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Abstract: Food quality and dietary habits have a significant impact on human health. Growing evidence suggests that 
miRNAs have been extensively detected in various dietary sources, including plants and animals. miRNAs are a class of 
small non-coding RNA that regulates gene expression in a sequence-specific manner and modulates various biological 
processes. These dietary miRNAs are transported through the circulatory system and affect the expression of the gene in 
the recipient cells through a process called cross-kingdom regulation of the gene. This review will provide insight into 
the role of dietary miRNAs, their stability and transport mechanisms, as well as their impact on human health. Likewise, 
we update and discuss the future consequences of dietary miRNAs and their possible use in the treatment of various 
human diseases.
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1. Introduction
Food safety and health are considered to be the most important aspect of life in higher living organisms, including 

humans. As a result, these are the major global concerns that are primarily caused by inadequate nutrition or tainted 
food. Recent evidence suggests that food alters gene expression and its regulators, such as miRNAs and transcription 
factors (TFs) [1-3]. miRNAs are a class of non-coding endogenous small RNAs that have been shown to have a crucial 
role in gene regulation and various biological processes, including plants and animals [4-10]. In addition, miRNAs 
can work cross-species and regulate the biological function both intracellularly and intercellularly [7, 11-12]. These 
miRNAs also help in plant-plant interactions for instance, Cuscuta campestris (C. campestris) can accumulate 22-nt 
miRNAs in its haustoria and transport them to their host plants to silence the host genes and facilitate C. campestris 
growth during parasitism [7, 13]. Further research on Arabidopsis-Botrytis cinerea (B. cinerea) interaction revealed that 
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the host Arabidopsis cells secrete extracellular vesicles that resemble exosomes to transport sRNAs into the B. cinerea 
to suppress their pathogenicity by silencing fungal virulence genes [7, 13]. 

Furthermore, it has been reported that plant-derived Exosome-like nanoparticles (ELNs) that contain ginger 
miRNAs such as mdo-miR7267 are taken up by the gut microbiota Lactobacillus rhamnosus that alter microbiome 
composition and host physiology [7, 14]. Zhang and his co-worker demonstrated the first evidence of cross-kingdom 
regulation of miRNAs. Further, they showed that miR168a, a typical plant-derived miRNA highly abundant in rice, was 
able to bind the mRNA of Low-density lipoprotein receptor adaptor protein 1 (LDLRAP1) in mammalian bodies and 
decreased the clearance of LDL from the blood [15]. These results suggested that exogenous plant miRNAs in food can 
control the expression of mammalian genes. However, several other studies, which were carried out during the same 
period as Zhang’s study, have failed to provide evidence of such a transfer between species. Dickinson and colleagues 
challenged Zhang’s hypothesis in 2013. They showed no evidence of intake of consumed plant miRNAs by mice or 
any reduction in LDLRAP1 levels in mice’s liver [16]. Further, Witwer and his co-worker also obtained similar results, 
implying that their findings do not support the general and consistent uptake of plant dietary miRNAs [17]. Later, in 
2013, Chen and colleagues argued that the difference in outcomes could be attributable to nutritional inequalities in 
the diet ingredients [18]. They also argued that the sequencing approach used by Dickinson et al. might not be capable 
of effectively measuring plant miRNAs [18]. After Writer and Chen, Kang and colleagues also did a comprehensive 
meta-study on xenomiRs and perform feeding trials on rats and piglets. Surprisingly, they also have not found any plant 
miRNAs in rat blood or bovine milk sequences in piglet blood [19]. Later, some research indicated that the exogenous 
miRNAs from food/dietary sources can be absorbed through the gastrointestinal tract (GIT) and delivered into cells, 
where they can regulate gene expression and other biological processes [7]. Recently, in miR144/451 null mice has 
been demonstrated that the ingestion of miR451 rich diet can increase the concentration of miR451 in the circulating 
blood and boost the antioxidant capacity of red blood cells (RBCs). Moreover, lowering the level of miR451 curtails the 
antioxidant capacity of miR-144/451 null RBCs by the 14-3-3Ζ/Forkhead box O3 (FOXO3) pathway [7, 20]. 

