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Abstract: The permanent magnet synchronous motor (PMSM) is mathematically modeled and simulated in this 

study using MATLAB. PMSM is a nonlinear, multi-variable and time-varying system and due to nonlinearities 

and its strong coupling between its variables, the dynamical behaviour of the PMSM is complex. Therefore, 

under specified parameters and conditions, chaotic undesirable phenomenon arise in the PMSM. For a chaotic 

PMSM drive system, this paper proposes a sliding mode control (SMC) approach based on the Lyapunov 

stability theory to control and suppress the chaotic motion emergence. Firstly, the dynamic characteristics of the 

state equations of the PMSM drive system is analysed and demonstrated that it will appear chaos phenomenon at 

some certain parameters. Finally, the SMC strategy and Lyapunov stability theory are combined to introduce a 

sliding surface and produce a control rule. Simulation results are presented to verify that the proposed strategy 

can be successfully employed to control a chaotic PMSM and make the system asymptotically stable to the 

equilibrium point.            
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1. Introduction 

By using the permanent magnet (PM) to create a significant air gap in the magnetic flux, high-efficiency 

PM motors can be made. The PMSM is a type of very effective and powerful synchronous motor in which the 

rotor's PM produces the field excitation in the stator windings. The advantages of the PMSM's dependable 

functioning, straightforward design, and high-power density have led to its widespread acceptance for industry 

applications [1,2]. It finds widespread application in several fields, including robotics, wind turbines, electric 

vehicles, pumps, electric marine propulsion, motor drives, various servo systems, and home appliances [3–11]. 

Chaos is defined as long-term, non-periodic behaviour in a deterministic system that exhibits sensitive 

dependence to the initial conditions. Nonlinear dynamics underlie chaotic phenomenon in systems and 

foundational characteristics of chaotic behaviuor arise from its internal structure. The chaos theory is an 

interdisciplinary area of scientific study and is described as a branch of mathematics and computer science that 

studies the dynamic properties of nonlinear systems which are highly sensitive to the initial conditions. In order 

to investigate the chaotic behaviour of such systems, Lyapunov exponents and the compactness property of the 

phase space are two important measures that may be employed. Each chaotic attractor has an infinite number of 

unstable periodic orbits. consequently, chaotic motion emerges when the system states move in the 

neighborhood of one of these unstable periodic orbits for a short period and then fall close to another orbit for a 

limited time. This mechanism results in chaotic oscillation in which the system states move unpredictably for a 

long time. Chaotic systems are nonlinear and complex systems and prediction difficulty, broadband noise, and 
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sensitivity to initial condition variations are counted as inherent characteristics in their response. The aim of 

chaos control is to stabilize the chaotic wandering of the system's states about its equilibrium points [12,13]. 

The importance of researching chaos in electric motors is due to how many different real-world scenarios it 

may be applied to right away. For instance, electric motors are crucial components of industrial equipment, 

electrical locomotives, and thruster drives in electrical submersibles [14]. In the late 1980s, [15] reported on the 

prevalence of chaos in motor driving systems. Following that, other scholars studied chaos, its management, and 

its synchronization in various motor drive systems. The brushless DC motor (BLDCM) [16,17], PMSM [18–22], 

stepper motor (SM) [23], induction motor (IM) [24,25], switching reluctance motor (SRM) drive, and 

synchronous reluctance motor (SynRM) [26–28] were all examined for chaos. 

The PMSM's dynamic model is nonlinear, and it even experiences chaotic attractors and Hopf bifurcation. 

This makes it challenging to regulate the PMSM to obtain the ideal dynamic performance, despite the 

widespread use of electrical drive-based PMSMs in industrial applications. The PMSM's chaotic behaviour is 

undesirable because it may compromise the motor's stability and lead to the drive system collapsing [29]. Over 

recent years, the analysis and control of chaos in electric motors have become a significant research topic owing 

to its practical and theoretical importance. In order to further enhance the system's performance, chaos control, 

which aims to suppress PMSM's undesirable chaotic behaviour, has drawn increasing interest from both the 

academic and industrial communities. Recently, a variety of control techniques, including the Ott, feedback 

linearization, Grebogi and Yorke (OGY) method, adaptive control, and time delay feedback have been 

successful in controlling chaos in PMSM [30–33]. 

