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Abstract: Mineable reserve determination is one of the important parameters in economic profitability and the safety 
of underground mining production. The fluctuations in the metal prices will lead to a change in the cut-off grade, and as 
a result, the mine layout and mineable reserve will change. On the other hand, changing the underground mine layouts 
will also change the economic, social and environmental impacts (sustainable development parameters). Therefore, 
ignoring metal price uncertainty lead to a non-optimal design. The aim of this paper is the determination of underground 
mineable reserve regarding metal price uncertainty and sustainable development. Metal price uncertainty is simulated 
with Monte Carlo technique and the most important sustainable development indicators are entered in the cut-off grade 
formula. In this way, four types of cut-off grades were defined. Based on these cut-offs four types of mine layouts are 
obtained. Basic, simulated, green and sustainable mine layout. Basic Mine layout is that obtained by normal design, 
simulated mine layout considers just metal price uncertainty, green mine layout considers metal price uncertainty and 
environmental criteria and sustainable mine layout considers metal price uncertainty and environmental and social 
criteria. Results from the use of this methodology in a hypothetical gold mine show that the mineable reserve in 
sustainable mine layout is 17 percent greater than the basic mine layout. Regarding the result, with this methodology in 
addition to consideration of metal price uncertainty and sustainable development criteria, the more mineable reserve will 
be achieved. For future research, in addition to using other price simulation methods; it is suggested that other indicators 
of sustainable development be included in determining the underground mine layout.

Keywords: underground mineable reserve, metal price uncertainty, sustainable development

JEL Codes: Q310

1. Introduction
Determination of mining limits for each of open pit and underground is one of the most significant parts that 

impacts the economic aspects of a mining operation. There are few algorithms for determination of this area such as 
floating stope algorithm developed by Alford. Mineable Reserves Optimization (MRO) is a set of scripts in Datamine 
software for determination of mine layout in underground mines, based on floating stope algorithm. MRO analyzes a 
geological model and delineates optimal mineable reserves using practical mining constraints. It creates and evaluates 
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three-dimensional envelopes of material considering factors such as the minimum size, shape and orientation of the 
mining units, and the minimum head grade of the mined material (CAE., n.d.).

The main input data in determining the mine layout is a set of block information. Each of these blocks has a certain 
grade and economic value. The cut-off grade and economic value of each block are calculated using metal prices, total 
recovery of extraction and processing operations, and extraction and processing costs. The fluctuations in the metal 
prices will lead to a change in the cut-off grade and economic value of the blocks, and as a result, the mine layout and 
mineable reserve will change. On the other hand, considering the life of mines, which is usually between 20 to 30 years, 
as well as price changes during the life of the mine, choosing the accurate price in the initial design and review plans 
is very important. Accordingly metal price is one of the most important parameters in determining the underground 
mine layouts. On the other hand, changing the underground mine layouts will also change the economic, social and 
environmental impacts.

Numerous research works have been carried out for price uncertainty and its effect on mining projects but none 
of them considered in underground mine layout. This also applies to sustainable development. Ignoring metal price 
uncertainty and sustainable development parameters in the mine design lead to a non-optimal design. Simultaneous 
consideration of metal price uncertainty and sustainable development criteria is one of the research innovations. 
In the MRO script, cut-off grade is one of the parameters that is entered by the user. In this research, cut-off grade 
distribution was obtained based on metal price distribution and with Monte Carlo methodology. In addition to economic 
and environmental criteria, this research has paid attention to social criteria. Environmental criteria include the cost 
and income of mine reclamation. Social criteria include the cost of workforce training and the value of created jobs. 
Sustainable development indicators have been quantified and entered in the cut-off grade formula. Accordingly, four 
types of cut-off grades were defined. Based on these cut-off grades and with maximization of grade optimization 
method; four types of mine layouts were obtained. This methodology has been used in a hypothetical gold mine and the 
results were described. 

2. Literature review
Kim (1978) described the various optimization techniques for mine limits determination. The underground mine 

layout indicates the area for mineable reserve. However, only a few algorithms have been developed for optimizing final 
stope limits in underground mining. Reviews of these algorithms may be found in (Ataee-pour, 2005; Nhleko et al., 
2018).

