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Abstract: In this paper, we study a nonsmooth semi-infinite multi-objective B-invex programming problem involving 
support functions. We derive sufficient optimality conditions for the primal problem. We formulate Mond-Weir type dual 
for the primal problem and establish weak and strong duality theorems under various generalized B-invexity assumptions.
Keywords: Nonsmooth Semi-infinite Multi-objective Optimization, Generalized B-invexity, Duality

1. Introduction
Semi-infinite multi-objective programming consider several conflicting and noncommensurate objective functions

have to be optimized over a feasible set described by infinite number of inequality constraints. Multi-objective program-
ming problems have been an active research topic due to their applications in several areas such as in engineering design, 
robotics, and economics, etc. In economics, many problems involve multi-objectives along with constraints on what 
combinations of those objectives are attainable. For example, consumer’s demand for various goods is determined by 
the process of maximization of the utilities derived from those goods, subject to a constraint based on how much income 
is available to spend on those goods and on the prices of those goods. This constraint allows more of one good to be 
purchased only at the sacrifice of consuming less of another good; therefore, the various objectives are in conflict with each 
other. Another example involves the production possibilities frontier, which specifies what combinations of various types 
of goods can be produced by a society with certain amounts of various resources. The frontier specifies the trade-offs that 
the society is faced with-if the society is fully utilizing its resources, more of one good can be produced only at the expense 
of producing less of another good. Moreover, multi-objective optimization application in the economic field can be utilized 
to optimize the fisheries bioeconomic model. This model can be used as an optimal estimation tool on resource exploitation 
and effectiveness of management plan. The basis of the fisheries bioeconomic model is derived from the theory of open 
access economy or public property, which is based on the population growth logistics model. For example, a model for 
the North Sea fisheries with four objectives to be considered: maximizing profits, maintaining relatively historical quota 
shares among countries, maintaining jobs in the industry, and minimizing waste [20]. Explores the use of a multi-objective 
programming approach as a method for supplier selection in a just-in-time (JIT) setting. Based on a case study, develops a 
model of JIT supplier selection that allows for simultaneous trade-offs of price, delivery and quality criteria. The analysis 
occurs in a decision support system environment. A multi-objective programming decision support system is seen as 
advantageous because such an environment allows for judgement in decision making while simultaneously trading off 
key supplier selection criteria [27, 28].In addition to the above, macroeconomic policy-making is a context requiring multi-
objective programming problems. Typically, a central bank must choose a stance for monetary policy that balances 
competing objectives-low inflation, low unemployment, low balance of trade deficit, etc. To do this, the central bank uses 
a model of the economy that quantitatively describes the various causal linkages in the economy; it simulates the model 
repeatedly under various possible stances of monetary policy, in order to obtain a menu of possible predicted outcomes for 
the various variables of interest.

Optimality conditions and duality results for semi-infinite programming problems have been studied see [6, 10, 14, 15, 17, 21, 

25, 26]. Caristi et al. [4] obtained optimality and duality results for semi-infinite multi-objective program-ming problems that 
involved differentiable functions. Kanzi and Nobakhtian [16] obtained several kinds of constraints qualifications, necessary 
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and suffcient optimality conditions for nonsmooth semi-infinite multi-objective programming problems. Optimality 
conditions and duality results for nonlinear programming problems containing the square root of a positive semidefinite 
quadratic function have been discussed by many authors, for example, Mishra et al. [22] proved necessary and suffcient 
optimality conditions for nondifferential semi-infinite programming problems involving square root of quadratic functions, 
for more details see [24]. Furthermore, the term with the square root of a positive semidefinite quadratic function has been 
replaced by a more general function, namely, the support function of a compact convex set, whose the subdifferential can 
be simply expressed. Mond and Schechter [23] have constructed symmetric duality of both Wolfe and Mond-Weir types 
for nonlinear programming problems where the objective contains the support function. Husain et al. [13] have obtained 
optimality and duality for a nondifferentiable nonlinear programming problem involving support function, see for more 
details [1, 12, 18, 19] and references therein. In other hand, convexity and their generalizations play an important role in 
optimization theory. The class of B-invex functions was introduced by Bector [3] as a generalization of invexity [9, 11]. Later, 
other generalizations of B-invex functions have been introduced, for details see [7, 8] and references therein.