In [34] the finite-time control is suggested for chaos suppression in the PMSM. Based on Lyapunov 

stability and finite-time stability theory, the chaos suppression in PMSM was analyzed. An equivalent-input-

disturbance (EID)-based control method is proposed in [35] for chaotic phenomenon suppression in speed 

control for PMSM drive. In [36] control of chaotic PMSM has been addressed by developing four simple classic 

controllers, which are mathematically designed by using Lyapunov theory principle in order to asymptotic 

global stability. Single feedback control (SFC)has been used for the problem of chaos control of the PMSM in 

[37]. As a matter of fact, the aim of this study was to solve the problem of set-point regulation of a PMSM via 

SFC. The proposed SFC scheme with a simple structure, has been theoretically and numerically confirmed to be 

less conservative than some existing results. The electronic implementation of chaos control using a state 

feedback controller in order to suppress chaotic behavior and synchronization of a PMSM is presented in [38]. 

Through the circuit implementation on OrCAD-PSpice software, the physical feasibility of the proposed two 

single and simple controllers as well as the chaos synchronization have been verified. The [39] suggests a 

backstepping fuzzy adaptive approach-based nonlinear control strategy to suppress chaos in a PMSM. In the 

controller design, the system disturbance and the parameter uncertainty are considered. The system stability is 

verified using the Lyapunov method. Furthermore, adaptive fuzzy dynamic surface (DSC), finite-time adaptive 

fuzzy dynamic DSC method and command filter-based adaptive control have been presented for chaotic PMSM 

in [40–42]. 

Since chaotic phenomena widely happen in the PMSM, it is significant to study the chaos phenomena and 

to devise a method of suppressing such phenomena. Among the methods, SMC has seen the most research and 

applications.  SMC is a nonlinear control technique that has remarkable properties such as robustness, accuracy, 

easy tuning and implementation. SMC systems are designed to drive the system states onto a particular surface 

in the state space, named sliding surface. When the sliding surface is reached, SMC keeps the states on the close 

neighborhood of the sliding surface. Since system state variables always attract to the sliding surface, SMC 

enables to control nonlinear processes subject to external disturbance and heavy uncertainties in the model. In 

addition, cotrolling a nth order system turn into cotrolling a first order system.  

SMC is a two-step controller design: sliding surface design and SMC law selection. The first step involves 

the design of a sliding surface so that design specifications are satisfied by means of the sliding motion. The 

second step is pertained to the selection of a control law that will make the switching surface attractive to the 

system states. An SMC system's dynamic performance is dictated by the switching surface that must be used in 

order to switch the control structure. 

Motivated by the above discussion, the aim of this paper is dynamic modeling of a PMSM and to construct 

a sliding mode controller in order to suppress chaotic unpleasant phenomenon in the state variables (speed and 

currents) and stabilize the dynamically chaotic PMSM drive system. After defining a sable sliding surface, an 

appropriate SMC law is produced by satisfying the reachability condition. 
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2. Dynamic Model of the PMSM for Simulink Simulation 

A two-pole PMSM concept is shown in Figure 1. It created the mathematical model of the PMSM using a 

two-phase motor in the quadrature(q) and direct(d) axes. This method is used for the reason that the stator only 

needs to have one set of two windings, which results in conceptual simplicity. The rotor is made exclusively of 

magnets, not windings. Either a flux linkage source or a current source is applied to the magnets. The flux 

connections of the stator's q and d-axis windings are obtained from the fundamentals.  

 

Figure 1. A two-pole PMSM structure. 

The stator q and d-axis winding are displaced from one another by 90 electrical degrees in space, and the 

rotor flux linkage(magnetic) axis is at θr angle from the stator d-axis winding. When the q-axis pushes the d-axis 

in the opposite direction, it is assumed that the rotor rotates anticlockwise. The stator q and d-axes voltages are 

produced by adding the resistive voltage drop to the derivative of the flux in the q and d-axes windings. 





= +

= +

qs q qs qs

ds d ds ds

d
V R i

dt

d
V R i

dt

                                                                      (1) 

where Vqs and Vds are the q and d-axes windings voltages respectively. The stator q and d-axes currents are 

known as iqs and ids. The stator's q and d-axes resistances are Rq and Rd, λqs and λds are q and d-axes flux linkages. 

The stator q and d winding flux linkages Yqs and Yds can be thought of as as the sum of the flux linkages 

resulting from their own excitation and the mutual flux linkages arising from other winding and are expressed in 

writing as: 
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Y L i L i
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                                                             (2) 

where the instantaneous position of the rotor is denoted by θr. λaf is the flux linkage due to the rotor's permanent 

magnet linking the stator. The resistances, Rs = Rq = Rd, are equal since the windings are balanced.  

The stator q and d-axes stator voltages can therefore be written as using the resistive voltage drops and flux 

connections. 
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                                       (3) 

Lqq and Ldd are, respectively, the self-inductances of the q and d-axes windings. The reciprocal inductances 

between two windings are Lqd and Ldq. Lqd and Ldq are equivalent thanks to the symmetry of the q and d-axes 

windings. L1 and L2 are the stator self-inductance and mutual inductance respectively. There are many terms that 

rely on the rotor position when the self and mutual inductances are substituted into the stator voltage equations. 

