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Abstract: Arachidonic acid (ARA) is an essential fatty acid with numerous biological activities that benefits human 
health. However, ARA-rich phosphatidylcholine (PtdCho), which has a higher bioavailability than ARA-rich 
triacylglycerols, is scarce in the natural source. In this study, we developed an enzymatic modification approach for 
the synthesis of ARA-rich PtdCho from ARA-rich ethyl esters (EE). The maximum incorporation of ARA into PtdCho 
(24.02%) was achieved from the optimized conditions, including ARA-rich EE/PtdCho mass ratio of 2:1, hexane, lipase 
Novozym 435 as a biocatalyst (15% of enzyme load) and reaction time of 24 h. The 31P nuclear magnetic resonance 
(NMR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) results revealed that the PtdCho content 
decreased to 17.53% and the ARA-containing PtdCho species was primarily identified as PtdCho (18:2/20:4). Taken 
together, this investigation offers a new reference for the efficient production of ARA-rich PtdCho via enzymatic 
modification and paves a theoretical groundwork of industrial production practice.
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ARA		  arachidonic acid
C-Gly		  choline chloride-glycerin
C-U		  choline chloride-urea
DHA		  docosahexaenoic acid
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EPA		  eicosapentaenoic acid
FAME		  fatty acid methyl esters
HPLC		  high performance liquid chromatography
LC-MS/MS		  liquid chromatography-tandem mass spectrometry
LysoPtdCho		 lysophosphatidylcholine
NMR		  nuclear magnetic resonance
PtdCho		  phosphatidylcholine
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PtdGro		  n-glycero-3-phosphatidylcholine
PUFA		  polyunsaturated fatty acid(s)
UHPLC		  ultra-high performance liquid chromatography

1. Introduction
Arachidonic acid (ARA) is an n-6 polyunsaturated fatty acid (PUFA) that has been extensively studied because 

of its importance in maintaining a healthy neurological system, preventing cardiovascular disease, and promoting 
immunity [1]. ARA supplementation has been shown to modulate lipid metabolism and vascular elasticity, providing 
some cardiovascular protection [2-3]. ARA-derived metabolites can affect leukocyte activity by inhibiting neutrophil 
infiltration and promoting macrophage clearance [4]. More importantly, ARA has neuroprotective properties at all 
stages of human life [5]. In early life, the brain rapidly accumulates ARA for neuronal development. ARA, together 
with docosahexaenoic acid (DHA), accounts for approximately 25% of the total fatty acid content and is predominantly 
found in the brain as a phospholipid. It is a primary structural component of the nerve cell membrane and is essential 
for cell division and signaling [6]. ARA has been shown to control the lengthening of neuronal protuberances by 
acting directly on the protein Syntaxin-3 [7]. Numerous studies in both humans and animals have demonstrated that 
ARA supplementation has profound positive effects on the neural development and cognitive function of infants and 
toddlers [8-11]. Furthermore, cognitive function degrades with normal aging, and ARA supplementation can improve 
cognitive function by retaining hippocampus’ plasticity, lowering amyloid-protein deposition, and modulating synaptic 
transmission [12-13]. The excellent bioactivity of ARA has contributed to its widespread use as a health supplement and 
infant formula.

ARA is available in trace amounts and cannot be used for large-scale production, although it can be found in meat, 
fish, eggs, and dairy products. In recent years, single-cell triglyceride oil produced by Mortierella alpina has become 
a reliable source of ARA [14]. However, the bioavailability and oxidative stability of ARA-rich triacylglycerols are 
deficient [15].

Phosphatidylcholine (PtdCho) is the most abundant phospholipid in mammalian cells, typically constituting 40-
50% of total cellular phospholipids. It serves as a crucial component in the formation of biological membranes [16]. 
Furthermore, PtdCho plays a crucial role in metabolic health as a significant supplier of choline, which is a crucial 
dietary nutrient necessary for the synthesizing neurotransmitters and methyl donors [17]. Hence, PtdCho is an appealing 
product extensively employed in the food and pharmaceutical industries as an emulsifier, nutritional supplements, and a 
constituent in pharmaceutical formulations, among other applications. 

