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Abstract: The particle swarm optimization (PSO) algorithm counts among the most popular metaheuristic algorithms based

on swarm intelligence. Since the publication of the first article on this optimization technique, researchers have developed

many PSO variants with some improvement in its performance. The PSO optimization performance hinges on its ability to

achieve a good exploration-exploitation balance. The most common method that helps to improve exploration-exploitation

balance is modifying the PSO three controlling parameters, namely the inertia weight and two acceleration coefficients. In

this paper a PSO variant that combines adaptive dynamic inertia weight and adaptive dynamic acceleration coefficients

to enhance the exploration-exploitation balance of the PSO is proposed. The enhanced PSO algorithm called Adaptive

Dynamic Inertia Weight and Acceleration Coefficient Optimization (ADIWACO) algorithm is tested on seven well-known

standard test functions comprising four unimodal and three multimodal ones. The performance of the PSO is then compared

with that of the standard PSO (SPSO) and four existing PSO variants. The experimental results comprising optimum

value, runtime, mean value, standard deviation and convergence rate, and confirmed by the results of ranking statistics and

Wilcoxon signed rank test conducted on the experimental results, indicate significantly better performance by the proposed

PSO algorithm.
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1. Introduction

Particle swarm optimization (PSO) is a well-established swarm optimization algorithm that has proven to provide high

performance in many application areas which require that optimization problems be solved [1, 2, 3]. In the engineering

fields, it has been applied in robotics [4], power systems [5, 6] solar energy systems [7] image processing [8, 9, 10] control

[11, 12], wireless communication networks [13, 14], training of artificial neural networks [15, 16], and many others. The

original or standard PSO (SPSO) algorithm has few parameters to tune, is easy to program and has shown excellent

optimization performance. However, it suffers the disadvantage of converging prematurely in complex problems of high

dimension [1, 16, 17]. The PSO performs better when there is better balance between exploration and exploitation. Since

its introduction in 1995, researchers have been developing PSO variants to improve its performance through the creation of

a proper exploration-exploitation balance. The common research areas on PSO algorithm development can be broadly

classified into three groups: hybridizing PSO with other well-known metaheuristic algorithms, neighborhood topological

structure and modification of controlling parameters [18].
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There are many hybrid variants which combine the particle swarm with evolutionary algorithms to surmount its

drawbacks including premature convergence and poor solution quality. The PSO hybridized with genetic algorithm (GA),

for instance, is known to provide better performance with regard to the quality of the solution and speed of convergence as

compared with the individual PSO and GA [12] and hybridization with differential evolution (DE) has shown to be effective

in providing high solution quality and efficient computation [19]. Other algorithms which have been hybridized with

PSO include ant colony optimization (ACO) [20], gravitational search algorithm (GSA) [21], grey wolf optimizer (GWO)

[3, 22], and simulated annealing (SA) [23].The harnessing of the strengths of the PSO algorithm and the evolutionary

algorithms that it is combined with has proved to be a good strategy to maintain a good exploration-exploitation balance,

and thus preventing the population from becoming stagnant and the algorithm from converging prematurely [18, 24].

Particles in a swarm are bonded in some form of structure usually referred to as a neighborhood topology within which

there is communication and sharing of information between particles [1]. Studies have shown that the topology if properly

selected can effectively enhance the PSO performance [25]. Therefore to enhance the PSO performance, various topologies

have been proposed: the star topology, ring topology [26], the Von Neumann topology [27], the dynamic topology [24],

complex network and others. In the original PSO algorithm, every particle sees all other particles as its neighbors [1].

The PSO is said to be using a star topology. It has the fastest convergence but converges to local optima [1]. The ring

topology prevents the algorithm to converge to local optima but its convergence speed decreases. Many test cases have

shown that the performance of the Von Neumann topology is superior to that of others [27]. In the dynamic topology,

the neighborhood of each particle is updated by dynamically selecting particles that are closest to the current particle. A

PSO variant based on this topology was able to find multiple Pareto optimal solutions [28]. The complex neighborhood

topology uses a complex neighborhood network to prevent the algorithm from converging prematurely and increase its

exploration capabilities. A proposed complex neighborhood particle swarm optimizer for solving global optimization

problems performed better than the original PSO in every test problem [29].

