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Abstract: The main aim is to estimating the voltage profile at all the buses in the system before the arrival of
next set of hybrid measurements from field. The effectiveness of the algorithm ISCKF during load variations is
evaluated with respect to already implemented Kalman filter approaches for this application. This includes the
sudden changes in loads which occurring in practical power systems. The utilization of an iterated square-root
cubature Kalman filter (ISCKF) for power system forecasting-aided state estimation (FASE) is being studied
during normal load variations. Its implementation involves “Newton-Gauss iterative method being embedded
into the square-root cubature Kalman filter (SCKF)” at the measurement update step of Kalman filter. The
square-root factor of error covariance matrices is calculated by utilizing QR decomposition to avoid losing of
positive definiteness of the matrix. The estimation is carried out utilizing hybrid measurements from remote
terminal units and phasor measurement units. The state vector is forecasted using the proposed method in the
interval period between two measurement arrivals from the devices. Thereby, caters to state estimation of the
voltages at buses in the system even when the measurements are unavailable. The efficacy of the proposed
algorithm to FASE is evaluated for IEEE 30-bus system and Northern Region Power Grid (NRPG) 246-bus
system. The simulation results show that the proposed ISCKF outperforms the CKF by significant improvement
in accuracy of forecasting-aided state estimation. ISCKF will be able to give results before the next set of hybrid
data arrives (expected from an estimation algorithm). Therefore, the proposed estimation algorithm is applicable
for real-time practical application, with respect to large power systems as well.

Keywords: forecasting-aided state estimation (FASE), bayesian estimation, voltage profile tracking, iterated
square-root cubature kalman filter

1. Introduction
State estimating process for power network has been traditionally described as a static estimate issue,

solved using weighted least square (WLS) technique. In this work, state estimation implementation involves
“Newton-Gauss iterative method [1] being embedded into the square-root cubature Kalman filter (SCKF)” at the
measurement update step of Kalman filter. With the advent of wide area measurement systems, hybrid state
estimation algorithms were created by adapting the traditional WLS technique to include phasor measurement
units (PMU) measurements [2–6]. The PMU and remote terminal unit (RTU) measurements are combined to
generate the augmented measurement set [2,3]. As a result, the Jacobian matrix is changed in order to run the
WLS-based static state estimation (SE). The WLS method is utilized only for RTU data, and later the PMU data
and the SE results were used together to perform the linear SE [4]. PMU current measurements are used to run
the hybrid state estimation [6]. In the literature, a few different versions of the WLS technique [7], have been
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used for SE. The Jacobian matrix grows in size as the PMU measurements are included in the hybrid state
estimation execution. As a result, the SE’s execution time increases. Furthermore, the current SSE technique
does not allow for the use of all relevant metrics in predicting states. As a result, a quick SE technique is needed,
one that can use both RTU and PMU data to estimate states before the next set of measurement data arrives.

The main steps involved in the implementation for FASE methodology involves:

 System state model identification
 State prediction using a forecasting tool
 State filtering

For power system dynamic SE studies until 2017 [8], the systems were assumed to be in quasi steady state
and hence load variations were considered to be slow. Sudden changes in loads were not considered. Now in our
work here, the effectiveness of the proposed algorithm taking “load variations” into account is demonstrated. In
this case, the resulting estimators are referred to as FASE [9]. Power system state estimation consists of a multi-
level extended Kalman filter whose time-update step uses a dynamic load prediction method, and whose
measurement update step uses a hierarchical technique [10]. It is observed that load forecasting and DSE are
complementary to one another.

In another attempt, for estimation of both fundamental and harmonic components of voltage magnitude and
angles of a power system, Kalman filter has been employed effectively [11]. It is presented how load
fluctuations impact the power system’s harmonics. An artificial neural network (ANN) based short-term load
forecasting is employed for the prediction step in DSE because to its quick response and effective learning [12].
Similarly deep learning has been explored for distribution system FASE [13]. But, for all machine learning
techniques a huge amount of training dataset need to be provided for high precision. To address state estimation
uncertainties, DSE with a fuzzy logic controller that is improved by the sliding surface concept is examined [14].

