCl3	TOF (/s) BEA(MoCO)	TOF (/h) BEA(MoCO)	TOF (/s) BEA(MoO3)	TOF (/h) BEA(MoO3)	TOF (/s) BEA(MoAcad	TOF (/h) BEA(MoAcac
500	TOF (/s) BEAMoCl5 0,06331034	TOF (/h) BEAMoCl5 227,917241	TOF (/s) BEA(MoOCl4 0,02633333	TOF (/h) BEA(MoOCl4 94,8	TOF (/s) BEAMoCl3	TOF <mark>(/</mark> h) BEAMoCl3	TOF (/s) BEA(MoCO) 0,07074627	TOF (/h) BEA(MoCO) 254,686567	TOF (/s) BEA(MoO3) 0,15212598	TOF (/h) BEA(MoO3) 547,653543	TOF (/s) BEA(MoAcao 0,11408805	TOF (/h) BEA(MoAcac 410,716981
500	TOF (/s) BEAMoCl5 0,06331034 0,02172414	TOF (/h) BEAMoCl5 227,917241 78,2068966	TOF (/s) BEA(MoOCl4 0,02633333 0,01425	TOF (/h) BEA(MoOCl4 94,8 51,3	TOF (/s) BEAMoCl3	TOF (/h) BEAMoCl3	TOF (/s) BEA(MoCO) 0,07074627 0,03828358	TOF (/h) BEA(MoCO) 254,686567 137,820896	TOF (/s) BEA(MoO3) 0,15212598 0,09141732	TOF (/h) BEA(MoO3) 547,653543 329,102362	TOF (/s) BEA(MoAcad 0,11408805 0,05679245	TOF (/h) BEA(MoAcac 410,716981 204,45283
500 475 450	TOF (/s) BEAMoCl5 0,06331034 0,02172414 0,01503448	TOF (/h) BEAMoCl5 227,917241 78,2068966 54,1241379	TOF (/s) BEA(MoOCl4 0,026333333 0,01425 0,0065	TOF (/h) BEA(MoOCl4 94,8 51,3 23,4	TOF (/s) BEAMoCl3	TOF (/h) BEAMoCl3	TOF (/s) BEA(MoCO) 0,07074627 0,03828358 0,01746269	TOF (/h) BEA(MoCO) 254,686567 137,820896 62,8656716	TOF (/s) BEA(MoO3) 0,15212598 0,09141732 0,05748031	TOF (/h) BEA(MoO3) 547,653543 329,102362 206,929134	TOF (/s) BEA(MoAcad 0,11408805 0,05679245 0,02792453	TOF (/h) BEA(MoAcac 410,716981 204,45283 100,528302

Fig. S9: (A) Ethane, and (B) ethylene ammoxidation over NH_4^+ -BEA issued solids: TOF values relative to $[MoO_4]^{2-}$ species for acetonitrile activity as a function of reaction temperature (see Tables S10 and S11 for values)

For ethane ammoxidation: 0.2 g of catalyst, 10 % C_2H_6 , 10 % NH_3 , 10 % O_2 , 70 % He. For ethylene ammoxidation: 0.05 g of catalyst, 10 % C_2H_4 , 10 % NH_3 , 10 % O_2 , 70 % He

Characterization of reference materials

The textural properties of selected reference materials are illustrated herein: Textural properties of selected reference materials

Sample	$S_{BET}/S_{micro}(m^2g^{-1})$	$V_{p}/V_{micro} (cm^{3} g^{-1})$
NH ₄ ⁺ –ZSM-5 (26)	367/291	0.21/0.13
Z26(MoO ₃)6%O ₂	250/165	0.15/0.08
Z140(MoO ₃)6%He	330/190	0.20/0.09
Z140(MoO ₃)6%O ₂	329/100	0.19/0.05
H^{+} –ZSM-5 (15)	362/292	0.22/0.13
Z15(MoO ₃)Imp2%	354/227	0.24/0.10

If we compare the textural properties of Z140(MoO₃)6%He and Z140(MoO₃)6%O₂ solids, we notice similar S_{BET} values but the later solid exhibited the lowest microporous area and volume (0.05 cm³ g⁻¹). Apparently, the oxidative treatment encourages the diffusion of Mo inside the internal cavities of NH₄⁺–ZSM-5 (Si/Al = 140) zeolite. However, in the case of the impregnated solid (*i.e.* Z15(MoO₃)Imp2%), the internal area of H⁺–ZSM-5 zeolite (Si/Al =15) deceases despite the use of low Mo amount (2 *wt.* %).

The textural properties of Z26(MoO₃)6%He (Table 3 in the manuscript) and Z26(MoO₃)6%O₂ (Table 7 in the manuscript) solids indicate that the oxidative treatment decreases the microporous area and the (micro)porous volume(s) of NH₄⁺–ZSM-5 (Si/Al =26). According to XRD results compiled in Fig. S10A–C, the intensity of MoO₃ diffraction lines over Z26(MoO₃)6%O₂ solid is lower if compared with those of Z26(MoO₃)6%He, evidencing that MoO₃ oxide diffuses throughout the zeolite micropores. Nevertheless, the use of 10 *wt*. % Mo in Z26(MoO₃)10%He solid favoured the formation of crystalline MoO₃ as revealed by the increase in the corresponding diffraction lines.

Fig. S10: XRD profiles of $Z26(MoO_3)6\%O_2$, $Z26(MoO_3)6\%He$ and $Z26(MoO_3)10\%He$ solids. Diffraction lines of crystalline MoO₃ which correspond to (**A**) (020) plane, (**B**) (040) plane, and (**C**) (060) plane

 $\lambda = 1.54060$ Å, 40 kV, 40 mA, 0.2° min⁻¹

The three solids were prepared by solid–state exchange of MoO_3 (6 and 10 *wt*. % Mo) into NH_4^+ –ZSM-5, (Si/Al =26) under the appropriate carrier gas

Scheme S1 Offretite structure and oxygen atoms numbered according to Mirodatos et *al*. (J Chem Soc, Faraday Trans 1 74:1786–1795): O_1 , O_2 , O_4 and O_5 oxygen atoms are shared between the cages and the channel. O_2 and O_4 atoms are in the cancrinite cage, O_6 in the hexagonal prism and O_5 in the channel