This paper is organized as follows: In Section 2, we mention some definitions and preliminaries. In Section 3, the 
sucient optimality conditions for multi-objective semi-infinite B-invex programming problems involving support functions 
are established. In Section 4, we formulate Mond-Weir type dual for multi-objective semi-infinite B-invex programming 
problems involving support functions and establish weak, strong and strict-converse duality theorems under generalized 
B-invexity assumptions.

2. Definitions and preliminaries
In this section, we present some definitions and results, which will be needed in this article. Let Rn be the n-dimensional

Euclidean space and nR+ be the nonnegative orthant of Rn. Let .,.  denotes the Euclidean inner product and . be Euclidean 
norm in Rn. Given a nonempty set nD R⊆ , we denote the closure of D by D and convex cone (containing origin) by 
cone(D). The native polar cone and the strictly negative polar cone are defined respective by

{ }: , 0, ,nD d R x d x D≤ = ∈ ≤ ∀ ∈

Definition 1 [5] Let nD R⊆ . The contingent cone  T(D, x) at x D∈  is defined by

( ) { }, : | 0, : , .n
k k k kT D x d R t d d x t d D k N= ∈ ∃ ↓ ∃ → + ∈ ∀ ∈

Definition 2 [5] A function f : Rn→R is said to be Lipschitz near nx R∈ , if there exist a positive constant K and a 
neighborhood N of x such that for any y, z N∈  we have 

( ) ( ) .f y f z K y z− ≤ − 

The function f is said to be locally Lipschitz on Rn if it is Lipschitz near x for every nx R∈ .
Definition 3 [5] The Clarke generalized directional derivative of a locally Lipschitz function f at nx R∈  in the direction 

nd R∈ , denoted by ( ),f x d° , is defined as

( ) ( ) ( )( )
0,

, ,
t y x

sup f y td f y
f x d lim

t
°

↑ →

+ −
=

where .ny R∈  

Definition 4 [5] The Clarke generalized subdifferential of f at nx R∈ is denoted by ∂cf(x), defined as

( )( ) { : , , , }.n ncf x R f x d d d Rξ ξ°∂ = ∈ ≥ ∀ ∈

Definition 5 [7] Let ny M R∈ ⊂ . The set M is said to be B-invex at y with respect to η : Rn × Rn →Rn if there exists an 
n-dimensional vector valued function b(x,y) : Rn × Rn →R+ such that y + λbη(x,y) ∈ M, for each x ∈ M, 0 ≤ λ ≤ 1.

{ }: , 0, .nD d R x d x D= ∈ < ∀ ∈＜

Retr
act

ed



Volume 1 Issue 1|2020| 3 Global Economics Science

M is said to be B-invex set with respect to η if M is B-invex at each y ∈ M with respect to the same η.
Definition 6 A locally Lipschitz function f : Rn → R is said to be B-invex with respect to η : Rn × Rn →Rn at * nx R∈  if 

there exists an n-dimensional vector valued function b : Rn × Rn →R+ such that

( ) ( ) ( ) ( ) ( )* * * *, [ ] , , ,Tb x x f x f x b x x x xξ η− ≥

for each nx R∈  and every ( )*cf xξ ∈∂ .
The function f is said to be B-invex near * nx R∈  if it is B-invex at each point of neighborhood of * nx R∈ .
Example 1 Let (0, )

2
M π

=  and f : M → R be defined as f(x) = x + sinx. Define η : M ×M → R as η(x,y) = 2(sinx−

siny)/cosy and b : M ×M → R+ as b(x,y) = 2. f is B-invex, with respect to η, but it is not invex with respect to same η 

because ( ), , [ ( ) ( )],x y f x f yξ η > −  ( )cf yξ ∈∂  at ,
4 6

x yπ π
= = .

Remark 1
1- Every invex function, with respect to η is B-invex function with respect to same η, where b(x,y) = 1.
2- Every B-invex function, with respect to η, where b(x,y) > 1 for each ,x y M∈ , is invex function with respect to 

some η , where ( , ) ( , ) / ( , )x y x y b x yη η= .

Definition 7 A locally Lipschitz function f : Rn → R is said to be strictly B-invex with respect to η : Rn × Rn →Rn at 
* nx R∈  if there exists an n-dimensional vector valued function b : Rn × Rn →R+ such that

* * * *( , ) ( ) ( ) , ( , ) ( , )Tb x x f x f x b x x x xξ η − > 

for each nx R∈  , *x x≠  and every *( ).cf xξ ∈∂

The function f is said to be strictly B-invex near * nx R∈  if it is strictly B-invex at each point of neighborhood of 
* nx R∈  .