miRNAs regulate the expression of the target gene at post-transcription as well as a translational level [3, 21-
24]. As a result, it is predicted that more than 60% of human protein-coding genes have at least one conserved miRNA 
binding site as well as various non-conserved sites [25]. Thus, dietary miRNA may play an important role in various 
biological and developmental processes such as apoptosis, metabolism, immunological responses, hormone signalling, 
cell proliferation, differentiation, etc. [25]. Moreover, miR162a found in the larval diet has been shown to directly 
target Apis mellifera Target of rapamycin (amTOR) to govern honeybee caste development, providing insights into 
cross-kingdom interaction and co-evolution [7, 26]. Previously, 1400 miRNAs were identified in milk using diverse 
molecular biology techniques [27]. Recently five plant-derived miR156a, miR157a, miR166a, miR168a, and miR172a, 
were identified to be present in breast milk [28]. These miRNAs are considered to be a nutritious component of milk 
that regulates developmental outcomes in the infant organism. The rapeseed (Brassica campestris) miR159 and 
miR166a were detected in mice blood which was absorbed by mice during feeding [29]. These dietary miRNAs have 
been investigated as a potential therapeutic agent for the treatment of various disorders/diseases such as inflammation, 
autoimmune responses and cancer [3, 7, 25, 30-33]. Furthermore, several studies have shown the mutual regulation of 
miRNAs and nutrition. It has been recently reported that miRNAs play important role in regulating nutrient metabolism, 
including hepatic insulin sensitivity, cholesterol, and lipid metabolism [1, 29]. Thus, emerging data indicated that these 
dietary miRNAs could be considered a novel functional component of food that can be exploited as a therapeutic agent 
in the treatment of various genetic and non-genetic diseases. 

In this review, we discuss the current understanding of dietary miRNAs based on numerous studies and the 
mechanism of cross-kingdom regulation of dietary miRNAs as well as their potential uses as a therapeutic agent against 
various diseases/disorders. In addition, we will briefly summarises the regulatory effects of miRNAs on gut microbiota 
and host cells, and how they are beneficial to health. We aim to present a preliminary analysis of studies to aid in the 
therapeutic development of dietary miRNAs. This review will provide a new perspective on the role of dietary miRNAs 
in the treatment of various human and animal diseases.

2. miRNA biogenesis in plant and animal system
miRNAs are a class of 21-24 nucleotides (nt) non-coding RNAs that are ubiquitously present in both plants 
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and animals [3, 21-22, 24]. It has been shown that miRNAs control the expression of their target gene at the post-
transcriptional through complementary base pairing [3, 21-22, 24]. Although there are some similarities between plant 
and animal miRNAs, in contrast, there are also notable distinctions in terms of their biogenesis, mechanism of action, 
and evolution [3, 21-22, 24]. In both systems, mostly the miRNAs are first transcribed by RNA polymerase II (RNA pol 
II) into primary miRNAs (pri-miRNAs) with a 5’ cap and 3’ polyA tail. These pri-miRNAs are further processed into 
precursor miRNAs (pre-miRNAs) by multiple protein complexes known as microprocessor complex enzymes [3, 21-22, 
24]. In the plant system, this is accomplished by a complex of proteins including Dawdle (DDL), Dicer-like1 (DCL 1), 
Serrate (SE), and Hyponastic leaves1 (HYL1), whereas in the animals’ system, it is carried out by a DiGeorge syndrome 
critical region 8 (DGCR8) and Ribonuclease III (RNase-III) family enzyme Drosha (Figure 1a and 1b) [3, 21-22, 24, 34-
35]. In plants, these pre-miRNAs were then processed in the nucleus by the DCL1, SE, and HYL1 proteins into miRNA-
miRNA* duplex [22, 36-37]. These duplexes are further methylated by the HEN1 protein and exported to the cytoplasm 
with the help of exportin protein including HASTY [3, 21-22, 24]. The one strand of the duplex is then loaded into an 
Argonaute 1 (AGO1) containing miRNA-induced silencing (miRISC), which further regulates the expression of target 
gene(s) by complementary base pairing (Figure 1a) [3, 21-22, 24]. In animals, however, the nuclear pore complex (NPC) 
transports pre-miRNAs to the cytoplasm with the help of Exportin 5, which requires the RanGTP as a co-factor (Figure 
1b). This pre-miRNA is further processed into miRNA-miRNA* duplex in the cytoplasm by protein complexes that 
include DICER, Transactivating response RNA binding Protein (TRBP), and protein activator of Protein kinase RNA 
(PACT) [35]. The duplex is subsequently loaded into the AGO protein within RISC, where one strand is preferentially 
maintained [35]. Further, this complex is coupled with the GW182 protein, recognizes its target gene(s), and inhibits 
protein synthesis (Figure 1b). Despite the main differences in their biogenesis in both plants and animals, the plant 
miRNAs control the expression of their target gene(s) through either transcript cleavage or translational inhibition via 
extensive base pairing with the target gene(s). However, in animals, miRNAs undergo hybridization between their ‘seed’ 
sequence (mostly positions 2-8) and target gene(s) leading to translational inhibition, mRNA degradation, and in certain 
cases translation activation or increased RNA stability [35, 38-40].
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Figure 1. miRNA biogenesis in the plant and animal system. (a) miRNA biogenesis in the plant system, and (b) miRNA biogenesis in an animal 
system.