The PSO has, in general, three controlling parameters: inertia weight, and two acceleration coefficients. It has

been shown in the literature that the PSO performance is very sensitive to all these three controlling parameters [30, 31].

Therefore, a proper setting of these parameters is necessary to achieve good performance. Researchers have developed

PSO variants that improve the performance of the SPO by using various techniques to modify the controlling parameters.

Velocity clamping is one of the early important ones used to modify the PSO controlling parameters [32]. Proper choice of

the velocity clamping parameter prevents the velocity of the particles from diverging and hence promoting convergence

towards the optimal solution. However, improper choice leads to poor performance [1]. The concept of constriction factors

[15, 33, 34, 35, 36], consisting of a diverse range of mathematical formulas in the velocity update equation, has also been

applied to ensure convergence without using velocity clamping [15].

The inertia weight has been shown by experimental studies to be the most important controlling parameter of the

PSO [18, 23]. For this reason, many recent variants are based on modification of this controlling parameter. There are

three techniques in the literature for changing this parameter: the adaptive, the time-varying or dynamic, and the random

techniques. The adaptive inertia weight strategies that use the distances of the particles to their personal best and global best

positions have been widely proposed in the literature [37, 38, 39, 40]. Random and chaotic theory based inertia weights

have also been proposed with some degree of success [32, 41]. Most PSO variants based on modification of inertia weight

use the popular time-varying techniques [1]. Time-varying logarithm, exponential, trigonometry and linear functions have

been used with some degree of success [1, 16]. The sigmoid function has also been combined with a linearly increasing

inertia weight [42]. This showed improvement in convergence speed and violent movement that narrows towards the

solution region [42]. Other weight modulation techniques include a logarithm decreasing inertia weight combined with

a chaos mutation operator to improve the speed of convergence and the ability to come out of the local optima [7, 43],

an exponent decreasing inertia weight combined with stochastic piecewise mutation resulting in an improved PSO that

prevents the algorithm from converging prematurely and having later period oscillatory occurrences [7], and a random

inertia weight, where a random inertia weight is used at each iteration. The random inertia weight is found to be best

suited for applications in a dynamic environment where whether large or small inertia weight is required cannot be easily

predicted [1]. A recent PSO variant in [17] combines a time-varying hyperbolic tangent function with an adaptive factor
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which makes use of the difference between the global and personal best positions. This variant showed good performance

when tested on seven well-known benchmark functions.

PSO variants based on acceleration coefficients have not fully been explored. Using the time-varying technique to

change the acceleration coefficients is among the few in the literature on PSO using acceleration coefficients that vary with

time [44, 45]. The study in [45] indicated significantly better performance if acceleration coefficients that vary with time

are used rather than fixed ones.

Researchers continue to look for new concepts to improve the PSO performance. One recent concept attracting the

attention of researchers is the opposition-based learning concept [28, 29, 30, 31]. The opposition-based learning PSO

(OLPSO) applies opposition-based learning method to enhance the swarm’s diversity by considering both original and

opposite positions during optimization [19]. OLPSO has demonstrated superior performance in providing high convergence

speed and solution quality. Its main drawbacks are increased computational complexity and sensitivity to parameter tuning

which may impact convergence times and robustness [46].

Although the existing PSO variants have shown promising results when used to solve optimization problems, they

continue to converge prematurely in some complex problems that have high dimensions [47, 48]. Therefore, the PSO

algorithm is still being developed further so that it can perform well on complex real-world optimization problems

[16, 48, 49]. Modification of the controlling parameters has become a more popular method in the literature to enhance

the PSO performance [50]. The method has the advantage of providing enhancement of the standard PSO without much

compromising its main merit of simplicity in terms of implementation and coding. The work of the authors in [17]

uses adaptive dynamic inertia weight. This paper seeks to enhance further its performance by adding adaptive dynamic

acceleration coefficients. The combination of the two techniques aims to synergistically harness the strengths of both

dynamic adaptive inertia weight and dynamic adaptive acceleration coefficients to improve the PSO capability of exploiting

and exploring the search space.