Proposition 1 [7] If : , 1, 2,...,n
ig R R i m→ =  is B-invex with respect to η : Rn × Rn →Rn ,i = 1,2,...,m then the set

 { : ( ) 0, 1,2,..., }n
iM x R g x i m= ∈ ≤ =  is B-invex set.

Definition 8 A locally Lipschitz function f : Rn → R is said to be pseudo B-invex with respect to η : Rn × Rn →Rn at 
* nx R∈  if there exists an n-dimensional vector valued function b : Rn × Rn →R+ such that

* * * * * *, ( , ) ( , ) 0, ( ) ( , ) ( ) ( , ) ( ),Tb x x x x for some c f x b x x f x b x x f xξ η ξ≥ ∈∂ ⇒ ≥

for each nx R∈  .

Definition 9 A locally Lipschitz function f : Rn → R is said to be strictly pseudo B-invex with respect to η : Rn × Rn 
→Rn at * nx R∈  if there exists an n-dimensional vector valued function b : Rn × Rn →R+ such that

* * * * * *, ( , ) ( , ) 0, ( ) ( , ) ( ) ( , ) ( ),Tb x x x x for some c f x b x x f x b x x f xξ η ξ≥ ∈∂ ⇒ >

for each nx R∈ .
Definition 10 A locally Lipschitz function f : Rn → R is said to be quasi B-invex with respect to η : Rn × Rn →Rn at 

x R∈  if there exists an n-dimensional vector valued function b : Rn × Rn →R+ such that

* * *( ) ( ) , ( , ) ( , ) 0,Tf x f x b x x x xξ η≤ ⇒ ≤

for each x ∈ Rn and every ( )*cf xξ ∈∂ .
The function f is said to be quasi B-invex near * nx R∈ if it is quasi B-invex at each point of neighborhood of * nx R∈ .
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Proposition 2 [7] If : , 1, 2,...,n
ig R R i m→ =  is quasi B-invex with respect to η : Rn × Rn →Rn ,i = 1,2,...,m then the 

set { : ( ) 0, 1,2,..., }n
iM x R g x i m= ∈ ≤ =  is B-invex set.

Remark 2
1- Every B-invex function is also quasi-B-invex for the same η, but not conversely.
2- Every B-invex function is also pseudo-B-invex B-invex for the same η, but not conversely.
3- Every strictly B-invex function is also strictly pseudo- B-invex for the same η, but not conversely.
Let C be a nonempty compact B-invex set in Rn . The support function (. | ) : { }nS C R R→ ∪ +∞  is given by

( | ) { , : }.S x C max z x z C= ∈

Example 2 [29] If C = [0,1], then the support function (. | ) : { }S C R R→ ∪ +∞ is given by

( | ) { : }S x C max xz z C= ∈

( | ) .
2

x x
S x C

+
=

The support function, being convex and everywhere finite, has a Clark subdifferential [5], in the sense of convex 
analysis. Its subdifferential is given by

( | ) { : , ( | )}.S x C z C z x S x C∂ = ∈ =

For any nonempty set nS R⊆  the normal cone to S at the point x S∈  is denoted by ( )SN x  and defined as follows:

( ) { : , 0, }.n
SN x y R y z x z S= ∈ − ≤ ∀ ∈

In this paper, we consider the following nonsmooth semi-infinite multi-objective B-invex programming problem:

( )( ) ( | ) , 1, , ,j jP min f x S x C j p+ = …

subject to

( ) 0, ,ig x i I≤ ∈    .nx R∈

Where I  is an index set which is possibly infinite, ( ), 1, ,jf x j p= …  and ( ),ig x i I∈ are locally Lipschitz B-invex 

functions from nR  to { }R∪ +∞ . Let M  denote the B-invex feasible set of (P).

: { | ( ) 0, }n
iM x R g x i I= ∈ ≤ ∀ ∈

Let *x M∈ . We denote * *( ) { | ( ) 0}iI x i I g x= ∈ = .the index set of active constraints and let

* * *

1

( ) : ( ( ) ( | ))
p

c j j
j

F x f x S x C
=

= ∂ +


*

* *

( )

( ) : ( )c i
i I x

G x g x
∈

= ∂


The following constraint qualifications are generalization of constraint qualifications from [16] for multi-objective 
B-invex programming problem with support functions (P).