Kalman filter-based algorithms appear to dominate the DSE in power systems [15], whereas for the state
prediction step, ANN, fuzzy logic, autoregression, Box, and Jenkins approaches have been investigated in the
literature. The nonlinearity of the measurement function is addressed by [16] but this method has non-sparse
measurement covariance matrix and hence requires large computational time. To overcome this drawback, a
two-level estimation is proposed by [17]. Square root KF is more robust but algebraically identical to KF [18].
Square root KF reduces uncertainty in measured data, saving time and computational memory when compared
to KF.

Utilization of synchrophasor data in state estimation [19] is advantageous as with high accuracy angle
measurements and convergence speed increases. For the state prediction stage, Holt’s double exponential
smoothing is adopted, while EKF is utilised for the filtering stage. For DSE, an adaptive EKF is assessed under
normal, bad data, and rapid load fluctuations conditions [20]. Adaptive EKF has the best filtering performance
when compared to standard EKF. However, the processing time is little longer. To deal with certain missing
measurement data owing to communication loss, a time-forward Kriging model depending on a load forecasting
technique was incorporated in DSE [21]. Unscented KF being an easier and derivative-free implementation is
applied for DSE [22]. Projected UKF [23] is proposed for DSE using unscented transformation and zero
injection constraints. It performed better in FASE than that of EKF or UKF. Regression analysis based state
transition matrix is proposed for enhanced dynamic SE [24]. A combination of both differential evolution and
bacteria foraging, is employed for the filtering stage in [25]. Furthermore, in the forecasting step, a novel
stochastic search technique and Lattice Monte Carlo method is utilized. In distribution systems for carrying out
FASE, there is inadequacy in quantity of real-time data readings [13]. Even though many smart meters are
installed, their low data reporting rate when compared to RTU or PMU data and unable to estimate within the
execution time as expected. A robust UKF algorithm based on generalized maximum mixture correntropy
criterion is proposed for FASE in [26] which showed better accuracy and robustness compared to traditional
correntropy algorithms. In the further study, to incorporate the influence of gross errors on SE, an adaptive UKF
method is adopted in [27]. It estimates the gross errors in measurements to compensate during the intermediate
step, so these compensated measurements are used for the corrected state estimation step. But, when a dynamic
process of variations in the power system is close to the stable value, the numerical stability of this method is
poor. Another research work [28], explores the online state estimation for distribution grid for anomaly
detection, discrimination and identification using EKF method with help real-time digital simulator. The errors
contained in the network parameters are not considered in the study due to the complexity to deal with it. Hence,
the main challenge would be extend their anomaly detection and identification technique when there are
topology changes. Probabilistic forecasting was utilized for dealing with false data injection attacks in
distribution grids [29]. While the method performs reasonably well taking only few seconds more than the
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traditional multi-area deterministic SE method, it is also does not guarantee performance when communication
system fails or cyber attack on topology data.

In [8], the Cubature Kalman Filter (CKF) proposed in [30] which employs a more precise cubature process
for numerically computing Gaussian-weighted integrals is used for estimating the states in power system. CKF
requires the error covariance matrix to be positive definite in every update to avoid stopping the CKF from carry
on with its iterations. In [31] ISCKF is explored for space target tracking problem in surveillance systems and is
proven to perform better than traditional filters. Contributions of this work are briefed as follows:

1. The ISCKF proposed in [31] is applied for FASE in power systems. Here, the estimation of voltage
magnitude and phase angle at all buses is carried out. The robustness of the said technique is ensured by
removal of outliers by anticipating measurement data and inherent feature of Kalman filter’s resilience
against noise in data.