Studies have shown that ARA-rich PtdCho demonstrated higher incorporation efficiency in tissues than ARA-
rich triacylglycerols [18]. Additionally, fatty acids in the PtdCho form are more readily absorbed in vivo compared 
to their respective triacylglycerol or ester forms [19]. This indicates that ARA-rich PtdCho can perform the functions 
of phospholipids and ARA functions more effectively. Furthermore, ARA-rich PtdCho has been reported to possess 
beneficial biological properties such as enhancing cognitive function, promoting growth and development, and acting as 
an anti-inflammatory agent [20-21]. These advantages make PtdCho a more competitive form of the fatty acid carrier to 
improve the absorption and activity of ARA. On the one hand, the composition of natural phospholipids is constrained; 
on the other hand, it is particularly difficult to isolate specific phospholipids [22]. Hence, it is necessary to prepare high 
content ARA-rich PtdCho for further applications. 

Structured phospholipids are synthesized using chemical and enzymatic methods. In the chemical method, the 
functional groups of phospholipids, such as polar head groups and carbon-carbon double bonds, react with chemicals 
[23]. However, some chemical reagents have poor safety which restricts their application in the field of food. The 
enzymatic production of structured phospholipids has various benefits over chemical methods, including gentle reaction 
conditions, high catalytic efficiency and good position selectivity [24]. However, enzymatic synthesis is still plagued 
by high process costs, low substrate conversion rates, and challenges in scaling-up production. Selecting appropriate 
substrates with optimal lipase activity is the foundation for improving the yield of the target products. Meanwhile, the 
yield and purity of the eventual products are significantly affected by process variables such as the reaction medium and 
acyl migration [23]. Therefore, experimental designs have been proposed to optimize the critical parameters in a given 
system.
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Although there have been multiple studies on the enzymatic production of phospholipids rich in n-3 PUFA, the 
synthesis of ARA-rich phospholipids has rarely been reported. Depending on the type of acyl donor, PUFA-rich PtdCho 
is synthesized mainly through the acidolysis of unesterified fatty acids with PtdCho and transesterification of fatty acid 
ethyl esters (EE) with PtdCho [25]. Generally, acidolysis is carried out under milder conditions because of the chemical 
instability of unesterified fatty acids [26]. Therefore, ARA-rich EE, as the primary product of ARA on the market, is a 
suitable raw material for transesterification to synthesize ARA-rich PtdCho. Moreover, lipases and phospholipases of 
diverse origins can be used as catalysts. They modified the specific fatty acid sites on the lipid glycerol backbone [27]. 
Immobilized lipases have recently gained popularity because of their excellent economy, durability, and selectivity [28]. 
Considering that the synthesis of ARA-rich PtdCho has received little attention, it is essential to identify lipases with 
extraordinary catalytic performance to produce ARA-rich PtdCho.

The purpose of this research was to evaluate the impact of catalytic conditions on the incorporation of ARA into 
PtdCho, including types of enzymes, the mass ratio of substrates, reaction medium, and reaction time. Moreover, we 
identified the composition and molecular species of synthesized phospholipids by 31P nuclear magnetic resonance (NMR) 
and liquid chromatography-tandem mass spectrometry (LC-MS/MS). We offer a new reference for the synthesis of 
ARA-rich phospholipids that serve crucial nutritional functions.

2. Materials and methods
2.1 Materials

ARA-rich ethyl ester (ARA-rich EE, purity > 90%, used as raw material) was obtained by Macklin Biochemical 
Co., Ltd (Shanghai, China). Phosphatidylcholine (PtdCho, purity > 90%, used as raw material) was provided by Yuanye 
Bio-Technology Co., Ltd (Shanghai, China). Phospholipase A1, immobilized lipozyme RM IM, immobilized lipozyme 
TL IM, and immobilized Novozym 435 were obtained from Novozymes (China) Investment Co., Ltd (Shanghai, China). 
Standards of 37 methylated fatty acids mix, sn-glycero-3-phosphatidylcholine (PtdGro), lysophosphatidylcholine 
(LysoPtdCho), and phosphatidylcholine (PtdCho) were purchased from Sigma-Aldrich (St. Louis, USA). HPLC-grade 
n-Hexane and isopropanol were obtained from Thermo Fisher Scientific (Auckland, New Zealand). The analytical grade 
was used for all other solvents and chemicals.