Definition 11 We say that:
(a) The Abedie constraint qualification (ACQ) holds at *x M∈  if * *( ) ( , )G x T M x≤ ⊆ .
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(b) The Basic constraint qualification (BCQ) holds at *x M∈  if *( , ) ( ( ))T M x cone G x≤ ⊆  .
(c) The Regular constraint qualification (RCQ) holds at x M∈  if * * *( ) ( ) ( , ).F x G x T M x∩ ≤ ⊆＜

Definition 12 A feasible point *x M∈  is said to be weakly efficient solution for (P) if there is no x M∈  such that

* *( ) ( | ) ( ) ( | ), 1, , .j j j jf x S x C f x S x C for all j p+ < + = …

3. Optimality conditions
In this section, we prove the sufficient optimality conditions for considered nonsmooth semi-infinite multi-objective 

B-invex programming problem (P) as follows:
Theorem 1 (Necessary optimality conditions) Let *x  be a weakly efficient solution for (P) and assume that Basic 

Cons t ra in t s  Qua l i f i ca t ion  (BCQ)  o f  (11 )  ho lds  a t  *x .  I f  cone  *( ( ))G x i s  c losed ,  t hen  there  ex i s t 
*0, ( 1,2,..., ) 0 ( ( )) 0j j j i iz C for j p and for i I x withτ λ λ≥ ∈ = ≥ ∈ ≠  for finitely many indices i, such that

*

* *

1 ( )

0 [ ( ) ] ( ), 
p

j c j j i c i
j I x

f x z g xτ λ
=

∈ ∂ + + ∂∑ ∑                                                                    (1)

 
1

1,
p

j
j
τ

=

=∑                                                                                                                               (2)   

* *, ( | ), 1, 2,..., .j jz x S x C j p= =                                                                             (3)

Proof: See Theorem 3.4 (ii) of Kanzi and Nobakhtian [16].
Theorem 2 (Sufficient optimality conditions) Let *x  be feasible for (P) and *( )I x  is nonempty. Assume that there 

exist *0, ( 1,2,..., ) 0 ( ( )) 0j j j i iz C for j p and for i I x withτ λ λ≥ ∈ = ≥ ∈ ≠  for finitely many indices i , such that necessary 
optimality conditions (1)-(3) hold at *x  . If ( (.) ,. )j j jf zτ + for j = 1,2,...,p are pseudo B-invex at *x  and *(.), ( )i ig i I xλ ∈  

are quasi B-invex at *x  with respect to the same η. Then *x  is a weakly efficient solution for (P).

Proof: Suppose, contrary to the result, that *x M∈  is not a weakly efficient solution for (P). Then, there exists a 
feasible point x M∈  for (P) such that

( ) ( ) ( )* *| ( | ) , 1, , ,j j j jf x S x C f x S x C for all j p+ < + = …

since 0, 1, 2,...,j for j pτ ≥ =  and for *( , ) 0b x x ≥  we have

* * * *

1 1
( , ) [ ( ) ( | )] ( , ) [ ( ) ( | )].

p p

j j j j j j
j j

b x x f x S x C b x x f x S x Cτ τ
= =

+ < +∑ ∑                              (4)

Since , ( | ), 1, 2,...,j jz x S x C j p≤ =  and the assumption we have * *, ( | ), 1, 2,...,j jz x S x C j p= =

* * * *

1 1
( , ) [ ( ) , ] ( , ) [ ( ) , ].

p p

j j j j j j
j j

b x x f x z x b x x f x z xτ τ
= =

+ < +∑ ∑                                               (5)

Now, from equation (1), there exist *( )j jcf xξ ∈∂  and *( )i icg xζ ∈∂  such that

*1 ( )

( ) 0,
p

j j j i i
j I x

zτ ξ λζ
=

+ + =∑ ∑                                                                                                   (6)

since x is a feasible point for (P) and * *( ) 0, ( )i ig x i I xλ = ∈   we have
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act
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* *

*

( ) ( )

( ) ( ),i i i i
I x I x

g x g xλ λ≤∑ ∑                                                                                            (7)

and from quasi B-invexity of * *( ) 0, ( )ig x i I x= ∈ , we get

*

* *

( )

( , ) ( , ), 0,T
i i

I x

b x x x xη λζ ≤∑  by using (6), we get * *

1
( , ) ( , ), ( ) 0.

p
T

j j j
j

b x x x x zη τ ξ
=

+ ≥∑

Thus, from pseudo B-invexity of ( (.) ,. ), 1, 2,..., ,j j jf z for j pτ + =  we get

* * * *

1 1
( , ) [ ( ) , ] ( , ) [ ( ) , ],

p p

j j j j j j
j j

b x x f x z x b x x f x z xτ τ
= =

+ ≥ +∑ ∑

which contradicts (5). Thus *x  is a weakly efficient solution for (P).The following corollary is a direct consequence of 
Remark 1 and Theorem 2.