2. Performance of the ISCKF method for voltage profile estimation during load variations is compared with
that of the CKF method in terms of estimation error and computation time by the simulation studies.
Motivation for the study is to evaluate the presented method which assures high accuracy is capable of a
feasible online real-time application.

3. The efficiency and scalability of the ISCKF method application for the FASE is tested using two different
sized test systems. The performance is evaluated using two parameters error and estimation time. The error
is calculated by finding mean of absolute error between estimated values and actual values.

The paper is made up of the following structure. The power system model for FASE is defined in Section 2.
The ISCKF algorithm is described in Section 3. The Section 4 elaborates on how actual data is simulated for
carrying out the case studies with the test systems. Section 5 describes what are the case studies carried out. The
findings are concluded in Section 6 by comparing the efficiency of the proposed state estimation algorithm with
the existing KF-based algorithms.

2. Power System Modelling for Forecasting-Aided State Estimation
The linear state transition model for power system and measurements is represented as discrete time

functions using difference equations:

 1 11   t t tx f x w (1)

  t t tz h x v (2)

 1 10,  t tw N (3)

 0,t tv N R (4)

where xt − state vector at tth time instant, zt − measurement vector, wt-1 − Gaussian process noise with mean of
zero and covariance of Ωt-1, vt − Gaussian and Cauchy measurement noises with mean of zero and covariance of
Rt, f() and h() − state space and measurement space non-linear functions respectively. Different type of
measurements and corresponding standard uncertainties, considered in our study, are shown in Appendix. These
standard uncertainties are employed to create the simulated measurement data from the actual data for the
simulation studies.

The state vector xt in the FASE formulation is made up of voltage magnitude (Vt) and voltage angle (θt)
state sub-vectors. The measurements sub-vectors of voltage magnitude (Vmt), real power injection (Ptm), reactive
power injection (Qtm), real power flow (PFtm), and reactive power flow (QFtm) and voltage angle (θtm) make up
the measurement vector zt at tth instant as follows:

   
T

t t tx V (5)

   
T

t tm tm tm tm tm tmz V P Q PF QF (6)

where the subscript m denotes the quantities measured.
The assumption for the power system transition modeling is that the variations in network characteristics,

such as load fluctuations, are sluggish. Quick variations in the states are not taken into account in the current
situation. With respect to this assumption, some state forecasting tool [32] could be used for modeling the state
transition function and account for the shift in state values from a particular time instant to another. The error in
forecasted state can be modelled using a process noise w.
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  1 1  t t tf x a b (7)

where

 1 1 11  
    t t ta ax x (8)

   1 1 2 21       t t t tb a a b (9)

where α and β − parameters having values in (0,1), xt-1 − forecasted state vector, and at-1 and bt-1 − defined by (8)
and (9) at (t - 1)th instant. When using the KF technique to perform the state predicting phase, the expression (7)
is used in (1).

The measurement function h() of the network, uses the well-known P and Q power injections as well as
flow expressions, written as [33]:

 1
cos sin 


  N

j j k jk jk jk jkk
P V V G B (10)

 1
sin cos 


  N

j j k jk jk jk jkk
Q V V G B (11)

   2 cos sin    jk j sj jk j k jk jk jk jkP V G G V V G B (12)

   2 sin cos     jk j sj jk j k jk jk jk jkQ V B B V V G B (13)

where Pj − real power injection at bus j, Qj − reactive power injection at bus j, Pjk − real power flow in line j - k,
Qjk − reactive power flow in line j - k, Vj -voltage magnitude at bus j, Gjk − conductance of line j - k, Bjk −
susceptance of line j - k, Gs− conductance of shunt at bus j, and Bsj − susceptance of shunt at bus j.

Using this power system model the proposed approach is simulated to estimate the states, the voltage
magnitude and phase angles at all the buses for the test systems.

3. Iterated Square-Root Cubature Kalman Filter (ISCKF)
The ISCKF technique is expected to have an increased filtering capability in terms of accuracy and

numerical stability, This is due to the fact that its implementation involves Newton-Gauss iterative method [1]
being embedded into the square-root cubature Kalman filter (SCKF).

