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Abstract: Edible coatings are emerging as a significant trend in the food industry, driven by growing consumer interest 
in environmental issues, mainly due to concerns about the excessive use of plastics. This study aimed to perform an 
integrative review to identify the materials used to produce edible films and characterize their applicability for food 
quality and conservation. For this, the descriptors “edible films” or “edible coatings” and “food quality” or “food 
preservation” or “food safety” were used in the Science Direct database, resulting in 48 articles selected. Fruits and 
vegetables are the two food groups most studied with coatings based on hydrocolloids, protein, composite films, and 
lipids, with a greater emphasis on the positive impacts on their quality and conservation. Animal products have a higher 
frequency of studied antimicrobial effects. There is a diversity of materials used in coatings: vegetable-based, such as 
algae, mucilages, and fibers, as well as those of animal origin, such as gelatin and protein hydrolysates. Few studies 
have addressed sustainability concepts as final characteristics of coatings. In conclusion, edible coatings show promise 
for the food industry, offering benefits for both food and the environment. However, more studies are needed to fully 
explore their potential as replacements for conventional plastics, while ensuring safety and regulatory compliance.
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1. Introduction
Food packaging has essential attributes, from protection, storage, and delivery functions to aspects such as ease of 

use and providing information about the product. Packaging can retain the beneficial effects of processing, extend shelf 
life, delay food deterioration, and maintain and/or increase the quality and safety of products, which consequently offer 
protection against three main classes of external influences: chemical, biological, and physical [1, 2].

Among the different materials used in its composition, plastics are mainly derived from petrochemical sources [3] 
and are widely used in the food industry, as they present low production costs, durability, good mechanical properties, 
and resistance to oils and chemicals [4]. However, because of the prolonged decomposition time, plastic food and 
beverage packaging is the greatest contributing source of global plastic pollution [5].
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Plastics derived from fossil hydrocarbons accumulate in the environment (soil, waters, and coasts) and can become 
microplastics as well as accumulate in marine environments [6-8]. Furthermore, the use of plastics can cause harm to the 
health of humans and animals due to microplastics, the effects of which are not yet completely understood [9]. However, 
microplastics do exist in the air as well, resulting from plastic packaging and inadequate disposal, and have resulted 
in harmful effects on respiratory health [10]. However, conventional plastics generally have good elongation, high 
tensile strength and tensile failure, and relatively low elasticity [11]. Thus, there is a clear need to develop strategies 
that can replace the use of this material in food packaging to reduce its environmental impacts. Research that promotes 
the development of biofilms or edible coatings for direct application to food aims to achieve final products with good 
mechanical properties similar to plastics.

Additionally, the use of agri-food waste or even food waste, which could become co-products, is another relevant 
factor in minimizing damage caused to the environment. The fruit and vegetable processing industries contribute greatly 
to the production of these co-products. Approximately 50% of the waste generated consists of by-product, such as 
shells, almonds, and bagasse (immature or damaged) [12, 13]. These can be useful for new products or even be part of 
the constitution of food covering systems.

The growing concern from consumers about the environmental and health impact of synthetic plastics has driven 
the search for alternative, biodegradable, and renewable packaging. These materials preserve the freshness of products 
for longer and reduce degradation and methane emissions linked to food waste. However, many consumers are 
unaware of the beneficial potential of alternative forms of packaging. In the future, ideal packaging will maximize food 
utilization and minimize environmental impact [14, 15]. In this context, biodegradable materials, produced naturally or 
synthetically, are a promising alternative for the formation of coatings or biofilms, since they decompose after fulfilling 
their purpose, and become assimilated or mineralized in the environment by decomposition or even digestion, and even 
may be edible [16].

Edible films and coatings are layers of biomaterials that can be consumed with food [17], with elaborative 
differences. While the edible coating is formed directly on the food, the elaborated edible film is then adhered to the 
product [18]. In addition to being biodegradable, they can be from natural waste, in addition to promising results for 
application in food such as inhibition of microorganisms, prevention of oxidation, improvement of nutritional value, 
increase of shelf life, and even health promotion [19]. The improvement in food shelf life from films and coatings is 
due to protection against UV light, transport of solutes, water vapor, and organic vapors or gasses between the food 
and the atmosphere, in addition to other potential properties provided by bioactive components, antimicrobials, and 
healthy microorganisms incorporated into the biopolymer system [18]. Chitosan, for example, is a main biomaterial 
used for edible films and coatings for food due to its good film-forming properties and biological properties that include 
antimicrobial, antifungal, and antiviral, and low toxicity effects [20].