Corollary 1 Let *x  be feasible for (P) and *( )I x  is nonempty. Assume that there exist 0, ( 1,2,..., )j j jz C for j pτ ≥ ∈ = and 
*0 ( ( ))i for i I xλ ≥ ∈  with 0iλ ≠  for finitely many indices i, such that necessary optimality conditions (1)-(3) hold at *x  

. If ( (.) ,. )j j jf zτ +  for 1,2,...,j p= and *(.), ( )i ig i I xλ ∈  are B-invex at *x  with respect to the same η. Then *x  is a 

weakly efficient solution for (P).

Example 3 We consider the following problem:

(P)    1 1 2 2min ( ( ) ( | ), ( ) ( | ))f x S x C f x S x C+ +

Subject to ( ) 0, ,ig x i I≤ ∈  ,x R∈ where  2
1 2 1 2 1 2( ) , ( ) , ( | ) ( | ) | | [ 1,1]f x x f x x S x C S x C x for C C= − = = = = = −  

and

 
, 0;

( )
, 0.

i

x x
g x i

x x

 ≥ =  
 < 

such that : {2,3, }.I = …  It is clear that the feasible set of (P) is for : ( ,0]M = −∞ , for 0 , ( )y M I y I= ∈ =  and all defined 

functions are locally Lipschitz functions at y = 0 and 1 2
1( ) 1, ( ) 0, ( ) [ ,1], 2,3,if y f y g y i
i

∂ = − ∂ = ∂ = = …  Since

( ( ) , ) 1, 2j j jf x z x for jτ + =  are pseudo B-invex at y and ( )i ig xλ  are quasi B-invex at y with respect to η(x,y) = x − y and 

1( , )
1

b x y
x

=
−

,  a n d  c o n d i t i o n s  ( 1 ) - ( 3 )  o f  t h e o r e m  ( 1 )  h o l d s  a t  y M∈  a s  t h e r e  e x i s t 

1 2 1 2 1 2
1 , (1,0,0, ), 1, 0, 1, 0, 1,
2 iz z for i Iτ τ λ ξ ξ ζ= = = … = − = = − = = ∈  such that 

2

1 ( )

1( ) ( 1 1) 0 1 0.
2j j j i i

j I y
zτ ξ λζ

=

+ + = − − + + =∑ ∑

Retr
act
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Then there is no x M∈  such that ( ) ( | ) ( ) ( | ), 1, 2,j j j jf x S x C f y S y C j+ < + =  and hence y = 0 is a weakly 

efficient solution for (P).

4. Duality criteria
Many authors have formulated Mond-Weir type dual and established duality results in various optimization problems 

with support functions; see [1, 2, 13, 21,22, 23] and the references therein. Following the above mentioned works, we formulate 
Mond-Weir type dual for nonsmooth semi-infinite B-invex programming problem with support function (P) and establish 
duality theorems.

( ) ( )( )1 1max , , , , ,p pf y z y f y z y+ … +           (D)

subject to

( ) ( )
1

0 [ ] ,
p

j c j j i c i
j i I

f y z g yτ λ
= ∈

∈ ∂ + + ∂∑ ∑                                                                          (8)

( ) 0.i i
i I

g yλ
∈

≥∑                                                                                                            (9)

We now discuss the weak, strong and strict converse duality for the pair (P) and (D).
Theorem 3 (Weak Duality) Let x be feasible for (P) and (y,τ,λ,z1 ,...,zp ) be feasible for (D). If ( (.) ,. )j j jf zτ +  for 

j = 1,2,...,p are pseudo B-invex at y and λigi(.), i I∈  are quasi B-invex at y with respect to the same η. Then the following 
cannot hold:

( ) ( ) ( )| , , 1, , .j j j jf x S x C f y z y for all j p+ < + = …

Proof: Let x be feasible for (P) and (y,τ,λ,z1 ,...,zp ) be feasible for (D), then from (8), there exist ( )j jcf yξ ∈∂  and 