3. Dietary miRNAs
miRNAs have been found in a wide range of dietary sources, including plants and animals [30-31]. The uptake of 

such exogenous miRNAs from a dietary source, which further affects the expression of the gene in the recipient cells 
known as miRNAs mediated cross-kingdom regulation of the gene [41]. The first evidence of cross-kingdom transfer 
of functionally active miRNAs was reported by Zhang et al. in 2012. In this study, the rice miR168a has been shown to 
inhibit LOW-DENSITY Lipoprotein receptor adapter protein 1 (LDLRAP1) and thereby decreases LDL removal from 
human/mouse plasma [15]. Dietary miRNAs have unique characteristics in terms of their stability, absorption, transport, 
and functional mechanisms [7, 42]. However, there is still a significant lack of mechanistic nous into these aspects of 
dietary miRNA, and further research is needed to answer all of these questions [7]. Recent research has demonstrated 
that both plant and animal miRNAs can be absorbed and act within recipient organisms and regulate their biological 
functions by modulating target gene(s) [7]. The Populus euphratica miRNA, peu-miR2910, which is conserved in fruits 
and vegetables, was found to be present in higher concentrations in human plasma compared to other detected human 
miRNAs. In certain samples, up to a thousand copies of peu-miR2910 were detected, which was more abundant than 
the rest of the human miRNAs detected [43]. According to recent investigations, maize, melon, sorghum, tomato, tea, 
and oil palm are potential sources for miR2910, indicating the evidence that this miRNA reached human plasma through 
food ingestion [3, 43]. Furthermore, miR2910 has been predicted to potentially target human Janus kinase (JAK)-
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Signal transducer and activator of transcription (STAT) signalling pathway gene Sprouty RTK signalling antagonist 
4 (SPRY4), and 5’ untranslated region (5’ UTR) of LIM domain and actin binding 1 (LIMA1), and the coding DNA 
sequence (CDS) of Catenin delta-1 (CTNND1), Folate-receptor 1 (FOLR1), Ladybird homeobox 1 (LBX1), Serine/
threonine-protein kinase 38 (STK38), Family with Sequence Similarity 127, Member B (FAM127B), Plant homeodomain 
(PHD) finger protein 19 (PHF19), Human zinc finger protein 295 (ZNF295), and Mitochondrial ribosome recycling 
factor (MRRF) genes, indicating it may be use in the treatment of various human diseases [3, 43-44]. To date, numerous 
dietary miRNAs have been identified for their potential roles in the treatment of various human diseases. Recently, 
computational studies showed that clo-miR14 from Curcuma longa exhibits cross-kingdom regulation. Further, the 
authors showed that clo-miR14 was stable in mammalian serum for a prolonged period and predicted to target various 
inflammation-related genes that have an important role in human rheumatoid arthritis [45]. As a result, clo-miR14 
could be a promising candidate for the treatment of rheumatoid arthritis in the near future [3]. Recently, miR159 from 
Arabidopsis, soybean, and broccoli have been shown to be effective in the treatment of mice breast cancer [3]. In the 
medicinal plant kingdom, a large number of miRNAs have been identified that can be used to treat various human 
diseases, including cancer [46-47]. As we mentioned above milk is a rich source of nutrition. Recent research indicates 
the presence of miRNAs in milk, increasing its significance in medical biology. Recently, 602 miRNAs have been 
identified in human breast milk exosomes by using deep sequencing technology [48]. These exosomal miRNAs have 
been demonstrated to be resistant to prolonged room temperature, RNase digestion, multiple freeze-thaw cycles, and 
even boiling [48]. Furthermore, the authors hypothesized that these exosomal miRNAs are movable from the mother 