On the other hand, with surface-mounted PMSM, the inductances are identical, and L2 is thus equal to zero. The 
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position-dependent terms also vanish in the second term of the matrix, leading to a straightforward expression 

for surface-mounted PMSM in the stator reference frame. After that, it is provided by 

1

2
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The q and d-axes inductances of salient pole PMSMs depend on the position of the rotor. By eliminating the 

rotor position dependency of the inductances using a transformation matrix, the relationship between currents 

and flux linkages is determined by the matrix including the rotor position-related terms in a unique manner. 

A distinct perspective on the system is provided by reference frames, which also dramatically simplify the 

system equations. The wound rotor's and the PMSMs' dynamic system equations are affected by the position of 

the independent rotor field, which also influences the induced emf. Viewing the entire system from the 

perspective of the rotor, leads to the simplification and compactness of the system equations, and the inductance 

matrix (equation 4) becomes independent of the rotor position. The transformation matrix's definition of the 

correlation between the variables in the rotor reference frame dr – qr and the stationary reference frame d – q is 

as follows: 
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                                                              (5) 

where f is considered as voltage, current, or flux linkages variable. The stator voltage (Vqs, Vds), electromagnetic 

torque (Te), and motor angular velocity (ωm) equations that make up the PMSM model in the rotor reference 

frame are generated as: 
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where ωm and ωr represent the rotor mechanical speed (motor angular velocity) and rotor electrical speed 

respectively. J considers the sum of the shaft and load inertia. Tl is load torque, B and P are the friction 

coefficient and number of stator poles respectively. 

3. Dynamic Model of the Chaotic PMSM Drive System 

The dimensionless dynamic model of a PMSM with a smooth air gap [30] can be described in the following 

ways: 
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where iqs, ids and ωm are state variables, in which ids, iqs denote the d – q axis stator currents and ωm is motor 

angular speed. σ > 0 and γ > 0 are system operating parameters. dsv  and qsv denote d – q axis voltages and lT  

represents the external load torque. operating parameters formulation of the σ and γ can be presented as 

following: 
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,


 = =
q
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J R
 

where φr, np and τ are the permanent magnet flux, number of pol-pairs and time constant of the stator winding 

respectively. 

This study only considers the case that the system is unforced. This case can be considered as that, after a 

system operating period, the external inputs are set to zero. Namely, if we select 0= = =l ds qsT v v , after that 

system (9) becomes an unforced system as: 
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                                                               (10) 

The chaos phenomenon and bifurcation of the system (10) have been studied in several past researches. For 

more details on the chaotic phenomena analysis and bifurcation criterion of the PMSM and operating parameters 

formulation, we can refer to [43]. When the initial conditions of system states and the operating parameters γ 

and σ fall in a certain range of values, it has been found that the PMSM experiences chaotic behaviour. For 

example, for γ = 20 and σ = 5.45, the PMSM displays chaos [34,43]. Figure 2 illustrates a typical chaotic 

attractor. The stabilization of the PMSM drive system can be disrupted by these chaotic oscillations. 

 

Figure 2. The chaotic attractor of PMSM with operating parameters γ = 20 and σ = 5.45. 

4. Sliding Mode Controller Design 

The PMSM drive system's performance may suffer as a result of the chaotic oscillations. In order to control 

chaos in the PMSM drive, u(t) is used as a movable variable. We provide the following notations for 

convenience of use: 
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ds
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i

i

y
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                                                                            (11) 

Following that, the dynamic model of the PMSM drive described in (10) can be expressed as: 
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                                                                   (12) 

The aim of control in this study is to design an SMC with the state variables convergent to the origin. 

A sliding mode controller is created in two steps. After defining a stable sliding surface, a suitable control 

rule is selected to trend the state variables towards the sliding surface. The following definition of an adaptable 

sliding surface is based on [44]: 
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( ) ( ) ( )= +s t x t f t                                                                      (13) 

where ( )s t R and f(t) is an adaptive function satisfy 

= −
df

rx xy
dt

                                                                        (14) 

where r > 0 is the design parameter. The following equations must be true for the system to function in sliding 

mode: 

( ) ( ) ( ) 0= + =s t x t f t                                                                     (15) 
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Then we have  
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Therefore for Equation (16), the dynamics of sliding mode can be rewritten as:  
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Now, the stability of the closed-loop system can be investigated using the Lyapunov stability theory. 