( )i icg yζ ∈∂  such that

 ( )
1

0.
p

j j j i i
j i I

zτ ξ λζ
= ∈

+ + =∑ ∑                                                                                         (10)

We proceed to the result of the theorem by contradiction. Assume that

( ) ( ) ( )| , , 1, , ,j j j jf x S x C f y z y for all j p+ < + = …   

since τj ≥ 0,for j = 1,2,...,p, and for b(x,x* ) ≥ 0, then we have

1 1
( , ) [ ( ) ( | )] ( , ) [ ( ) , ] ,

p p

j j j j j j
j j

b x y f x S x C b x y f y z yτ τ
= =

+ < +∑ ∑                            (11)

and by using the inequality , ( | ),z x S x C≤  we get

1 1
( , ) [ ( ) , ] ( , ) [ ( ) , ].

p p

j j j j j j
j j

b x y f x z x b x y f y z yτ τ
= =

+ < +∑ ∑                                  (12)
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Now, since x is feasible for (P) and (y,τ,λ,z1 ,...,zp ) is feasible for (D), we have 

( ) 0 ( ),i i i i
i I i I

g x g yλ λ
∈ ∈

≤ ≤∑ ∑

and from definition of quasi B-invexity of ( ), ,ig x i I at y∈  we have

( , ) ( , ), 0,T
i i

i I
b x y x yη λζ

∈

≤∑                                                                                        (13)

for each x M∈ and every and ( ).i icg xζ ∈∂  By substituting from (10) in (13), we get

1
( , ) ( , ), ( ) 0,

p
T

j j j
j

b x y x y zη τ ξ
=

+ ≥∑

for each x M∈  and some ( ).j jcf yξ ∈∂  Thus, from the definition of pseudo B-invexity of ( (.) ,. )j j jf zτ +  for j = 1,2,...,p, we 

have

 
1 1

( , ) [ ( ) , ] ( , ) [ ( ) , ],
p p

j j j j j j
j j

b x y f x z x b x y f y z yτ τ
= =

+ ≥ +∑ ∑

which contradicts (12). Hence,

( ) ( ) ( )| , , 1, , ,j j j jf x S x C f y z y j p+ < + ∀ = …

cannot hold.
The following corollary is a direct consequence of Remark 1 and Theorem 3.
Corollary 2 Let x be feasible for (P) and (y,τ,λ,z1 ,...,zp ) be feasible for (D). If ( (.) ,. )j j jf zτ +  for j = 1,2,...,p and λigi(.), 

i I∈ are B-invex at y with respect to the same η. Then the following cannot hold:

( ) ( | ) ( ) , , 1, , .j j j jf x S x C f y z y j p+ < + ∀ = …

The following example shows that the generalized B-invexity imposed in the above theorem is essential.
Example 4 We consider the following problem:

(P)        ( ) ( ) ( ) ( )( )1 1 2 2 ,| | min f x S x C f x S x C+ +

Subject to

( ) 0,ig x i I≤ ∈

,x R∈
where f1(x) = −2x, f2(x) = x2 , S(x|C1) = S(x|C2) = |x| for C1 = C2 = [−1,1] and gi(x) = −i|x|, for :i I N∈ = . It is clear 
that the feasible set of (P) is M := R and for 1 , ( )y M I y I= ∈ = .

Let us formulate Mond-Weir dual of (P) as follow:

Retr
act
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(D)   2
1 2( 2 , )max y z y z y− + +

Subject to

( ) 0,ig x i I≤ ∈

2

1
0 [ ( ) ] ( ),j j j i i

j i I
f y z g yτ λ

= ∈

∈ ∂ + + ∂∑ ∑

( ) 0,i i
i I

g yλ
∈

≥∑

where 
2

1
, 0, 1, 0j j i

j
y R τ τ λ

=

∈ ≥ = ≥∑  with ( ) 0i i Iλ λ ∈= ≠  for finitely many indices i N∈  and 1,2.j jz C for j∈ =

By choosing y* = 0,τ1 = τ2 = 1
2

 ,λ = (1,0,0,...),z1= 1,z2 = 0. we have (y,τ,λ,z1,z2) be feasible for (D) satisfy the inequality

1 1 1 1( ) ( | ) ( ) , .f x S x C f y z y+ < +

Because λigi(.) is not quasi B-invex at y with respect to * *( , )y y y yη = −  and *( , ) 1b y y = . Hence, the pseudo B-invexity 
and quasi B-invexity assumptions are essential for weak duality.