The remaining part of this paper is structured as follows: Section 2 introduces the enhanced PSO (ADIWACO)

algorithm. Section 3 details the testing procedures while the results and discussion are presented in Section 4. Section 5

presents the conclusion of the study.

2. Enhanced PSO (ADIWACO)

The standard PSO is a bioinspired metaheuristic optimization technique formulated on the collective behavior of bird

flocks or fish schools. In the PSO, a population of potential solutions, represented as particles, explores the solution space

by adjusting their velocities and positions based on their own best-known solutions and the globally best solution found by

the entire population [51]. Mathematically, the velocity, v and position, x of each particle are updated iteratively by the
following equations:

xi (t +1) = xi (t)+ vi (t +1) (1)

vi (t +1) = wvi (t)+ c1 (pi (t)− xi (t))+ c2 (g(t)− xi (t)) (2)

where w = the inertia weight. c1, c2 = acceleration coefficients, xi(t) = the current position of a particle, xi(t+1) = the

updated position of a particle, pi(t) = the personal best of a particle, g(t) = the global best of a particle, vi(t) = the velocity

of a particle and vi(t+1) = updated velocity of the particle with the updated position xi(t+1) [51].

The coefficient c1, also called the cognitive constant, enables each particle to return to its previous best position for

effective local search, while the coefficient c2, also called the social constant, causes the particle to move towards the

overall best position of the swarm, based on its proximity. The inertia weight w controls the exploration-exploitation

balance during the search process [17, 51].

The standard PSO uses constant controlling parameters. The proposed algorithm enhances its performance by

employing adaptive dynamic inertia weight and also adaptive dynamic acceleration coefficients. This is an improvement

of work done in [17] where only an adaptive dynamic inertia weight was used.
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The adaptive dynamic inertia weight is calculated using the formula:

w = µ tanhδ (3)

where µ and δ are defined as follows:

µ =
Personalbest −Globalbest

Personalbest
(4)

δ =Wmax −
(Wmax −Wmin)× thenumber o f thecurrent iteration

Maximumnumber o f iteration
(5)

The adaptive coefficient µ is given by the scaled difference between the particle best and the global best positions.

If the best cost of a particle is significantly better than the global best cost, the inertia coefficient increases, allowing

for greater exploration to discover potentially better solutions. Conversely, if the best cost of a particle is close to the

global best cost, the inertia weight decreases, facilitating exploitation to refine the current best solution. The time-varying

or dynamic component of the inertia weight δ decreases linearly from Wmax at the start of the iteration to Wmin at the

maximum number of iterations. The hyperbolic tangent function is applied to δ to scale it to a range between 0 and 1. The

function gives a smoother transition from the maximum inertia weight value to the minimum inertia weight value as the

iteration increases compared with the linearly-decreasing inertia weight component alone.

Figure 1 shows a typical variation of the inertia weight with time for each of these three cases: w = δ, w = tanh δ and

w = µtanh δ. From the figure, the tanh-based inertia weight (w = tanh δ ) exhibits a smoother transition compared with

linearly decreasing inertia weight (w = δ ), thus enhancing the particles capability of exploiting and exploring the search

space. It is also observed that if the dynamic factor tanh δ is multiplied by the adaptive factor µ, a performance-dependent

inertia weight is obtained. This further enhances the capabilities of the particles to explore and exploit the search space.

Figure 1. Behaviour of different Inertia weight functions during the optimization process.