3.1 Steps to Implement ISCKF Algorithm for FASE

3.1.1 Forecasting Step

At this step, the state vector (Refer (5)) is forecasted based on the estimated state vector from the previous
iteration and using the forecasting tool: Holt’s double exponential method [32] as described in (7).

1. Assuming initial flat start voltage profile and state covariance matrix is considered as 1 ×10-3 × I initially.
2. Cubature points are derived for the state vector given by:

, 1 1 1 1 1 1ˆ 1, 2,...       ii k t t t t tX S x i m (14)

where, m = 2n and k = 1

 00 0 S sqrt P (15)

3. Evaluate cubature points (i = 1, 2, ..m) with the help of f() in (7)

 *
, 1 1 , 1 1   i k t i k tX f X (16)

4. Estimate predicted state

*
1 , 1

1

1ˆ  


 
m

t t i t t
i

x X
m

(17)

5. Now, computing a square-root of the predicted error covariance

 *
, 11 1,  

   Q tt t t tS Tria x S (18)
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where Tria(.) denotes QR decomposition and SQ,t-1 is square-root of Qt-1 and, such that Q = SQ,t-1 STQ,t-1, and
x*t|t-1 defined as

* * * *
1 1, 1 1 2, 1 1 , 1 1

1 ˆ ˆ ˆ, ...,      
     t t t t t t t t t t m t t t tx X x X x X x

m
(19)

3.1.2 Filtering Step

Here, based on the measurements for time instant k and the forecasted state vector, the Kalman gain is
calculated and filtered state vector is derived. This is done recursively for iterations p = 0, 1, .., Niter where Niter =
2 in our study, to get even better filtering effect.

6. Evaluate cubature points (i = 1, 2, .., m) for filtering step,
     
, 1 1 1 1 1

ˆ ˆ     p p p
ii k t t t t tX S x (20)

where internal iteration count j = 0, 1, .., Niter for the filtering step j = 0,  0
1 1

ˆ
 t t t tS S and  0

1 1ˆ ˆ t t t tx x .

7. Evaluate propagated cubature points

    , 1 , 1 p p
i t t i t tZ h X (21)

8. Calculating the predicted measurement

   
1 , 1

1

1ˆ  


 
m

p
t t i t t

i
z p Z

m
(22)

9. Determine square-root of innovation covariance matrix

      ,, 1 1 , 
   

p p
R tzz t t t tS Tria Z p S (23)

where  
,
p
R tS − square-root factor of  p

tR in order for       , ,
Tp p p

t R t R tR S S and  
1

p
t tZ is defined as

             
1 1, 1 1 2, 1 1 , 1 1

1 ˆ ˆ ˆ, ...,      
     

p p p p p p p
t t t t t t t t t t m t t t tZ Z z Z z Z z

m
(24)

10. Estimate the cross-covariance matrix

    , 1 1 1  
Tp p

xz t t t t t tP X Z (25)

where 1t tX is:

             
1 1, 1 1 2, 1 1 , 1 1

1 ˆ ˆ ˆ, ...,      
     

p p p p p p p
t t t t t t t t t t m t t t tX X x X x X x

m
(26)

11. Estimate the Kalman gain

      , 1 , 1 , 1  
Tp p p

zz t t zz t t zz t tP S S (27)

 
 

   
, 1

, 1








p
xz t tp

t p p
tzz t t

P
W

P R
(28)

12. Estimate the filtered state

          1 1ˆ ˆ ˆ   p p p p p
t tt t t t t tx x W z z (29)

13. Calculate square-root of error covariance

            ,1 1,  
   

p p p p p p
t t R tt t t t t tS Tria W Z W S (30)
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14. Make    1
1ˆ ˆ
 j p

t t t tx x ,    1
1

ˆ ˆ
 j p

t t t tS S and j = j+1.

Return to Step 6 and end for j = Niter.