The following theorem gives strong duality relation between the primal problem (P) and the dual problem (D).
Theorem 4 (Strong Duality) Let x be a weakly efficient solution for (P) at which Abedie Constraints Qualification 

(ACQ) of (11) holds at x*. If the pseudo B-invexity and quasi B-invexity assumptions of the weak duality theorem are 
satisfied, then there exists (τ,λ,z1 ,...,zp) such that (x,τ,λ,z1 ,...,zp) is a weakly efficient solution for (D) and the respective 
objective values are equal.

Proof: Since x is a weakly efficient solution for (P) at which the suitable constraints qualification holds and 
cone(G(x)) is closed, from the Kuhn-Tucker necessary conditions, there exists (τ,λ,z1 ,...,zp) such that (x,τ,λ,z1,...,zp) is 
feasible for (D).

From weak duality theorem (3), the following cannot hold for any feasible y for (D):

( ) ( | ) ( ) , , 1, , .j j j jf x S x C f y z y for j p+ < + = …

Since 〈z,x〉≤ S(x|C), we have

( ) , ( ) , , 1, , .j j j jf x z x f y z y for j p+ < + = …

Thus, (x,τ,λ,z1,...,zp) is a weakly efficient solution for (D) and the objective values of (P) and (D) are equal at x. 
The following corollary is a direct consequence of Remark 1 and Theorem 4.
Corollary 3 Let x be a weakly efficient solution for (P) at which Abedie Constraints Qualification (ACQ) of (11) 

holds at x* . If the B-invexity assumption of the weak duality theorem are satisfied, then there exists (τ,λ,z1 ,...,zp) such that 
(x,τ,λ,z1,...,z

p) is a weakly efficient solution for (D) and the respective objective values are equal.
The following theorem gives strict converse duality relation between the primal problem (P) and the dual problem (D).

Theorem 5 (Strict converse duality) Let x* be a weakly efficient solution for (P) at which Abedie Constraints 
Qualification (ACQ) of (11) holds at x*. Let ( (.) ,. )j j jf zτ +  for j = 1,2,...,p be pseudo B-invex and λigi(.), i I∈  be quasi 

B-invex with respect to the same η. If ( )1, , , , , px z zτ λ …  is a weak efficient solution for (D) and ( (.) ,. )j j jf zτ +  for 

j = 1,2,...,p are strictly pseudo B-invex at ,x  then *x x=
Proof: We prove the result of theorem by contradiction. Assume that *.x x≠ Then by strong duality Theorem (4) 

there exists (τ,λ,z1 ,...,zp) such that (x*,τ,λ,z1 ,...,zp) is a weakly efficient solution for (P) and

Retr
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* *( ) ( | ) ( ) , , 1, , .j j j jf x S x C f x z x j p+ = + ∀ = … 

Using * *( | ) , , 1, ,j jS x C z x j p= = …  and *( , ) 0,b x x > , we have

* * * *

1 1
( , ) ( ) , ( , ) ( ) , .

p p

j j j j
j j

b x x f x z x b x x f x z x
= =

+ = +∑ ∑                                            (14)

Now, since x* is a weakly efficient solution for (P), λi ≥ 0 and 1( , , , , , )px z zτ λ … is a weakly efficient solution for 

(D), we have

*( ) ( ).i i i i
i I i I

g x g xλ λ
∈ ∈

≤∑ ∑ 

From the definition of quasi B-invexity of λigi(.), i I∈

* *( , ) ( , ), 0,T
i i

i I
b x x x xη λζ

∈

≤∑ 

                                                                                    (15)

for every *x M∈  and every ( ).i icg xζ ∈∂   By substituting from (10) in (15), we get

* *

1
( , ) ( , ), ( ) 0.

p
T

j j j
j

b x x x x zη τ ξ
=

+ ≥∑ 

for each *x M∈  and some ( ).j jcf xξ ∈∂  Thus from strict pseudo B-invexity of ( (.) ,. )j j jf zτ +  for j = 1,2,...,p at x , we get

* * * *

1 1
( , ) [ ( ) , ] ( , ) [ ( ) , ],

p p

j j j j j j
j j

b x x f x z x b x x f x z xτ τ
= =

+ > +∑ ∑                                (16)

which contradicts (14). Therefore, *.x x=
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