These dynamic adaptive acceleration coefficients c1 and c2 have the same value as recommended in the literature

[51]. The acceleration coefficients are obtained at every iteration by the equation:

c1 = c2 = µ coshψ (6)

where:

ψ =Cmax −
(Cmax −Cmin)× thenumber o f thecurrent iteration

maximumnumber o f iteration
(7)
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The adaptive coefficient, µ is given by (4)

Applying the cosh function to ψ produces a smooth transition from the maximum acceleration coefficient Cmax to

the minimum acceleration coefficient Cmin as the number of iterations increases. This gradual change in values enables a

controlled and stable optimization process, contributing to more reliable results [52]. Figure 2 shows a typical variation of

the acceleration factors with time. The curve indicates that it is also performance-dependent.

The flow chart for the proposed PSO is presented in Figure 3.

Figure 2. Behaviour of Acceleration Coefficient function.

Figure 3. Flow chart for the enhanced PSO.

Volume 3 Issue 1|2024| 57 Journal of Electronics and Electrical Engineering



3. Testing

The performance evaluation of the enhanced PSO algorithm (ADIWACO) is performed on seven (7) common

benchmark optimization functions using MATLAB R2023a. The computer setup used for the testing comprises the

following specifications: Windows 11 (64-bit) for the software environment, and an Intel(R) Core (TM) i5-8250U CPU

@ 1.60GHz 1.80 GHz with 24.0 GB installed RAM for the hardware environment. The results are compared with those

obtained using the standard PSO and four variants of the PSO in the literature, namely Tanh-based Adaptive Inertia Weight

PSO (TIW) [17], Randomised Adaptive Inertia Weight PSO (RIW) [53], Linearly Decreasing Inertia Weight PSO (LDIW)

[54] and Exponential Sigmoid function based PSO (ESIW) [39]. These variants are all based on modification of the PSO

controlling parameters.

3.1 Benchmark optimization functions

The test functions are defined in (8)–(14) and their details presented in Table 1.

g1 (x1,x2, ... ,xn) = ∑
N
i=1 i · x2

i (8)

g2 (x1,x2, ... ,xn) = ∑
N
i=1 x2

i (9)

g3 (x1,x2, ... ,xn) = 100
(
x2

1 − x2
)2

+(x1 −1)2 +(x3 −1)2 +90
(
x2

3 − x4
)2

+10.1
[
(x2 −1)2 +(x4 −1)2

]
+19.8(x2 −1)(x4 −1)

(10)

g4 (x1,x2, ... ,xn) = 0.26
(
x2

1+x2
2
)
−0.48x2 x3 (11)

g5 (x1,x2, ... ,xn) = ∑
N−1
i=1

[
100

(
xi+1 − x2

i
)2

+(1− xi)
2
]

(12)

g6 (x1,x2, ... ,xn) =
1

4000 ∑
N
i=1 x2

1 −
N

∏
i=1

cos
(

xi√
i

)
+1 (13)

g7 (x1,x2, ... ,xn) = ∑
N
i=1

(
∑

N
j=1 x j

)2
(14)

Table 1. Details of benchmark functions.

Function Function ID Function Name Search Range Dimension Optimum Value Description

g1 (x1,x2, ... ,xn) g1 Sum Square [−10,10] 5 0 Unimodal
g2 (x1,x2, ... ,xn) g2 Sphere [−100, 100] 20 0 Unimodal
g3 (x1,x2, ... ,xn) g3 Colville [−10,10] 4 0 Multimodal
g4 (x1,x2, ... ,xn) g4 Matyas [−10, 10] 2 0 Unimodal
g5 (x1,x2, ... ,xn) g5 Rosenbrock [−5, 10] 20 0 Multimodal
g6 (x1,x2, ... ,xn) g6 Greiwank [−600, 600] 2 0 Multimodal
g7 (x1,x2, ... ,xn) g7 Rotated Hyper-Ellipsoid [−65.536,65.536] 2 0 Unimodal

The following parameters were used for all algorithms:

Population of search particles = 500

Maximum number of iterations = 50

Maximum number of runs = 10

The following parameters were also required by the proposed algorithm.