Despite the hydrophilic nature of edible coatings, which limits their mechanical and barrier properties compared 
to plastic, some technologies are used as multilayers, nanotechnology, or oils to minimize the moisture barrier [14, 21]. 
However, the toxicological data available regarding edible coatings is not yet well understood and needs to be evaluated 
for safe consumption [19, 21-23]. The development of these types of coatings is emerging and has been widely explored 
regarding their basic raw materials, application, and contribution to the quality of the coated food. Thus, this study 
aimes to identify and characterize the often materials used to produce edible coatings and their applicability to food 
quality and conservation.

2. Materials and methods
This study is an integrative descriptive review with defined data search criteria. The research was carried out from 

May to July 2023 on the Science Direct database using terms indexed in DeCS, with Boolean operators, such as “edible 
films” or “edible coatings” and “food quality” or “food preservation” or “food safety”, resulting in 1,087 results.

The search filters used were articles from the last five years (2018-2023), original research articles, and those with 
full open access to the database. The exclusion criteria were articles that included other types of films and coatings with 
functions outside of food application, or that were developed but not tested in food. With these criteria, the total number 
of articles used for the results was 55.
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The data from the studies were described and evaluated regarding the type and composition of the coating used, 
whether it presented active or signaling (intelligent) action, the description of the food tested, whether the composition 
of the coating was from the reuse of waste/other foods or no, properties and impact on food, and when clarified, what 
were the mechanical properties of these coatings. The positive impacts of applying edible coatings to different food 
groups were categorized to assess the frequency of these effects.

3. Results
The coatings used in eligible studies and tested on specific foods were categorized as follows: hydrocolloids (18), 

proteinaceous (4), lipids (2), and composite films (23). The food groups evaluated in the studies were the following: 
fruits (19), vegetables (9), mushrooms (1), cheeses (8), sausages (4), meats (2), fish (2), sweets (2), seafood (1) and 
bread (1). It is notable the diversity with which edible coatings can currently be applied to various foods, from the 
vegetable group to those of animal origin and also preparations, for example, in baked goods.

Regarding the raw materials used as base ingredients in the formation of coatings (Table 1), there are diverse 
materials used from plant origin, such as algae, fibers, mucilages, and starches. Animal origin includes different gelatins, 
chitosan, and protein derivatives, such as hydrolysates. Regarding bioactive ingredients, plant extracts or essential oils 
are already recognized as having antioxidant and/or antimicrobial effects (such as cinnamon, clove, turmeric, acerola, 
thyme, oregano, jackfruit); synthetic preservatives already used in industry such as sodium metabisulfite, strains with 
probiotic recognition (Lactobacillus) and also the use of bacterial peptides, such as bacteriocins (nisin). In studies, these 
bioactive components contributed to positive effects on food quality, as well as the textural properties of coatings.

It is relevant to highlight that in some studies, besides raw materials and bioactive compounds, other procedures 
improved the positive effects on food safety and conservation. Packaging systems, such as modified atmosphere 
packaging (MAP), have been used along with compound and lemon dairy sweets [24, 25] and vacuum packaging 
of fresh curd cheese [26]. Other conservation technologies, such as ultraviolet (UV)-A light have been applied to 
cheeses [27], photodynamic therapy (PDT) in fresh cheeses [28], gamma radiation in tomatoes [29], and photodynamic 
inactivation of microorganisms (PDIM) in ricotta [30].

Ahmad et al. [31] demonstrated that chemical crosslinking in edible coatings is an easier and more cost effective 
option and can produce the much-needed improvement for membrane optimization. Table 2 shows a summary of 
the studies by Ahmed et al. [31] and Castro-Muñoz et al. [32] that evaluated different crosslinker agents and their 
effects on three polymers (6FDA-ODA, 6FDA-ODA:DABA, and poly (vinyl alcohol)/graphene oxide, respectively). 
Crosslinking agents produce polymers with a bonded network, which directly influences the density, permeability, and 
final properties of the coating material [31]. Depending on the type of crosslinker agent, there are significant differences 
in the permeability and selectivity to CO2/CH4 and in the stiffness and losses of the fractional free volume (FFV) of the 
membranes. A reduction in FFV occurs when the crosslinking agent is a short rigid compound or contains hydrogen 
bond donor/acceptor functional groups, as opposed to a bulkier crosslinker, which due to the compaction of the internal 
packing of its aromatic group, promotes a low reduction in FFV [31].