4. Simulation of Actual Data
For the implementation of ISCKF-based FASE approach, the hybrid measurements from both PMUs and

RTUs are augmented. We consider the assumption that, for the 50Hz power system, the PMU data arrive at the
rate 25 frames/s (i.e., after every 40ms), and the RTU data arrive after every 2s. To simulate the hybrid
measurement data for the FASE application, the actual values of the variables that constitute the system states
are derived using load flow computations recursively for different simulated varying load conditions. Power
flow is run with the help of MATPOWER package [34] on MATLAB R2020a platform. All the loads are varied
in each time step upto ±5% from the values of their prior time-steps during the simulation period. Thus,
simulating a realistic load profile. The higher and lower limitations applied in variations of loads throughout
time of simulation studies are specified at ±30% of its respective nominal load values. The measurement data
are then chosen at random from the normal probability distribution of actual state values acquired from power
flow results at different instants. The probability distribution depends on the standard uncertainty as listed in
Appendix.

5. Case Studies on FASE for Test Systems
The forecasting-aided state estimation is performed on the test systems with 100 hybrid measurements

simulations under varying loading situations using MATLAB R2020a platform. In the 2s gap across arrival
times of two successive RTU data and 49 PMU data measurements (Initial set of PMU data is considered to
overlap with that of RTU data) are analysed as well. Hence, overall 4951 (99 × 49 + 100) simulations are carried
out to execute the ISCKF technique. The parameters α and β of the forecasting tool are derived by 20,000 Monte
Carlo simulations (MCS) [8]. This mainly takes into account the randomness in the measurement data. The MC
simulation has been performed off-line, only once before the FASE simulation begins, so as to assess the values
of α and β. The following are the test systems considered for the analysis:

5.1 IEEE 30-Bus System

The single line diagram of the IEEE 30-bus system is shown in Figure1 (refer [35] for the system details).
The α and β derived for this system are 0.76 and 0.53 respectively [8]. For this system, 3 PMUs are chosen to be
placed on buses 6, 9 and 12. While the remaining buses are assumed to be placed with RTUs for the data
acquisition.

Figure 1. Single line diagram of the IEEE 30-bus system
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5.2 Northern Region Power Grid (NRPG) 246-Bus Test System

Around 30 PMUs are chosen for this system and they are assumed to be installed on huge generator buses.
Remaining buses are expected to be connected to RTUs for data collection. Values of α and β derived for NRPG
246-bus system (See Figure 2 and refer [36] for system details) are obtained as 0.83 and 0.64, respectively [8].

Figure 2. Single line diagram of the NRPG 246-bus system

6. Results and Discussion
The ISCKF based FASE is implemented using 100 hybrid (PMU and RTU) measurements with 49 PMU

measurements between each successive RTU measurements. Suppose the proposed FASE begins, at the time
step T = 0, by estimating the states with the help of immediately accessible hybrid measurements. Further,
utilizing the state estimation outcome for the measurements at T = 0, at the time instant T = 1 (i.e., at 40ms), the
estimate results are forecasted. Now, the combination of these forecasted states as pseudo data and the PMU
data accessible at T = 1, derives estimated state variables at T = 1. These steps are carried out for every PMU
measurement set received in the interval between the time steps T = 0 and T = 50. At T = 50 (i.e., at 2 s), when
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the second batch of RTU data comes, the state is recalculated using the hybrid measurements. The simulation
studies are performed using Intel Core-i7 3.4 GHz computer having 32 GB RAM and Windows 10 OS.

For the test systems in the study, the measurement data was simulated by adding noises to the actual data
with the standard measurement uncertainty of the devices (See Appendix) at each iteration, to ensure that the
simulation findings are consistent. The voltage phasors were added with White Gaussian noises randomly, while
Cauchy noises are added to the power measurements. Subsequently, the mean of absolute errors (MAE) for state
estimates in each iteration are noted down. By estimating the voltage magnitude and phase angle at all buses in
the test systems, the mean of the absolute errors at all buses are compared in the Tables 1 and 2. The speed of an
algorithm can be measured by the capability of an algorithm to keep up with the speed of inflowing data. The
execution times have been noted down in Table 3 for the systems using CKF and ISCKF for immediate
comparison.