Economic uncertainty is one of the most important sources of uncertainty, which has a critical impact on the mine 
project evaluation. Many researchers studied these types of uncertainties (Dowd, 1976; Dimitrakopoulos et al., 2002; 
Godoy & Dimitrakopoulos, 2004; Rendu, 2006; Dimitrakopoulos et al., 2007; Dimitrakopoulos et al., 2008; Else & 
Curwen, 2006; Taylor et al., 2012; Fanning & Parekh, 2004; MacAvoy, 1988). Economic uncertainty can have the 
greatest impact on the value of a mining project in the form of three sources of uncertainty: price and income, operating 
and capital costs, and discount rates. From the economic point of view, future metal prices are the most important factors 
of economic uncertainty. Numerous research works have been carried out for price uncertainty (Michael & Schwartz, 
1985; Trigeorgis, 1993; Moyen et al., 1996; Kelly, 1998; Moel & Tufano, 2002; Optimisation, 2005; Samis et al., 2005; 
Shafiee et al., 2009). No reports have yet been made of the invention of a successful prediction of price and what makes 
the price uncertain is the weakness of the price prediction methods. But in any case, even with efficient methods of 
forecasting, the forecast is erroneous and creates a degree of uncertainty. Further studies have been carried out on price 
uncertainty in various mining issues (McIsaac, 2008; Castillo & Dimitrakopoulos, 2014; Salama et al., 2015; Dehghani 
& Ataee-pour, 2011; Dehghani & Shirkavand, 2014). None of the researches considered the effect of price uncertainty 
in underground mine layout which is the goal of this paper. 

Sustainable development consists of economic, environmental, and social criteria (Nathanail & Bardos, 2005). 
Mining operations are extracting nonrenewable minerals. Therefore, reserve efficiency is one of the factors in any 
sustainable mine design (James, 1999). The concept of sustainability and sustainable development has been successfully 
extended to mining, but there have been few attempts to consider all three criteria. In recent years, several studies have 
focused on the issue of sustainable development in mining. In 2001, a model for stripping was proposed to minimize 
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reclamation costs, reducing the cost of construction of the waste dump and flattening the mined land at the end of the 
mine life (Caccetta & Kelsey, 2001). Two studies have also been conducted on production planning and sustainable 
development (Burgher & Erickson, 1984; Ersan et al., 2003). The block model is another one that has been investigated 
in this regard (Botín, 2013; Rahmanpour & Osanloo, 2013). Most of the researches consider the two aspects of the 
economy and the environment from the principles of sustainable development. A few numbers of studies considered the 
third principle. These studies fall into two categories. The first category includes the design and evaluation of mining 
(Odell, 2004). In the second category, the progress of research in determining the ultimate mine layout in terms of 
sustainable development criteria has been studied (Craynon et al., 2012; Xu et al., 2014; Adibi et al., 2015). A review of 
studies on sustainable development in mining may be found in (Asr et al., 2019; Gorman & Dzombak, 2018). Limited 
researches are about quantifying the sustainable development attributes (Amirshenava & Osanloo, 2019; Fernandes de  
et al., 2017). In addition, the limited research that addresses all three principles of sustainable development in mining is 
not about determining underground mine layout.

Given the multiplicity of attributes related to sustainable development, the selection of the most important 
attributes in each criterion is important. The indicators given in this article have been selected based on literature review. 
Some research on mining and sustainable development is given in Table 1. In this study, based on group discussions, 
interviews with experts and specialists in sustainable development, the most important quantitative attributes have been 
selected. These attributes include the cost and revenue of reclamation, the cost of staff training and the value of the 
created job.