Regarding the positive impacts of coatings on food, the most frequent attributes were categorized as “shelf/shelf 
life”; “nutrient/antioxidant preservation”; “quality and appearance”; and “antimicrobial effect” which are shown in 
Figure 1.

In the “shelf life” category, positive results are included in the foods tested compared to control food, such as 
increased shelf life, conservation and delay in ripening, lower respiratory rate, and inhibition of ethylene synthesis. The 
“preservation of nutrients/antioxidants” category demonstrates studies that addressed the effects of which nutrients and 
antioxidants were preserved, such as ascorbic acid and phenolic compounds, among others, and that there was stability 
of lipid and/or protein oxidation. Regarding shelf life extension, many studies have evaluated the preservation of coated 
versus uncoated foods within an experimental test period that ranged from 21 days to 180 days. Some studies have 
identified an increase in the total shelf life of foods compared to control samples, with an average of 15.5 ± 8.0 days 
for fruits and vegetables (n = 12 studies), an average of 16.0 ± 7.0 days for cheeses (n = 2 studies) and an average of 21 
days for meats (n = 1 study).
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Table 1. Characteristics of edible coatings: composition, bioactive ingredients and tested foods

Food groups Types of 
coatings Raw material Bioactives Reference

Fruits, 
vegetables 
and Fungi

Fruits

strawberry (2), 
melon (2), 
lemon (2), 
grape (2), 

blackberry (2), 
pear, sapodilla, 

star fruit, tangerine,
banana, apple,
guava, umbu,

mango, papaya 
and avocado.

HC,
PT,
CF

sodium alginate, chitosan, tuna 
shell gelatin, glycerol, agarose, 

neem gum, Chlorella sp biomass 
powder, locust bean gum, 

hydroxypropylmethylcellulose 
(HPMC), beeswax (BW), 

silk fibroin, pectin, whey protein,
lemon bean starch, coconut oil, 

Nature Seal, potato starch, cashew
gum, gelatin, zein, shellac, 

carboxymethylcellulose (CMC).

sodium metabisulfite, black tea
extract, nanohydroxyapatite

(nHA), curcumin, pomegranate
seed oil, limonene liposome,
sodium chloride, stearic acid,
glacial acetic acid, bioactive

whey protein peptides, 
lactic acid, 

essential oil cumin, thymol.

[22, 33-50]

Vegetables and 
Mushroom

tomato (5) and
cherry tomatoes,

cucumber (2), 
carrot (2), 

lettuce, radish,
yellow pepper, 

red pepper, pepper,
Kapia pepper,

potato and 
zucchini, fresh

Agaricus bisporus.

HC, 
CF, 
LP

neutral glycerides, C16-18 fatty
acids, chitosan, sodium alginate,
glycerol, carnauba wax, starch,

gelatin, zein, potato starch, pectin,
whey protein isolate, xanthan gum,

glycerol monostearate, dextrin.

oils essential oils 
(thyme, oregano), 

α-dl tocopherol acetate, 
lactobacilli (Lactobacillus 

paracasei), jackfruit extract,
clove oil, olive oil, 
purified oleuropein.

[26, 51-58]

Cheeses

Traditional
fresh cheese (2),

kalari cheese,
coalho cheese (2),
ricotta, mozzarella.

HC, 
CF, 
PT

alginate, carrageenan, ethanolic
residue from the pulp of the 

Ziziphus joazeiro fruit 
(POLIJUA), whey protein, 

guar gum, alginate-maltodextrin-
glycerol, hydroxyethylcellulose.

citric acid, T. bellerica extract
0.5%, juá, Chinese cinnamon
bark, natamycin, P. commune.

[26, 28, 30, 
59-62]

Vegetarian tofu CF furcellaran (algae) and soybean
meal protein hydrolysates. - [63]

Meat products

Sausages
sausage, pork 
ham, meatball 

and beef burger.