to the infant’s body and may have a potential role in the development of the infant’s immune system [48]. Lately, 
colostrum microvesicles (MVs) have been shown to contain various immune-related miRNAs, which may have a 
significant role in immune response [49]. Further studies have shown that these MVs are crucial for the immunological 
regulation and transmission of miRNA [49]. Recently, microarray analysis shows that the milk miR22-3p regulates gene 
expression in Human intestinal epithelial cells (HIECs). These microarray data were then validated using qRT-PCR of 
selected genes, including CCAAT/enhancer-binding protein δ (C/EBPδ), Tumor protein p53 inducible nuclear protein 
(TP53INP), Tetratricopeptide repeats 3 (IFIT3), Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), 
and C-X-C motif chemokine 10 (CXCL10). The functional examination of the modified genes showed that miR22-3p 
played a crucial role in cell proliferation, immune function modulation, and apoptosis inhibition. As a result, miR22-3p 
acts as both a tumour suppressor and an oncogene [50]. Previously, some miRNAs have been detected in bovine milk 
exosomes [51]. Recently, miR30-5p, miR125b, miR148a-3p, miR181d, miR200c-3p, let7a-5p, miR21-5p, and miR223 
were identified in extracellular vesicles from bovine milk or in milk from other species [52-53]. These milk-derived 
miRNAs have been shown to be potentially involved in the regulation of innate immunity, growth and development, cell 
proliferation, and apoptosis [51, 53]. Moreover, several miRNAs have been identified in human breast milk (HBM) that 
may have a potential role in the treatment or prevention of major human diseases like cancer and neurological disorders 
[54-55]. Recently, HBM-derived exosomal miR148a-3p has been shown to protect against Necrotizing enterocolitis 
(NEC) by controlling p53 and Sirtuin 1 (SIRT1) [56]. It has been shown recently that exosomal miRNAs such as let7, 
miR29, miR223, and miR103, can control diabetes [53]. Recently, plant polyphenols have been identified as a potential 
treatment approach for diabetes and cancer [57-60]. These plant polyphenols can be found in various foods, including 
tea, coffee, beans, apples, berries, citrus fruits, wine, plums, broccoli, chocolate, and herbs [59-60]. Serval reports have 
been indicated that numerous miRNAs were differentially altered in diabetic and cancer-affected patients [58-59, 61]. 
These polyphenols act by modulating the expression of miRNAs, which in turn affects the expression of their target 
gene(s). Dietary polyphenols such as Chlorogenic acid (CGA), Curcumin (CUR), and Epigallocatechin gallate (EGCG) 
have been shown to downregulate the tumor-promoting miR21 [59]. Moreover, CUR, EGCG, and Resveratrol (RSV) 
can induce tumor-suppressing miR16, miR34a, miR145, and miR200c while reducing tumor-promoting miR25a [59]. 
Literature scan on recent studies have indicated that CGA, EGCG, and RSV downregulated the tumor-suppressing 
miR20a, miR93, and miR106b [59]. In addition to cancer, these polyphenols have been demonstrated to protect against 
diabetes complications by altering the expression of miRNA(s) in human tissue/cell [58]. RSV has recently been found 
to protect diabetic cardiomyopathy, retinopathy, and neuropathy by altering the expression of miR15, miR21, miR30c2, 
miR34a, miR126, miR155, miR181b, and miR663 [58]. Furthermore, miR146a from Prunus spinosa L. fruit has been 
shown to play a vital role in diabetic wound healing [58]. Thus, these findings suggest that dietary miRNAs may act 
as a new biologically active component that is absorbed into animals via the GIT and affects their physiological and 
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pathological responses.