Table 1. Mining characteristics studied in various references

Attribute Reference

Employment

Ivanova et al., 2007; Ivanova and Rolfe, 2011; Boateng and Awuah-Offei, 2017; 
Que, 2015; Que et al., 2015; Gillespie and Kragt, 2012; Veiga et al., 2001; Azapagic, 2004;
Hajkowicz et al., 2011; Jul-Larsen et al., 2006; Petrova and Marinova, 2013; Franks, 2012; 

Lockie et al., 2009; Hilson, 2002; Weldegiorgis and Ali, 2016; 
Martin et al., 2007; Ejdemo and Söderholm, 2011; Aragón and Rud, 2013

Environmental effects

Que, 2015; Que et al., 2015; Boateng and Awuah-Offei, 2017; Que et al., 2016 & 2018; 
Azapagic, 2004; Veiga et al., 2001; Hajkowicz et al., 2011; Jul-Larsen et al., 2006; Franks, 2012; 

Weldegiorgis and Ali, 2016; Martin et al., 2007; Ejdemo and Söderholm, 2011; 
Aragón and Rud, 2013; Kitula, 2006; Gordon, 2003;

 Bice, 2016; Esteves, 2008; Tonts et al., 2012; Damigos and Kaliampakos, 2006

Economic effects
Ivanova et al., 2007; Gillespie and Kragt, 2012; Que et al., 2016 & 2018; Azapagic, 2004;

Lockie et al., 2009; Hilson, 2002; Martin et al., 2007; 
Ejdemo and Söderholm, 2011; Aragón and Rud, 2013

3. Methodology
The aim of this paper is the determination of underground mine layout regarding sustainable development. 

Therefore, sustainable development indicators must be affected by one of the software inputs. This paper uses cut-off 
grade for this purpose. In the MRO script, the cut-off grade is one of the cases that is determined by the user. Metal 
price uncertainty is simulated by the Monte Carlo method. The cut-off grade is modeled, and its variables are costs and 
incomes. Metal price is one of the variables with a special distribution that is simulated by the Monte Carlo method. 
This is done by @RISK software. Three attributes of social principal and two attributes of environmental principal 
quantified. Social attributes include the cost of training of the workforce and the value of created jobs. Environmental 
attributes include the cost and income of reclamation. These quantified attributes have been entered in the formulation 
of the cut-off grade. In this way, four types of cut-off grade are defined as:

1. Basic Cut-off Grade (BCG): Price uncertainty and sustainable development not considered.
2. Simulated Cut-off Grade (SimCG): Only price uncertainty considered.
3. Green Cut-off Grade (GCG): Price uncertainty and environmental indicators of sustainable development 
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considered.
4. Sustainable Cut-off Grade (SusCG): Price uncertainty, environmental and social indicators of sustainable 

development considered.
The cut-off grade formula of each scenario is as follows:

( )
b cBCG

y p s
+

=
−

( ( ) )
b cSimCG =

y dtb p s
+

−

( ( ) )
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Notations of the above equations are defined in below:
b: Extraction cost ($/ton)
c: Processing cost ($/ton of ore)
y: Recovery (%)
p: Metal price ($/ton)
dtb(p): Distribution of metal prices
s: Selling cost ($/ton of metal)
RC: Reclamation cost ($/ton of ore)
RI: Reclamation income ($/ton of ore)
TC: Training cost ($/ton of ore)
EV: Employment value ($/ton of ore)

In equations (3) and (4), the cost parameters (reclamation and training costs) were added to the numerator because 
more costs lead to lower cut-off grades. In these equations, the revenue parameters (reclamation income and created job 
values) were deducted from the numerator because more income leads to higher cut-off grade. In equations (2) to (4), 
price distribution placed in the denominator instead of a fixed number of metal prices. Each simulation time, a price is 
randomly selected from the distribution (by software and based on the Monte Carlo technique) and the cut-off grade is 
calculated according to equations (2) to (4).

Based on these cut-off grades and with maximization of grade optimization method; different types of mine layouts 
are obtained, which are Basic Mine Layout (BML), Simulated Mine Layout (SimML), Green Mine Layout (GML), 
Sustainable Mine Layout (SusML). The steps to use this method are as follows:

Step 1: Find the metal prices in previous years.
Step 2: Find the best distribution function of metal price.
Step 3: Find effective attributes of sustainable development.
Step 4: Quantify sustainable development attributes.
Step 5: Calculate basic cut-off grade.
Step 6: Update basic cut-off grade formula with quantified sustainable development attributes.
Step 7: Set numerical value of each parameter.
Step 8: Set price distribution function Instead of metal price.
Step 9: Simulate the cut-off grades. 
Step 10: Find ultimate mine layout with cut-off grade of previous section.