HC, 
CF, 
PT

glycerol, bovine gelatin, cassava 
gelatin (hydrogel), 

chitosan/furcellaran, 
rice husk, chitosan, alginate.

curcumin, bacterial peptides
(RW4 and LL-37), acerola

pomace extract, erythrosine,
liquid smoke.

[27, 64-66]

Meats
slice of beef and 

chicken, and 
meatballs.

HC, 
CF

sodium alginate, 
κ-carrageenan/konjac 

glucomannan, chitosan.

cinnamon and nisin essential
oil nanocapsules,

bacteriophage (pbse40),
liquid smoke.

[67, 68]

Fishes croaker, fish fillets,
chikuwa fish.

HC, 
CF

sodium alginate, chitosan
nanoparticles, collagen, liquid

smoke from coconut
shell + chitosan.

Cinnamon, perilla essential oil,
liquid smoke. [69-71]

Seafoods black tiger shrimp. CF chitosan-gelatin. longkong pericarp extract. [72]

Bakery and 
confectionery 

products

Sweets
kulfi ice cream and 

compound dairy 
sweets.

HC carrageenan, corn starch, glycerol. Aloe vera, nisin and natamycin. [12, 73]

Bread Wheat bread. CF sodium caseinate + chia mucilage 
and glycerol.

probiotic (Limosilactobacillus
fermentum-NKN51 and 

Lactobacillus brevis-NKN52).
[74]

HC-hydrocolloids; PT-protein; CF-composite films; LP-lipids
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Table 2. Effects of the crosslinking agents with different polymers in the membranes for edible coatings

Crosslinker 
agents Polymer

Permeability Selectivity Thermal stability Mechanical stability

CO2 CH4 αCO2/CH4 Advantages Disadvantages Advantages Disadvantages

- 6FDA-ODA 43.8 1.5 29.9 - - - -

m-xylene 
diamine - 10.6 0.2 58.8

Better effectiveness 
among crosslinkers.

Lower FFV 
reduction.

- large and rigid 
crosslinker. -

n-ethylamine - 7.8 0.2 37.5 Effective High FFV 
reduction. - -

n-butylamine - 8.8 0.2 42.9 Effective High FFV 
reduction. - Short rigid 

compound.

- 6FDA-ODA: 
DABA 36.7 2.1 17.7 - - - Short rigid 

compound.

EGmSal-
ethylene glycol 
monosalicylate

- 10.7 0.2 43.0 Increased selectivity 
(143%). - -

limitation of
movement due
to rigidity of

polymer chains.

EGAn-
anhydrous 

ethylene glycol
- - - - -

brittleness and 
cracks in the 
membrane.

-
highly rigid and 

shorter
component.

FeAc-
thermally labile 

iron(III) 
acetylacetonate

- 47.2 1.2 40.0

Improved 
performance 

(126% and 29%
increase in selectivity

and permeability,
respectively). Ideal

separation at
2% by weight).

-
preservation of 

membrane
integrity.

highly rigid 
and shorter 
component.

-
poly(vinyl 
alcohol) 
(PVA)

- - - Effective losses in 
selectivity.

Overall
improvement

(Young’s modulus,
tensile strength 
and elongation

at break).

highly rigid 
and shorter 
component.

Graphene oxide 
(GO) 0.5% - - - -

Better performance 
(75% increase);

acceptable separation 
factor (2.63 at 40 °C). 

Better water
transport.

losses in 
selectivity.

Overall
improvement

(Young’s modulus,
tensile strength
and elongation

at break).

-

Graphene oxide 
(GO) 1% - - - - - losses in 

selectivity. - -

Graphene oxide 
(GO) 2% - - - - - - -

no improvement 
in mechanical 

properties.

FFV: Fractional free volume. Data from Ahmad et al. [28] and Castro-Muñoz et al. [29]
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Figure 1. Frequency of positive impacts of coatings on different food groups

The “quality/appearance” category includes studies that presented positive aspects for food quality and conservation 
and foods with coatings that had good evaluations in sensory analysis tests, both aspects that were compared with the 
control group. In addition to these, studies also highlighted effects such as less weight or mass loss, acidity control, 
maintenance of texture, firmness and/or rigidity, reduction of enzymatic browning, improvement of appearance, less loss 
of total soluble solids, stability of color, brightness, and freshness, better sensory parameters, among others related to 
quality preservation. Regarding the “antimicrobial effect” category, the frequency of studies with results relating to food 
safety in general, with coatings with antimicrobial, antibacterial, antifungal action, with the presence of probiotics, and 
also with characteristic non-toxic according to current requirements for consumption and increased safety. 