4. Transport and stability of dietary miRNAs
In addition to competing theories about the stability of dietary miRNAs and how dietary miRNAs can regulate 

gene expression across kingdoms, concerns have also been raised about how these molecules can cross the GIT, enter 
the bloodstream, and move from cell to cell. To address all of these concerns, researchers have conducted additional 
research on the cross-kingdom communication of dietary miRNAs. These dietary miRNAs are acquired through diet and 
absorbed in the GIT (Figure 2) [3, 30-31]. According to emerging evidence, these dietary miRNAs can be secreted into 
extracellular fluids and transported to target cells in three different ways: (I) active secretion via exosomes vehicles (EVs) 
or microvesicles (MVs) (II) active secretion via RNA binding protein including Argonaute 2 (AGO2), High-density 
lipoprotein (HDL), Nucleophosmin 1 (NPM1), etc. and (III) passive secretion from broken or damaged cells caused by 
tissue injury, inflammation, cell necrosis or apoptosis [30-32, 62-64]. Further research has been conducted on the cross-
kingdom trafficking and stability of dietary miRNAs [7, 41, 44, 47]. It has been observed that dietary miRNAs can 
survive in the mammalian circulatory system under adverse conditions such as low pH, bowel movements, and RNase 
treatment. Furthermore, these dietary miRNAs were found to be stable during food processing, cooking, and digestion [7, 
41, 44, 47]. 

          

LiverEsophagus

Dietary source

miRNA in 
extracellular 
vesicle (EV)

Ingestion

Stomach

Pancreas

Rectum

Anus

Gallbladder

Small intestine

Large intestine

Figure 2. Diagram depicting the route and uptake of dietary miRNAs into human cells. These miRNAs are found in dietary sources naturally. 
Following meal consumption, these dietary miRNAs pass through different barriers such as RNases, acidic pH digestive enzymes, degradative 
enzymes, etc. throughout the GIT before reaching the circulatory system. Afterwards, these miRNAs are transferred from cell to cell to a specific cell 
or tissue where they regulate their target gene(s) expression.
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5. Therapeutic use of dietary miRNA
Although the significance of exogenous miRNAs in the mammalian system is not yet fully understood, 

the biological impacts of dietary miRNAs in the mammalian system have been studied using computational or 
bioinformatics tools. However, the ability of miRNAs in cross-kingdom regulation of gene expression indicates that 
dietary miRNAs may have therapeutic applications [65-66]. Interestingly, these dietary miRNAs have developed into 
prognostic biomarkers for the diagnosis and prognosis of diseases like cancer, epilepsy, viral infections, neurological 
illness, cardiovascular disorders, sepsis, diabetes, and muscular disorders [65-68]. Numerous studies have been reported 
to determine how dietary miRNAs contribute to the treatment of various human/animal diseases [7, 33, 47, 65-66, 
69-73]. Recently dietary miRNAs have been implicated in the treatment of various genetic and non-genetic diseases/
disorders in humans (Figure 3, Table 1). [3, 14, 74-78]. Some current knowledge and the application of dietary miRNAs 
in the mammalian systems are presented in (Figure 3 and Table 1). 
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Figure 3. Application of dietary miRNAs in the treatment of various diseases in humans
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Table 1. The therapeutic use of dietary miRNAs in the treatment of various diseases

 miRNAs Source Target gene Target Organism/Cell Therapeutic 
Applications References