2.2 Transesterification of PtdCho with ARA-EE 

Transesterification reactions catalyzed by enzymes were conducted to investigate the impact of conditions on the 
incorporation of ARA into PtdCho, including types of enzymes, the mass ratio of ARA-rich EE and PtdCho, reaction 
medium, and reaction time. First, four different lipases (phospholipase A1, immobilized Lipozyme RM IM, immobilized 
Lipozyme TL IM, and immobilized Novozym 435 at 15% by weight of total substrates) were selected for catalyzing the 
reaction. ARA-rich EE and PtdCho were mixed at a mass ratio of 3:1 in 2 mL hexane solvent and reacted for 24 h at 55 
°C under N2. Subsequently, under the catalysis of the optimized lipase (15% by weight of total substrates), ARA-rich 
EE and PtdCho were mixed at different mass ratios (1:1, 2:1, 3:1, 4:1, and 5:1) in 2 mL hexane solvent and reacted for 
24 h at 55 °C under N2 conditions. Following that, under the catalysis of the optimized lipase (15% by weight of total 
substrates), ARA-rich EE and PtdCho were mixed at the optimal mass ratio in 2 mL different solvents (hexane, toluene, 
heptane, choline chloride-urea (C-U), and choline chloride-glycerol (C-Gly)) and reacted for 24 h at 55 °C under N2 
conditions. Finally, under the catalysis of the optimized lipase (15% by weight of total substrates), ARA-rich EE and 
PtdCho were mixed at the optimal mass ratio in 2 mL suitable reaction media and reacted for 3, 6, 12, 24, and 36 h at 
55 °C under N2 conditions. Each condition described above was repeated three times. The reaction was incubated in a 
magnetic stirrer at 200 rpm and terminated by separating the enzymes from the reactants. The phospholipid precipitate 
was obtained as before and then stored at -20 °C [29].

2.3 Analysis of fatty acid composition 

Before analysis, the solvent in the mixed product was evaporated under vacuum. The phospholipids in the reaction 
mixture were then separated on thin layer chromatography plates with chloroform, methanol, and water (65:25:4, v/v/
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v) as the developing agent [30]. After color development with iodine powder, the PtdCho strips were scraped off and 
resolubilized using chloroform/methanol (2:1, v/v). The reaction product PtdCho was obtained by desolvation following 
centrifugal separation.

The Nexis GC-2030 gas chromatography system (Shimadzu, Japan) was employed to analyze fatty acid, which was 
equipped with a TR-FAME column (60 m × 0.25 mm, i.d. × 0.25 μm). The analysis protocols were described according 
to the literature [31]. And fatty acids were derivatized according to previous report [32]. Briefly, 2 mL of methanol-
potassium hydroxide was added to saponify the lipids at 65 °C, followed by methylation of the fatty acids with 2 mL of 
potassium hydroxide-boron trifluoride at 70 °C. The resulting fatty acid methyl esters (FAME) were introduced into the 
gas chromatography apparatus after HPLC-grade hexane extraction. By contrasting their retention times of fatty acids, 
we identified them using FAME standards.

2.4 Analysis of PtdCho compositions and molecular species in the reaction products 

The phospholipid compositions of the products were analyzed by 31P NMR. The resulting precipitated phase 
(50 mg) was mixed with 0.6 mL chloroform/methanol (2:1, v/v) and then transferred to the NMR tube. The probe 
temperature was set at 25 °C, 90° pulse, and the number of sampling points was 32 k. The sampling time and relaxation 
time were set to 3.22 s and 12.25 s, respectively. The spectrometer frequency and the pulse width were selected as 
161.98 Hz and 11.66 μs. The area percentages of PtdCho, LysoPtdCho, and PtdGro were determined using the relative 
integrated signal responses of the NMR spectra. The internal standard was triphenylphosphate. The data were analyzed 
using MestReNova instrument software. 

A ultra-high performance liquid chromatography (UHPLC) equipment plus Triple TOF 5600 (Q-TOF; AB Sciex, 
Framingham, MA) was used for LC-MS/MS analysis. The chromatographic column was the C18 column (2.1 × 100 
mm, 2.6 μm, Phenomenex). The specific analysis conditions were based on the previous article [33]. The molecular 
species of phospholipids were examined in the negative ion mode. The UHPLC data were opened in the data processing 
software SCIEX OS 2.0.1 and MS1 spectra were extracted to observe the peak widths of the compounds. The molecular 
species of phospholipids containing ARA were determined using the decomposition laws deduced by combining the 
mass/charge ratio and secondary fragment information of each compound. 