In Figure 1, there was a higher frequency of positive impact to improve the quality and appearance of fruits and 
vegetables (n = 27) and a higher frequency of antimicrobial effects evaluated in products of animal origin (n = 15). 
This result is compatible with the nature of these food matrices, given that, for fruits and vegetables, controlling the 
post-harvest respiratory rate is relevant to preserve quality and reduce breathing speed, and for dairy foods and meat, 
inhibiting the growth of pathogens leads to longer shelf life.

Although edible coatings have a composition of biodegradable raw materials or can be co-products and 
materials from agroindustry and food waste, few studies have highlighted this sustainability characteristic. The terms 
‘biodegradable’ and ‘profitable’ were included in only five studies, one in 2021 and 2022, and three in 2023.

4. Discussion 
The types of edible coatings can be classified according to the materials used in their preparation, such as 

hydrocolloids (cellulose, chitin, and chitosan, starch or gums), proteinaceous (gelatin, corn zein, collagen and casein), 
lipids (waxes, paraffins, fats and oils) or composite films (combination of hydrocolloids, proteins and/or lipids) [17]. 
The preference for composite films among the coatings used by different films obtain a final product with better 
permeability and mechanical properties for specific applications. The combination of types of films makes it possible to 
take advantage of each one, enhancing their functions and resulting in a more efficient coating to meet the technological 
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needs of the foods used [17].
Signaling or “smart” edible coatings use an indicator to provide some signalization to the food and can perform 

intelligent functions, such as communication through thermal indicators, leak indicators, freshness indicators, pH 
indicators, sensors, and radio frequency identification tags, among other advanced technologies [19]. In edible coatings, 
indicators are polymers-based and incorporated with anthocyanins, which allow a visible colorimetric change to inform 
consumers about the quality and safety of foods available for consumption [3].

Furthermore, edible coatings can also perform active functions by incorporating bioactive compounds, such as 
antioxidants, micronutrients, antimicrobials, natural dyes, and pigmentation agents. Some coatings may even include 
live microorganisms, including probiotics, providing additional health benefits to the consumer [20]. This combination 
of intelligent and active properties makes edible coatings a versatile and innovative solution for the food industry.

One study demonstrated coatings applied to food had specific negative effects. This study used furcellaran (an 
algae-derived polysaccharide) and soybean meal protein hydrolysates as coatings for tofu [30]. However, the results 
showed a higher loss of mass, an unfavorable effect on color, ineffectiveness in inhibiting the growth of microorganisms, 
and a lack of efficiency in inhibiting lipid oxidation. Notwithstanding such consequences, further investigations are 
underway to mitigate the negative impacts of using coatings for tofu. Furthermore, certain coatings used on fruits and 
vegetables exclude co-products from animals in their composition, which is significant for vegans. 

The sustainability findings are relevant to promote the use and supply of foods with edible coatings, as there is a 
tendency to change the packaging concept due to consumer concerns about plastic pollution and agri-food waste [5]. 

An example of a study about agri-food waste is tuna shells with chitosan, glycerol, and 15% black tea extract as 
a coating for minimally processed papaya. In this study, the coating was able to suppress microbial growth and extend 
the shelf life of papaya by ten days, in addition to reducing weight loss and preserving the texture and firmness of the 
fruit [34]. As well, 4% acerola pomace with bovine gelatin and glycerol had an antioxidant effect on the beef burger, 
delayed lipid and protein oxidation, increased shelf life, and reduced the formation of total carbonyl compounds and 
malonaldehydes by 23.58 and 60.14%, respectively [66].

Regarding food packaging, mechanical and barrier properties can be provided to improve food safety. These 
properties determine the behavior of a material when subjected to external forces. The mechanical properties analyzed 
in the studies were elongation, thickness, tensile rupture, tensile strength, and modulus of elasticity. Among these, some 
ingredients added to the formulations promoted texture improvements, such as citric acid [25] and aloe vera extract [73].