Table 1.Mean of Absolute Errors (MAE) in the Estimated States using various KF algorithms for IEEE 30-bus test system

Filter
type

MAE
in V Magnitude (p.u.)

MAE
in V angle (rad.)

ISCKF 0.854 × 10-3 1.7 × 10-3
CKF [8] 3.9 × 10-3 3.3 × 10-3
UKF [8] 4.2 × 10-3 4.9 × 10-3
EKF [8] 4.4 × 10-3 4.7 × 10-3

Table 2.Mean of Absolute Errors (MAE) in the Estimated States using various Kalman filter (KF) based algorithms for NRPG 246-bus test
system

Filter
type

MAE
in V Magnitude (p.u.)

MAE
in V angle (rad.)

ISCKF 1.8 × 10-4 2.0 × 10-4
CKF [8] 2.8 × 10-3 2.1 × 10-3
UKF [8] 4.8 × 10-3 3.9 × 10-3
EKF [8] 5.8 × 10-3 6.2 × 10-3

Table 3. Total computational time for estimation using one set of hybrid measurements and 49 PMU measurements

Estimation Time
IEEE 30-bus system

Estimation Time
NRPG 246-bus system

CKF 7.43 ms 0.84 s
ISCKF 15.93 ms 1.36 s

Some important inferences from the results are discussed below:

1. IEEE 30-bus system:
 For the comparison of ISCKF and CKF estimation results, actual data and estimation results for bus voltage

plots and their corresponding error plots at bus-7 are shown in Figure 3. From Figure 3b and Figure 3d, it is
inferred that the error in estimation using ISCKF is significantly less than that of using CKF.

 Error in estimation: (a) Mean of absolute error given by: From the mean of absolute errors tabulated in the
Table 1 it is noticed that by using ISCKF the Mean absolute error in the voltage magnitude estimation is
decreased to 1/5th the error that obtained using CKF. That is, the precision in the voltage magnitude
estimation by ISCKF has been improved by 78% when compared to that of CKF. And for voltage phase
angle, the mean of absolute errors using ISCKF is decreased to half that of using CKF. Alternatively, it can
be said that the precision in the voltage phase angle estimation by ISCKF has been enhanced by 48% than
that of CKF. (b) Absolute phase error percentage (APEP) and Absolute voltage error percentage (AVEP)
[21] at a time instant are given as following:

2

ˆ100
1

 





 
bn

i i

ib i

APEP
n

(31)

1

ˆ100



 

bn
i i

ib i

V V
AVEP

n V
(32)

where bn is count of buses in system, ̂i , îV are forecasted phase angle and voltage at bus respectively,i ,

iV are actual phase angle and voltage magnitude at bus.
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It is also verified (from Table 4) with all the parameters mean, maximum and standard deviation of absolute
phase error percentage (APEP) [21] and absolute voltage error percentage (AVEP) using ISCKF are less than
that of CKF for IEEE 30-bus system.

Table 4. Absolute phase error percentage (APEP) and Absolute voltage error percentage (AVEP) comparison of proposed ISCKF with CKF
methods for the two test systems (Note: SD stands for standard deviation and Max. for maximum)

IEEE 30-bus system
APEP AVEP

Filter Type Mean Max. SD Mean Max. SD
ISCKF 0.32 91.27 2.01 0.21 38.73 1.17
CKF 0.35 101.24 2.14 0.96 80.77 5.05

NRPG 246-bus test system
APEP AVEP

Filter Type Mean Max SD Mean Max SD
ISCKF 0.01 1.33 0.03 0.02 33.22 0.97
CKF 0.03 1.78 0.08 0.80 66.28 4.53

 Execution time: It can be observed from the Table 3 that the ISCKF takes 15.93ms whereas the CKF takes
7.43ms. for execution of one hybrid data and 49 PMU data. It is evident that ISCKF is slightly slower than
the CKF. However the data reporting time for hybrid measurement is 2s, so ISCKF is able to give results
before the next set of hybrid data arrives, which is expected from an estimation algorithm.