2.5 Statistical analysis 

We replicated each experiment three times Then, the significance of the discrepancies among the measured values 
was determined using the analysis of variance (ANOVA) procedure. The data were showed in the form of means ± 
standard deviations (SD). 

3. Results
3.1 Screening of enzymes 

The lipase-catalyzed transesterification reaction used to produce ARA-rich PtdCho is shown in Figure 1. 
The potential of four commercial enzymes to catalyze the ARA-rich EE and PtdCho transesterification reactions 

was investigated. We compared Novozym 435, Lipozyme RM IM, Lipozyme TL IM, and phospholipase A1, all of 
which are widely employed in the production of structured phospholipids. Although the enzymes displayed varying 
activities, we chose to utilize them in an identical weight proportion to lower the overall cost. The initial conditions 
were based on previous studies. 

The following parameters were used for the enzyme screening: lipase as a biocatalyst (15% by weight of 
total substrates), ARA-rich EE/PtdCho mass ratio of 3:1, hexane solvent, and reaction time of 24 h at 55 °C. The 
incorporation of ARA into PtdCho catalyzed by these four enzymes was investigated using gas chromatography. 
The results are shown in Figure 2a. The enzyme screening revealed that Novozym 435 had the best catalytic 
performance, with ARA incorporated into PtdCho by more than 15% after 24 h. Lipases appear to be more efficient 
than phospholipases for the synthesis of structured phospholipids. The amount of ARA incorporated into PtdCho was 
in the following order after 24 h: Lipozyme Novozym 435 > Lipozyme RM IM > phospholipase A1 > Lipozyme TL 
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IM. Among the lipases, Lipozyme TL IM exhibited the poorest catalytic performance for incorporating ARA into 
PtdCho, which follows the results of Chojnacka et al. [34]. Therefore, immobilized Novozym 435 was selected for the 
subsequent experiments to produce ARA-rich PtdCho. 
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Figure 1. Immobilized lipase-catalyzed transesterification of ARA-rich EE with PtdCho

3.2 Effect of substrate mass ratio

The acyl donor concentration is one of the critical parameters affecting transesterification according to the research. 
We examined the effects of the ARA-rich EE/PtdCho mass ratios ranging from 1:1 to 5:1 on ARA incorporation into 
PtdCho. The results are given in Figure 2b. 

The incorporation of ARA into PtdCho was enhanced when the mass ratio of ARA-rich EE/PtdCho was 
changed from 1:1 to 2:1. The maximum incorporation of ARA reached 24.02% with a substrate mass ratio of 2:1. 
Subsequently, the mass ratio of ARA-rich EE/PtdCho was further increased, which resulted in a significant decrease 
in the incorporation of ARA. An excessively mass ratio of substrates could block the diffusion of substrates, making 
it challenging to separate the reaction products. Moreover, excess acyl donors may partially inhibit lipase activity. 
Considering the economy of the process, 2:1 was determined to be the optimal ARA-rich EE/PtdCho mass ratio for 
subsequent investigations.

3.3 Effect of solvents

The effects of hydrophobic solvents, C-U, and C-Gly on the transesterification reaction were evaluated. The results 
are shown in Figure 2c.

The results indicated that we could obtain the maximum ARA incorporation using hexane as the solvent, which is 
similar to the results of Chojnacka et al. [35]. The incorporation of ARA was almost half of that of hexane when toluene 
was used as the solvent. Among the three hydrophobic organic solvents selected, heptane was found to disfavor ARA 
the most. We observed that the high viscosity of the low-eutectic solvent was not conducive to the homogeneous stirring 
of the reactants during the reaction. Therefore, hexane was used as the ideal reaction solvent.