Wmax = 1, Wmin = 0.1, Cmax = 5 and Cmin = 2.
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Initial global best = infinity.

Initial personal best = random (randomly generated within the search range).

3.2 Experimental procedure

For each benchmark function, the following metrics were obtained for each of the algorithms: optimum solution

value which measures the algorithm’s efficiency in discovering solutions of high quality, runtime which measures the

algorithm’s speed, standard deviation which measures the algorithm’s stability and consistency, mean value which provides

an average performance assessment and convergence curves. Ranking statistics were performed on the experimental results

for intuitive comparison of the performance of the algorithms. Also Wilcoxon signed rank test was done to verify if the

differences in performance between ADIWACO and the comparison algorithms were significant.

4. Results and discussion

The experimental results on the benchmark functions are compared in Table 2. The best values are shown in bold.

The convergence curves are also presented.

Table 2. Optimal Values, Runtime, Mean Value and Standard Deviation.

50 Iterations, Search Population = 500

Function ID Function Name PSO Variant Optimum Value Runtime (s) Mean Value Standard Deviation Rank

g1 Sum Squares

Standard PSO [51] 0.011974 0.1897 0.011974 0 6
LDIW-PSO [54] 3.6375e-44 0.4669 3.8038e-44 5.3537e-44 5
TIW-PSO [17] 1.2828e-85 0.55056 4.7153e-79 1.8057e-78 3
EIW-PSO [39] 5.6509e-69 0.67845 4.9053e-67 6.1438e-66 4
RIW-PSO [53] 6.2609e-100 0.62898 3.0053e-103 7.9238e-90 1

Proposed ADIWACO 1.3756e-95 0.69173 6.0703e-90 0 2

g2 Sphere

Standard PSO [51] 1.4335 0.04287 1.4335 1.7853e-15 6
LDIW-PSO [54] 7.5184e-48 0.44477 6.4696e-44 6.4696e-44 4
TIW-PSO [17] 1.8038e-81 0.71201 1.5331e-74 5.9791e-74 2
EIW-PSO [39] 7.5184e-39 0.45277 6.5972e-41 5.2345e-40 5
RIW-PSO [53] 1.5341e-72 0.45093 1.5385e-72 1.8946e-74 3

Proposed ADIWACO 3.5882e-202 0.72157 1.8744e-182 0 1

g3 Colville

Standard PSO [51] 48.7237 0.38764 48.7237 1.4355e-14 6
LDIW-PSO [54] 0.045487 0.43577 0.050952 0.0031712 4
TIW-PSO [17] 0.0056674 0.46682 0.0065689 0.00048376 2
EIW-PSO [39] 0.017414 0.47653 0.018262 0.00047017 3
RIW-PSO [53] 0.077708 0.47088 0.077708 2.7689e-07 5

Proposed ADIWACO 0.002699 0.46119 0.002978 5.7239e-19 1

g4 Matyas

Standard PSO [51] 0.0014141 0.20969 0.0014141 0 6
LDIW-PSO [54] 9.9112e-101 0.47751 4.2021e-94 4.8056e-94 2
TIW-PSO [17] 1.4105e-79 0.36962 2.2164e-71 4.1205e-71 4
EIW-PSO [39] 2.2774e-39 0.47291 2.0715e-37 2.565e-37 5
RIW-PSO [53] 2.5468e-69 0.4088 2.9856e-75 7.2203e-65 3

Proposed ADIWACO 7.9052e-145 0.45486 1.6897e-133 3.529e-132 1

g5 Rosenbrock

Standard PSO [51] 1.9332 0.092476 1.9332 4.4633e-16 6
LDIW-PSO [54] 1.1327e-11 0.49021 1.887e-11 9.3791e-12 2
TIW-PSO [17] 1.1514e-10 0.29827 1.3823e-09 2.5782e-09 4
EIW-PSO [39] 8.3127e-14 0.49021 5.9887e-11 8.1231e-13 3
RIW-PSO [53] 2.5784e-09 0.27102 2.5802e-09 1.9955e-12 5