1 miR156a Green veggies Junction adhesion molecule-A 
(JAM-A) Human/HAEC cells Reduces risk of 

Atherosclerosis [41, 79]

2 miR159
Arabidopsis thaliana,

Glycine max (G. 
max), Broccoli

Transcription factor 7 (TCF7) Mice/breast cancer cells
Suppressed the growth 

of xenograft breast 
cancers.

[41, 80]

3 miR168 Oryza sativa Low-density lipoprotein receptor 
adaptor protein-1 (LDLRAP1)

Human, Mouse, Rat, 
Calf, Hoarse, Sheep Regulate LDL level [15, 41, 66]

4 miR146a Plant-chow diet
Tumor necrosis factor receptor-

associated factor 6 (TRAF6), 
Interleukin-1 receptor-associated 

kinase 1 (IRAK1)
Mice Listeria monocytogenes [81]

5 miR7267-
3p Ginger Lactobacillus rhamnosus (LGG) 

monooxygenase ycnE Mice Antimicrobial immunity 
and tissue repair in mice [14, 70]

6 miR6300 Ginger, grapefruit Open reading frame 3a (ORF3a) SARS-CoV-2 genome
Treatment of severe 

acute respiratory 
syndrome coronavirus 2 

(SARS-CoV-2)
[73]

7 miR5754 Medicago truncatula
Metastasis-associated lung 

adenocarcinoma transcript 1 
(MALAT1) 

Human colorectal 
carcinoma HCT116 cell 

line
Cancer treatment [82]

8 miR4995 G. max Nuclear paraspeckle assembly 
transcript 1 (NEAT1) 

Human colorectal 
carcinoma HCT116 cell 

line
Cancer treatment [82]

9 miR2911 Honeysuckle
Polymerase proteins (PB2), 

Influenza a virus nonstructural 
protein 1 (NS1)

Influenza A viruses 
(IAVs) Inhibits virus replication [41, 83]

10 miR29b Cow derived milk Runt-related transcription factor 2 
(RUNX2) Human, Mice Cancer treatment [66, 84]

11 miR200c Cow derived milk Zinc finger e-box binding 
homeobox 1 (ZEB1) Human, Mice Cancer treatment [66, 84]

12 miR22-3p Colostrum C/EBPδ Human Cancer treatment [50, 85]

13 miR106a Colostrum Interleukin 10 (IL-10) Macrophage celll line 
RAW264.7 Immunity [49]

14 miR451 Colostrum Macrophage migration inhibitor 
factor (MIF)

Macrophage celll line 
RAW264.8 Immunity [49]

15 miR181a Colostrum Caudal-related homeobox 2 
(CDX2), GATA6 and NLK

Macrophage celll line 
RAW264.9 Immunity [49, 86]

16 miR148a-3p HBM p53 and SIRT1 Human Necrotizing enterocolitis [56]

6. Conclusion and future perspectives
Humans’ diets have changed as a result of increased global development, posing new health challenges. However, 

the discovery of cross-kingdom regulation of gene expression by dietary miRNAs suggests a novel approach that could 
be used as a potential therapeutic tool to treat various genetic and non-genetic diseases. Thus, this finding has led to 
the idea that functional miRNAs could be produced from dietary sources by using bioengineering, in addition to plant-
derived therapeutic miRNAs. Although dietary miRNAs are widely used to treat many diseases. However, several 
challenges must be surmounted before therapeutic miRNAs can be used routinely in clinical trials, such as an effective 
method for directing therapeutic miRNAs to their target cells in vivo, a protected delivery method, efficient uptake of 
miRNAs by target cells, the risk for genomic integrations etc. We hope that these challenges can be distinctly identified 
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and specifically addressed.
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