3.4 Effect of reaction time 

Figure 2d shows the results of the Novozym 435 lipase-catalyzed transesterification reaction over time. The amount 
of ARA incorporated into PtdCho steadily increased as the reaction continued. From 12 h to 24 h, ARA incorporation 
increased dramatically, and the highest incorporation was obtained at 24 h. However, the incorporation of ARA 
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showed a decreasing trend over the next 12 h. We speculate that with the prolongation of the reaction time, the PtdCho 
incorporated with ARA underwent hydrolysis again. The reaction time was set to 24 h to achieve the highest ARA 
incorporation. The fatty acid composition of the raw material ARA-rich EE, PtdCho and PtdCho synthesized under 
optimal conditions was determined by gas chromatography, as shown in Table 1.
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Figure 2. The effects of catalytic conditions on the incorporation of ARA into PtdCho were evaluated. (a) Effect of enzyme types on the 
transesterification reactions. (b) Effect of ARA-rich EE/PtdCho mass ratio on the transesterification reactions. (c) Effect of solvents on the 
transesterification reactions. (d) The time course of Novozym 435-catalyzed transesterification of PtdCho with ARA-rich EE. Different lowercase 
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Volume 5 Issue 1|2024| 55 Food Science and Engineering

Table 1. Fatty acid composition (%) of material PtdCho, ARA-rich EE and produced PtdCho

Fatty Acid (%) PtdCho ARA-rich EE produced PtdCho

16:0 14.58 ± 0.01 0.14 ± 0.02 7.74 ± 1.29

18:0 4.35 ± 0.01 - 4.07 ± 0.86

18:1n-9 9.80 ± 0.06 0.45 ± 0.01 7.63 ± 0.25

18:2n-6 65.37 ± 0.08 0.60 ± 0.02 51.77 ± 0.91

18:3n-3 5.90 ± 0.02 - 3.23 ± 0.04

20:0 - 4.37 ± 0.02 1.54 ± 0.09

20:4n-6 - 94.44 ± 0.02 24.02 ± 1.40

3.5 Identification of reaction products

The products were obtained under the optimized conditions, including Novozym 435 as a biocatalyst, an ARA-
rich EE/PtdCho mass ratio of 2:1, hexane as the solvent, and a reaction time of 24 h under N2. Their compositions and 
molecular species were analyzed using 31P NMR and LC-MS/MS. 
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Figure 3. 31P NMR results of PtdGro, sn-1 acyl LysoPtdCho, sn-2 acyl LysoPtdCho and PtdCho in reaction products 
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The 31P NMR spectra of the reaction products are shown in Figure 3. As shown in Table 2, the PtdCho content 
decreased to 17.53% after 24 h of reaction, while the PtdGro, sn-1 acyl LysoPtdCho, and sn-2 acyl LysoPtdCho contents 
increased to 62.43%, 12.47%, and 7.57%, respectively. The lipase used in our experiments is highly selective for the 
sn-1 position of phospholipids, and preferentially hydrolyze the sn-1 position to generate sn-2 acyl LysoPtdCho [30, 
34]. According to the current reaction mechanism of enzymatic synthesis, weak acyl migration occurs during the 
transesterification [19]. The sn-1 acyl LysoPtdCho generated by acyl migration, followed by further hydrolysis to create 
PtdGro, likely caused the observed phospholipid composition. 

Table 2. Phospholipid composition of the reaction product

Phospholipids Contents (%)

PtdGro 62.43 ± 2.75

sn-1 acyl LysoPtdCho 12.47 ± 1.23

sn-2 acyl LysoPtdCho 7.57 ± 1.56

PtdCho 17.53 ± 2.56

LC-MS/MS was used to identify the ARA-containing PtdCho species in the produced products. We identified six 
ARA-containing PtdCho species, and the detailed information is provided in Table 3. The PtdCho molecules containing 
ARA were mainly identified as PtdCho (18:2/20:4) and PtdCho (18:1/20:4) based on the corresponding peak areas. The 
specific secondary mass spectrum information is shown in Figure 4. 

Table 3. Identification of ARA-rich PtdCho species in reaction products

Lipid class Molecular species Adducts m/z Retention time (min)

PtdCho PtdCho (16:0/20:4) [M + OAc]- 840.5760 7.813

PtdCho (18:0/20:4) [M + OAc]- 868.6073 8.292

PtdCho (18:1/20:4) [M + OAc]- 866.5917 8.310

PtdCho (18:2/20:4) [M + OAc]- 864.5760 7.205

PtdCho (18:3/20:4) [M + OAc]- 862.5604 6.354

PtdCho (20:4/20:4) [M + OAc]- 888.5760 6.742

LysoPtdCho LysoPtdCho (20:4) [M + OAc]- 602.3464 1.821
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Figure 4. Secondary mass spectra of PtdCho (18:0/20:4), PtdCho (18:1/20:4), PtdCho (18:2/20:4), PtdCho (18:3/20:4) and PtdCho (20:4/20:4)