Proposed ADIWACO 2.9105e-16 0.42517 3.6707e-16 1.4889e-16 1

g6 Grienwank

Standard PSO [51] 0.31656 0.26602 0.049257 2.4487e-17 5
LDIW-PSO [54] 0.012316 0.38015 0.028097 6.0025e-17 2
TIW-PSO [17] 0.012321 0.31251 0.012321 2.5069e-14 1
EIW-PSO [39] 0.087564 0.345256 0.098765 0.0999876 6
RIW-PSO [53] 0.012987 0.38455 0.028949 1.5225e-17 3

Proposed ADIWACO 0.13164 0.63721 0.034633 2.661e-17 4

g7 Rotated hyper ellipsoid

Standard PSO [51] 21.5454 0.10784 21.5454 3.5706e-15 6
LDIW-PSO [54] 2.6935e-116 0.038439 4.8917e-108 2.3852e-108 2
TIW-PSO [17] 5.6116e-67 0.038801 1.2383e-61 3.0207e-61 3
EIW-PSO [39] 6.4766e-10 0.046644 9.2983e-9 1.7149e-9 5
RIW-PSO [53] 7.1195e-29 0.022611 5.5181e-27 9.6907e-29 4

Proposed ADIWACO 7.3597e-203 0.044595 4.7303e-183 0 1
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4.1 Comparison of optimal value, standard deviation, mean value and runtime

From Table 2, ADIWACO produces the best optimum values for the functions g2, g3, g4, g5 and g7. Apart from the

multimodal, low dimensional function g6, the optimum values obtained byADIWACO for all functions including unimodal

high-dimensional function g2 and multimodal, high-dimensional function g5 are close to the theoretical optimum values.

In terms of the standard deviation, ADIWACO produces the best values for all functions apart from g4. SPSO obtains

the same standard deviation value of zero as ADIWACO for the function g1 and the best standard deviation value for the

function g4. The results clearly show that ADIWACO is more efficient and stable or robust than all the other comparison

PSO variants. ADIWACO also outperformed all the algorithms regarding the mean value for all the functions except for

g6 indicating a superior optimization performance.

The average value of the runtime of the 6 algorithms in seconds are compared in Figure 4. The average value of

the runtime of the standard PSO is the least among the 6 algorithms (0.185 s), which means that SPSO is the fastest.

ADIWACO has the highest average runtime of 0.491 s. This is not surprising since the standard PSO algorithm uses

constant controlling parameters and the comparison PSO variants modify only the inertia weight whereas ADIWACO

modifies all the three controlling parameters. The rise in ADIWACO’s computational time by about 126% over that of the

standard PSO can be justified by its significant improvement in the SPSO performance.

Figure 4. Average runtime of algorithms in seconds.

4.2 Convergence curves

From the convergence curves in Figures 5–11, ADIWACO shows the fastest convergence for all the functions except

g6 where its convergence speed is the second highest. For the function g6, it is the convergence speed of LDIW that is

highest. ADIWACO, vis-a-vis the other algorithms, shows consistency in convergence speed and on the whole exhibits the

best convergence performance.
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Figure 5. Optimization performance for the Sum of squares function.

Figure 6. Optimization performance for the Sphere function.

Figure 7. Optimization performance for the Coville function.
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Figure 8. Optimization performance for the Matyas function.

Figure 9. Optimization performance for the Rosenbrock function.

Figure 10. Optimization performance for the Griewank function.
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Figure 11. Optimization performance for the Rotated hyper-ellipsoid function.

4.3 Ranking statistics

The mean and standard deviation values are used to obtain the ranking of each algorithm as in [24]. The better the

mean value of an algorithm for a function, the higher is its ranking. Where the mean values of two algorithms are the same,

the one with a better standard deviation value is given a higher ranking. If their standard deviation values are also the same,

the two algorithms are given the same ranking. The rankings of the algorithms on each function are included in Table 2.