(1)

(2)

(3)

(4)
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Step 11: Select the optimum underground mine layout.

3. Result and discussion
This section illustrates the application and results of the mentioned approach in a small hypothetical underground 

gold mine as a case study. Using a density of 2.5 the total tonnage of ore is 3.08 mt at 1.23 g/t Au. Reserves have been 
calculated for Au cut-offs between 0 and 3 g/t at intervals of 0.25 g/t. The resulting grade and tones above each of the 13 
cut-offs are shown in Figure 1.

Figure 1. Resulting grade and tones above each of the cutoffs

This mine is extracted by cut and fill method. The processing method is leaching. Based on the Taylor formula for 
production rate, the mine life is about 8 years. Training costs and employment value of 150 people over 8 years of the 
mine life is calculated. Reclamation plan is the construction of the mining museum and tourism complex. Reclamation 
benefits include income from the tourist attraction and employment value of 50 people for 50 years. Regarding the 
importance of employment, the value of creating any job is assumed equivalent to the basic salary. All costs and 
incomes discounted to the beginning of the mine production and divided to 3.08 mt. These items and other notations of 
the case study introduced in Table 2. Figure 2 shows costs and revenues.

Table 2. The notations of the case study

Notation Explanation Unit Case study

b Extraction costs $/ton of ore 55

c Processing costs $/ton of ore 28

y Recovery % 80

s Selling costs $/ton of metal 2,000,000

RC Cost of reclamation $/ton of ore 0.33

RI Income of reclamation $/ton of ore 0.31

TC Cost of training $/ton of ore 0.05

EV Value of employment $/ton of ore 1.14
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Figure 2. Sustainable development costs over the life of the mine

Monthly gold price changes over past 3 years shows the price of gold was downgraded since the middle of 2014 to 
early 2016, but this trend is set to rise in 2016, and it slowed down again at the end of 2016 and early 2017 (Figure 3). 

Figure 3. Monthly gold price changes over past 3 years (Gold Price, n.d.)

Other cut-off grades mentioned in the previous section calculate based on the distribution of gold price changes. 
Table 3 shows summary information of this modeling. Inputs are gold price distribution in 3 outputs include SimCG, 
GCG and SusCG. Statistics of inputs and outputs are in Table 3. Monte Carlo method has been randomly sampled from 
gold price data. According to Table 3, the maximum, the mean and the minimum random prices for each grade. Given 
the inverse relationship between the price of metal and the grade, it is expected that the maximum price will be the 
lowest limit, which will be verified according to the table.

Table 3. Statistics of inputs and outputs of modeling with @RISK

Input (gold price ($/Ounce))

Name Minimum Mean Maximum

Price for SimCG 414.9 513.9 716.0

Price for GCG 371.9 510.6 606.5

Price for SusCG 373.0 512.4 639.0

Output (cut-off grades (ppm))

Name Minimum Mean Maximum

SimCG 1.9 2.8 3.5

GCG 2.3 2.8 3.9

SusCG 2.2 2.8 3.9
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After simulating each cut-off grade, the cut-off grade is obtained by counting the number of times simulated. In 
the next step, it must be determined to compare the defined cut-off grade, which of the calculated cut-off grades should 
be considered. In this article; the minimum, maximum and average of the range in which 90% of the simulated cut-
off grades are compared. Figure 4 shows the histogram for outputs. Accordingly, possibly 90%, the lower limit of the 
simulated, green and sustainable cut-off grade is 2.5 ppm.

Figure 4. histogram of Cut-off Grades

Table 4. Upper and lower limit of defined cut-off grades
 

Cut-off Grade Lower Limit of Cut-off Grade (LLCG) 
(ppm)

Upper Limit of Cut-off Grade (ULCG) 
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The upper limit of these cut-off grades is 3.1 and 3 ppm respectively. As you can see BCG (2.8 ppm) is between 
the lower and upper limit of SimCG and SusCG. A summary of the various cut-off grades given in Table 4. 