4. Discussion
The ARA-rich PtdCho obtained using Novozym 435 lipase reached 24.02% at 24 h under the optimized conditions. 
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At present, researchers prefer to incorporate medium-long chain fatty acids such as caprylic and decanoic acids and 
long-chain fatty acids such as conjugated linoleic acid and eicosapentaenoic acid (EPA) into phospholipids [25, 36-
38]. Few studies have focused on the enzymatic transesterification of ARA incorporated into phospholipids, and the 
functional advantages of ARA-rich PtdCho have been overlooked. Our study broadens the synthesis and application of 
structured phospholipids rich in n-6 PUFA.

Production of ARA-rich PtdCho is based on the utilization of appropriate arachidonic donors. Unesterified ARA 
or ARA in the ester form can be subjected to acidolysis or transesterification reactions to obtain the desired product. 
However, transesterification may be more appropriate than acidolysis for generating ARA-rich phospholipids. In a study, 
Chojnacka et al. [30] examined the effect of transesterification and acidolysis on the incorporation of myristic acid into 
PtdCho. They found that the incorporation of myristic acid in the hexane system was up to 44% when the substrate 
molar ratio (PtdCho/trimyristin) was 1:5, and the enzyme loading was 30% after 48 h of reaction. Compared with the 
26% incorporation obtained from the acidolysis reaction, the interest in trimyristin on PtdCho resulted in a higher 
incorporation of myristic acid. In a previous study, the reaction of PtdCho with PUFA-rich EE resulted in structured 
phospholipids with high EPA and DHA incorporation [39]. To achieve a high rate of ARA incorporation, ARA-rich EE 
were employed as an acyl donors in this study. 

The high substrate ratio between the ARA-rich EE and PtdCho promoted the incorporation of ARA into PtdCho. 
Excessive acyl donors contribute to the phospholipid solubility, which strengthens the mass transfer surrounding the 
enzyme and causes a higher incorporation of ARA [40]. However, the incorporation of ARA may decrease once the 
optimal ratio is reached and the amount of ARA-rich EE continues to increase. The additional ARA-rich EE makes 
the reaction system more viscous, which impedes the diffusion of substrates and reduces the possibility of molecular 
collisions [23]. A higher stirring intensity allows the substrate to be mixed uniformly, and the enzyme effect is 
unrestricted by substrate diffusion [41]. However, the use of a higher substrate mass ratio is not economically beneficial. 
This study achieved the optimal incorporation effect by using a substrate ratio of 2:1 for ARA-rich EE/PtdCho in the 
selected hexane system. 

Four commercial enzymes were used to manufacture the ARA-rich PtdCho. Immobilized lipases are frequently 
used in the synthesis of structured phospholipids because of their excellent catalytic activity, high stability in the reaction 
system and simplicity of recycling [42]. Lipozyme RM IM and lipozyme TL IM are specific to the sn-1,3 region, 
whereas the Novozym 435 is classified as non-specific [43]. Phospholipase A1 primarily acts on phospholipid bonds 
at the sn-1 position and demonstrated superior catalytic properties in incorporating medium and long-chain fatty acids 
into phospholipids [23]. Although phospholipases are capable of catalyzing the production of structured phospholipids, 
their low productivity and high cost preclude their widespread application [22]. Our screening results revealed that the 
effect of lipase on the incorporation of ARA into PtdCho was equal to or even better than that of phospholipase. Similar 
to our results, Chojnacka et al. [35] achieved a higher n-3 PUFA incorporation when employing immobilized lipase as 
the enzyme catalyst compared to immobilized phospholipase A1. Of particular note, Novozym 435 exhibited the highest 
ARA incorporation rate among the three immobilized lipases. Several studies have shown that Novozym 435 has the 
highest efficiency in catalyzing the incorporation of citronellic acid, punicic acid, and n-3 PUFA into phospholipids [34-
35, 42]. This suggests that Novozym 435 holds potential for the synthesis of various structural phospholipids.