(a) Voltage Magnitude

(b) Error in Voltage Magnitude
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(c) Voltage Phase angle

(d) Error in Voltage Phase angle

Figure 3. The estimated states and error plots at bus-7 in IEEE 30-bus system.

2. NRPG 246-bus system:
 For the comparison of ISCKF and CKF estimation results, actual data and estimation results consisting of

voltage magnitude and voltage phase angle plots and their respective error plots at bus-30 are plotted in
Figure 4. From Figure 4b and Figure 4d, it is noticed that the estimation error using ISCKF is significantly
less than that of using CKF.

(a) Voltage Magnitude
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(b) Error in Voltage Magnitude

(c) Voltage Phase angle

(d) Error in Voltage Phase angle

Figure 4. The estimated states and error plots at bus-30 in NRPG 246-bus system

 Error in estimation: (a) It is observed (Refer Table 2) that the mean of absolute error in voltage magnitudes
at all buses is reduced to 1/16th that obtained using CKF. The precision in the voltage magnitude
estimations by ISCKF is enhanced by approximately 94% than that of CKF. And the mean of absolute
errors of voltage phase angle using ISCKF is decreased to 1/11th that of using CKF. Alternatively, it can be
said that the accuracy in the voltage phase angle estimation by ISCKF has increased by 90% than that of
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CKF. (b) It is verified (from Table 4) with all the parameters mean, maximum and standard deviation of
APEP and AVEP using ISCKF are less than that of CKF.

 Execution time: It can be observed from the Table 3 that the ISCKF takes 1.36s whereas the CKF takes
0.84s for execution of one hybrid data and 49 PMU data. It is evident that ISCKF is slower than the CKF.
However the data reporting time for hybrid measurement is 2s. So, ISCKF will be able to give results
before the next set of hybrid data arrives (expected from an estimation algorithm). Therefore, the proposed
estimation algorithm is applicable for real-time practical application, with respect to large power systems as
well.

7. Conclusions
The paper demonstrates the deployment of an iterated square-root cubature Kalman filter for forecasting-

aided state estimation during realistic load variations:

1. It is performed utilizing the hybrid measurements from both field devices: RTUs and PMUs.
2. The ISCKF method has the Newton-Gauss iterative method embedded into square-root CKF to improve its

performance and stability. Consequently, ISCKF removes the risk of losing positive definiteness of the
error covariance matrix in each update, which can cause the CKF to cease operating.

3. The online real-time application feasibility is demonstrated with respect to the two different sized test
systems IEEE 30-bus and NRPG 246-bus systems.

4. The simulation results show that the proposed ISCKF outperforms the CKF by significant improvement in
accuracy of forecasting-aided state estimation. This was evaluated with the help of mean of absolute errors,
absolute phase error percentage and absolute voltage error percentage. For the voltage magnitude, the
average estimation performance of ISCKF at all buses in system was in the range of 78%–94% increased
accuracy when compared to that of CKF with respect to the 2 test systems considered. While for voltage
phase angle, the increase was in the range of 48%–90% with respect to the 2 systems considered.

Future scope: In the dynamic state estimation studies for power systems, it is recommended that test cases
be run against model uncertainty and cyber threats [37] for modern power systems.
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Appendix

Table A1.Measurement quantities and corresponding standard uncertainties

Measurement
device

Power injection
in p.u.

Line flow
in p.u.

V magnitude
in p.u.

V Angle
rad.

RTU 0.01 0.01 0.006 -
PMU 0.001 0.001 0.0006 0.018
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