It is relevant to consider the characteristics and interactions of different base polymers used in the formulation of 
coatings and their crosslinking agents to improve membrane thermal and barrier properties (Table 2). The protonated (by 
sulfuric acid) 2-pyrrolidone-5-carboxylic acid crosslinker (deep eutectic solvents (DES)) has potential for application in 
hydrophilic pervaporation membranes for the removal of polar compounds-with high applicability in biorefinery [75]. 
Thus, crosslinkers can act to obtain membranes with better compound selectivity and permeability, such as in active 
packaging systems.

A study developed a coating that could eliminate 100% of the Escherichia coli population in fresh cheese, using 
alginate, citric acid, erythrosine, and photodynamic therapy (PDT), in which the addition of citric acid made the coating 
more rigid, with lower elongation and higher thickness, in addition to lower permeability to water vapor. Thus, it was 
possible to produce a resistant coating in the presence of this acid [25].

Aloe vera gel at 15% increased the density and thickness of the carrageenan coating applied to kulfi ice cream 
[73]. Thickness is a variable that allows the homogeneity of films to be assessed and affects barrier properties [76]. This 
application of the coating was stable for six months of storage.

Data from studies on the effects of applying edible coatings demonstrate that, when well polymerically established, 
these materials are versatile, can be used in all types of foods and preparations, and are promising for extending shelf 
life and promoting better food preservation. Bioactive compounds with antioxidant and antimicrobial action associated 
with the coating are the elements that effectively contribute to the reduction of oxidative reactions that can compromise 
the nutritional and sensory aspects of the food and the reduction of the growth of microorganism colonies to an 
increased food safety period. It is important to reduce food waste and save or even replace other industrial technological 
resources that would be used to extend the shelf life of foods.

It is necessary to perform additional research to replace the plastics and clarify future concerns. Some issues related 
to edible coatings are toxicological and sanitary safety, as well as controlling production costs.
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Although many edible packaging uses natural ingredients, it is essential to investigate the toxicity and the 
possibility of allergies related to the components present in their formulations. Nanotechnology, a technology used in 
active coatings, is a promising area for edible coatings, however, there are still not enough studies on the toxic effects [11]. 
An example related to possible allergies concerns the use of whey and dairy products, which are considered allergenic 
for some people [77]. This investigation must follow packaging regulations.

An alternative in question for reducing costs in the production of edible coatings is the use of biopolymers 
extracted from agro-industrial waste, as well as encouraging the reduction of food waste and reducing environmental 
impact. Fruit and vegetable waste (skin, bark, bagasse, among others) constitute a source of bioactive compounds, 
phenolic compounds, proteins, and polysaccharides. However, due to the heterogeneity of each batch of food waste, 
standard procedures regarding composition, hygiene, and safety are necessary and must be conducted in a cost-effective 
manner [5]. Another important consideration regarding edible coatings is related to the protection of this coating against 
various sources of contamination, as it may be edible, and this level of security must correspond to other biodegradable 
packaging, such as materials such as cellulose, originating from reforestation. 

5. Conclusions
Edible coatings have enormous potential and benefits in the food industry. In addition to increasing the shelf life of 

food and having antimicrobial and antioxidant effects, these coatings also promote the protection of the environment by 
reusing materials that contribute to the circular economy and reducing waste.

According to the articles studied, many materials can be used as a base for edible coatings, such as alginate, 
carrageenan, chitosan, fruit pulp residue, sodium caseinate, and chia mucilage, whey protein of milk, together with 
bioactive compounds, respectively, citric acid, aloe vera, essential oils of thyme or oregano, Chinese cinnamon bark, 
and probiotic bacteria. In addition to having antimicrobial and antioxidant effects, these coatings can preserve nutrients, 
increase shelf life, reduce losses, and even improve the sensorial quality of food.

From the data evaluated in these studies, there was a higher frequency of positive impact to improve the quality 
and appearance of fruits and vegetables, and a higher frequency of antimicrobial effects evaluated in products of 
animal origin. There are still limitations in the research that highlight issues of sustainability of coatings. Despite this 
characteristic, it is of fundamental importance for promoting studies to develop different edible coatings.

In conclusion, edible coatings show promise for the food industry, offering benefits for both products and the 
environment. However, more studies are needed to fully explore their potential as replacements for conventional plastics 
while ensuring safety and regulatory compliance.
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