Examining the next potential option for the Lyapunov function. 
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( ) 0

2
= + + V t x y z                                                                (19) 

The time derivative of V(t) is given by: 

2 2 2
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where ( ) 0V t . Based on Lyapunov stability theory, the sliding mode motion on the sliding mode manifold is 

stable and ensures: 

lim , , 0
→

=
t

x y z                                                                        (21) 

When the correct switching manifold has been established, the next step is to develop a SMC mechanism to 

guide the trajectories of the system onto the sliding surface s = 0. Since the closed-loop system places in a 

sliding phase, we are aware that 0=s . Then we will have: 

( ) ( ) ( ) = − − − + −u t y x rx xy ksign s                                                     (22) 

In (22), k > 0 and is considered as a design parameter. According to the above discussions, we can get the 

following results:  

Theorem 1: For the chaotic PMSM system (12), the system's state variables converge to the sliding surface s = 

0 if the sliding mode surface is chosen as (13) and the control input is configured as (22). 

Proof 1: Define the following Lyapunov function: 

21

2
=V s                                                                            (23) 

Its time derivative is given and from (4–6), we have: 

( )= = +V ss s x f                                                                     (24) 

By using (4), (6), and (14) we can get 

=V k s                                                                              (25) 

The reaching requirement is always satisfied, as we can infer. This concludes the evidence. 

https://kalamejou.com/words/q9zh/have
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5. Simulation Results 

Figures 3–6 show different sub-models and the complete simulink model of the PMSM in accordance with 

equations (6), (7), and (8). Figure 7 displays the motor's dynamic responses when combined with Table 1's 

parameters. The simulation results of dynamic responses including motor speed and electromagnetic torque, 

motor current and rotor position given in Figure 7, verify the validity of the proposed simulink scheme. 

Table1. PMSM parameters used in simulation 

Parameter Vrms (V) P Rs ( ) Ld (H) Lq (H) flux (Wb) B (kg/m^2) J (N/ms) 

Value 220 4 1.2 0.0078 0.0078  0.1540 4.6752e-5  2.0095e-5  

 

Figure 3. Electromagnetic torque sub-model 

 

Figure 4. Current equations sub-model 

 

Figure 5. Motor speed and rotor position sub-model 
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Figure 6. Complete simulink model of the PMSM 

 

Figure 7. Dynamic responses of the PMSM 

To demonstrate the efficacy of the suggested control strategy, this paper provides an example. The 

simulation results are compared to the finite-time control proposed in [34]. Initial values    , , 5,10, 1= − −
T

x y z . 

The selection of r = k = 2 as the design parameters. The chosen system parameters are γ = 20 and σ = 5.45. 

Figure 8 displays the state variables reactions of the chaotic PMSM if u(t) = 0. 
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Figure 8. State variables of the PMSM drive system without control 

Figures 9–13 display the simulation results if the control input as (22) is employed. The sliding surface 

curve and control signal obtained from the proposed approach are shown in Figures 9 and 10. Figures 11, 12 and 

13 illustrate the system state variables for various controllers. 

 

Figure 9. The sliding surface 

 

Figure 10. The control input 
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Figure 11. The response of state variable x of the controlled PMSM under different controller 

 

Figure 12. The response of state variable y of the controlled PMSM under different controller 

 

Figure 13. The response of state variable z of the controlled PMSM under different controller 

The results of the simulation demonstrate that the suggested approach is effective in regulating the chaotic 

PMSM system, and the tracking performance is good. As seen from Figures 11, 12 and 13, the system state 

variables including x = ωm, y = iqs, and z = ids converge to the sliding surface exponentially. The process of the 

reaching system to the sliding surface from any initial state is called reaching mode. According to the designed 

trajectory, the reaching law is able to make the system states reach the sliding surface and improve the dynamic 

behaviour of the reaching mode. 

Also, the comparative analysis of the system states from Figures 11–13 confirms that the designed SMC 

controller can achieve chaos suppression in the PMSM drive system with fewer overshoots and oscillations. 

Moreover, the proposed control has stabilized the system faster than the finite-time control proposed in [34]. 
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6. Conclusion 

The dynamic simulation-based PMSM model is implemented in MATLAB in this article. The simulation's 

findings reflect the PMSM's performance traits. In the graph, the motor's speed, stator currents, electromagnetic 

torque, and rotor position are all displayed at the same time. A SMC strategy has been presented to build a 

controller for a chaotic PMSM drive. For determining the stability in sliding phase motion, a switching manifold 

is defined. Lyanpunov-based stability analysis and the simulation results in MATLAB software serve as 

evidence of this method's effectiveness due to its capacity to successfully eliminate chattering in sliding mode 

control and suppress chaotic phenomena in the PMSM drive system. Moreover, the comparative simulation 

shows better performance of the proposed SMC than finite-time method. 
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