With these different cut-off grades, Data mine software was used to obtain the corresponding mineable reserve. 
One of the features of MRO is the ability to handle sensitivity analyses. Each run of the Optimizer is defined as a case 
which has a user-defined case name, with all parameters for each case being stored and retrieved automatically. This 
makes it simple to run and compare alternative scenarios for factors such as cut-off grade, head grade and mining 
methods. Specifications of these cases are given in Table 5. 

Table 5. Mineable reserves optimizer-multi-case report

Case Envelope type Volume (M3) Tonnes AU (ppm) Cut-off grade (ppm) Number of envelopes

Run A
Geology 97,840 244,600 3.12 2 -

Min-Mod 60,500 151,250 3.159 2 3

Run B
Geology 66,880 167,200 3.525 2.5 -

Min-Mod 54,000 135,000 3.292 2.5 2

Run C
Geology 49,192 122,980 3.835 2.8 -

Min-Mod 46,000 115,000 3.492 2.8 2

Run D
Geology 40,416 101,040 4.038 3 -

Min-Mod 37,500 93,750 3.745 3 1

Run E
Geology 36,056 90,140 4.156 3.1 -

Min-Mod 34,500 86,250 3.845 3.1 1

Run A = Cut-off grade is equal to head grade = 2 ppm
Run B = Cut-off grade is equal to lower limit of SimCG, GCG and SusCG = 2.5 ppm
Run C = Cut-off grade is equal to BCG = 2.8 ppm
Run D = Cut-off grade is equal to upper limit of SusCG = 3 ppm
Run E = Cut-off grade is equal to upper limit of GCG and SusCG = 3.1 ppm

For each run, the geological and mineable reserves are available. Contiguous blocks are grouped into mineable 
envelopes and assigned an envelope number. With increasing cut-off grade mineable reserve, the number of envelopes 
decreases. Given the inverse relationship between the cut-off grade and mine layout, the upper limit of cut-off grades 
gives the lower limit of mine layout and vice versa. In Table 6, the upper and lower limits of the defined layouts are 
given. As you can see, the largest possible for all three simulated, green and sustainable ones is the same, but the 
smallest possible layout varies depending on the cut-off grades.

Table 6. The upper and lower limit of determined mine layouts

Mine layout Upper Limit of Mine Layout (ULML) (ton) Lower Limit of Mine Layout (LLML) (ton)

BML 115,000 115,000

SimML 135,000 86,250

GML 135,000 86,250

SusML 135,000 93,750

The difference between the upper limit of extraction is 17 percent. The maximum difference of the lower limit is 
between basic, simulated and green cut-off grades, which is equal to 33 percent. If the goal is increasing the mine life 
and job creation, the optimum cut-off grade is close to the lower limit of cut-off grades. In this case, the optimum mine 
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layout is close to the upper limit of simulated mine layout, green mine layout and sustainable mine layout (mineable 
reserve is equal to 135,000 ton). If the target is increasing the average grade of the mined material, the optimum cut-off 
grade should be close to the upper limit of the cut-off grades (3.1 gr/ton). In this way, the optimum mine layout is close 
to the lower limit of green mine layout and simulated mine layout (mineable reserve is equal to 86,250 ton).

4. Conclusion
In the mining industry, metal prices are normally modeled as the average price for the last three years. It may be 

misleading when evaluating mining projects. Meanwhile, mining operations are extracting nonrenewable minerals. 
Therefore, reserve efficiency is one of the factors in any sustainable mine design. This paper proposed a methodology 
for consideration of sustainable development criteria and metal price uncertainty in underground mine layout 
optimization. This study introduced four types of underground mine layouts, which are Basic Mine Layout (BML), 
Simulated Mine Layout (SimML), Green Mine Layout (GML), Sustainable Mine Layout (SusML). Results show that 
SusML which considers the metal price uncertainty and sustainable development criteria is 17 percent greater than 
BML. This method considers the uncertainty of metal price and sustainable development criteria with a larger mine 
layout which leads to longer mine life and social impacts of this. Quantifying a few sustainable development attributes 
was one of the limitations of this study. It is suggested to use various methods in economics to quantify qualitative 
attributes. Then, using the methodology described in this paper, determine the optimal underground mineable reserve 
based on sustainable development attributes.
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