The majority of the reaction systems are either solvent-free or organic solvent systems. And ARA-rich EE, PtdCho 
and solvent interactions determine the incorporation efficiency of ARA in this reaction. Due to non-uniform stirring, 
solvent-free systems may suffer from low reaction rates and difficult product separation [44]. Therefore, solvent-free 
systems may require more ARA-rich EE to increase the solubility of phospholipids. In a research, Wang et al. [25] 
found that the maximum incorporation of n-3 PUFA reached 33.5% in the solvent-free system when the mass ratio of n-3 
PUFA-rich EE/PtdCho was 6:1, which was similar to the research of Li et al. [45]. In these investigations, the amount 
of acyl donors employed was substantially more than the amount of ARA-rich EE in the current study. The existence 
of solvent will enhance the mixing of the reaction substrates and facilitate the removal of subsequent enzymes [46]. 
The maximum ARA incorporation rate was found in the hexane system, where hexane, as a hydrophobic solvent, could 
hold an essential layer of water around the enzymes. According to published reports, the most appropriate solvents to 
utilize in lipase-catalyzed systems are those with log P values from 2 to 4 [44]. The log P value refers to the solvent-
water partition coefficient for organic solvents, serving as a quantitative measure of solvent polarity. For solvents with 
water solubility exceeding 0.4%, their log P are below 2, as strong interactions exist between water and biocatalysts, 

file:///D:/%e6%88%91%e7%9a%84%e6%96%87%e6%a1%a3/%e6%a1%8c%e9%9d%a2/FSE-3637/javascript:;
file:///D:/%e6%88%91%e7%9a%84%e6%96%87%e6%a1%a3/%e6%a1%8c%e9%9d%a2/FSE-3637/javascript:;


Volume 5 Issue 1|2024| 59 Food Science and Engineering

rendering such solvents unsuitable for biocatalysis. Solvents with log P greater than 4 are highly hydrophobic and do 
not disrupt the crucial water layer, preserving the biocatalyst’s activity. Solvents with log P values between 2 and 4, 
where water solubility falls between 0.04 and 0.4%, exhibit higher activity in systems with relatively low substrate 
polarity [47]. However, employing organic solvents has several areas for improvement, including the requirement of 
subsequent processing, potential environmental issues, and the high costs of the large-scale production [27]. Therefore, 
the application of low eutectic solvents in the transesterification of structured phospholipids required further research 
and exploration.

The molecular species of ARA-rich PtdCho were identified by LC-MS/MS. Due to the great selectivity of lipase 
for acyl sites in phospholipids, the ARA-rich PtdCho is mostly one ARA molecule bound to one structural phospholipid 
in contrast to the chemical approach. Furthermore, hydrolysis is an inevitable side effect of the enzyme-catalyzed 
phospholipid transesterification. When the composition of phospholipids was identified by 31P NMR, we observed that 
the PtdCho was converted into significant amounts of LysoPtdCho and PtdGro. Similar results were reported in many 
studies, where the PtdCho content decreased substantially while the by-product content increased considerably when 
the reaction was finished [25, 36]. The water used for phospholipid hydrolysis in our method is mainly derived from the 
substrate. Therefore, adjusting the water to a suitable level in the reaction may be critical for phospholipid production. 
Subsequent studies can regulate water content by drying substrates or equilibrating systems with saturated salt solution 
[41, 45, 48].

In summary, this study successfully synthesized ARA-rich structured phospholipids using ARA-rich EE and 
PtdCho catalyzed by Novozym 435 lipase. Under the optimized condition, the maximum amount of ARA incorporated 
into PtdCho was 24.02%. The results demonstrated that Novozym 435 lipase serves as an advantageous biocatalyst in 
the production of structured phospholipids. Based on the 31P NMR results, we found that the hydrolysis of PtdCho in 
our system is relatively high. In future research, enzyme engineering can be employed to modify enzyme molecular 
structures or screen novel enzymes more suitable for specific reactions. Designing and screening appropriate carriers 
for enzyme immobilization could achieve highly efficient and specific catalysis on substrates. The enzymatic synthesis 
process can be combined with other physical or chemical auxiliary methods to enhance production efficiency. In 
addition, future studies need to further explain the mechanism of acyl migration and aim to explore more effective 
methods to regulate substrate hydrolysis. In conclusion, ARA-rich PtdCho has a promising production application as a 
more competitive form of fatty acid carrier.
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