Figure 12 shows the ranking statistics and Table 3 gives its summary. ADIWACO ranks first in 5 functions (g2, g3, g4, g5

and g7). It obtains a total rank of 11, representing an average rank of 1.571 which is the best among all the algorithms.

With this result, ADIWACO shows superior optimization performance over the comparison algorithms.

Figure 12. Ranking statistics of experimental results.

Volume 3 Issue 1|2024| 63 Journal of Electronics and Electrical Engineering



Table 3. Summary of ranking statistics.

Rank Standard PSO LDIW-PSO TIW-PSO EIW-PSO RIW-PSO ADIWACO

First 0 0 1 0 1 5
Second 0 4 2 0 0 1
Third 0 0 2 1 2 0
Fourth 0 2 2 2 2 1
Fifth 1 1 0 3 2 0
Sixth 6 0 0 1 0 0
Total 41 21 19 32 25 11

Average 5.857 3.000 2.714 4.571 3.571 1.571

4.4 Wilcoxon signed rank test

To confirm if the difference in optimization performance between ADIWACO and the comparison PSO variants is

significant, the Wilcoxon signed rank test was performed. The significance level of the test was set at 0.05. The test data

were taken from Table 2 and the results obtained presented in Table 3. R+ indicates positive rank, R− negative rank. In the

symbol n/w/t/l, n is the number of the test functions, w is the number of functions in which ADIWACO showed better

performance, t is the number of functions where the ADIWACO and the comparison variant showed equal performance,

and l is the number of functions in which ADIWACO showed poorer performance. From Table 4, the p-Values of SPSO

and a recently proposed ESIW [39] are all less than 0.05 indicating that they are inferior to ADIWACO. The remaining

three PSO variants (LDIW, TIW and RIW) have p-Values greater than 0.05. However, in the 7 benchmark functions,

ADIWACO is superior to LDIW in 6 functions and inferior in 1 function. The corresponding figures are 6 and 1 when

compared to TIW, and 5 and 2 when compared to RIW. These results sufficiently prove that ADIWACO outperforms these

three variants.

Table 4. Wilcoxon signed rank statistical analysis.

h p-Value R+ R− n/win/tie/loss

ADIWACO vs standard PSO + 0.0003 30 0 7/7/0/0
ADIWACO vs LDIW PSO - 0.1305 12 2 7/6/0/1
ADIWACO vs TIW PSO - 0.1924 11 3 7/6/0/1
ADIWACO vs ESIW PSO + 0.0228 20 0 7/7/0/0
ADIWACO vs RIW PSO - 0.2586 15 2 7/5/0/2

5. Conclusions

This paper has proposed a new PSO variant (ADIWACO) that synergistically harnesses the strengths of both adaptive

dynamic inertia weight and adaptive dynamic acceleration coefficients to improve the PSO capability of exploiting and

exploring the search space. The mathematical formulas for the three controlling parameters are based on hyperbolic

trigonometric functions which yield smooth changes in their values during the iteration to improve the PSO performance.

The proposed PSO variant is tested on seven benchmark functions including three multimodal ones and its performance

compared to that of the standard PSO and four PSO variants using optimum value, mean value, standard deviation and

runtime as the performance metrics. ADIWACO obtains the best optimum value for 5 out of 7 functions including the

high-dimensional unimodal function g2 and the high-dimensional multimodal function g5 indicating high efficiency in

high-dimensional and multimodal optimization problems. Its mean and standard deviation values are also the best for 6 out

of 7 functions demonstrating higher optimization performance and better stability vis-a-vis the other PSO variants. In the

Ranking statistics and Wilcoxon signed rank test conducted on the experimental results, ADIWACO proves to be superior

over the comparison algorithms in optimization performance. ADIWACO, outperforming the comparison PSO variants in

terms of optimal values, mean values, stability and convergence rate, is seen as a more promising PSO variant for tackling

complex optimization problems.
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In the near future, the proposed algorithm will be used to optimally tune PID controllers for load frequency control in

interconnected power systems as an example of a real-world engineering application.
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