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Abstract: Utilization of Distribution Static Compensator (DSTATCOM) has proven to be instrumental in essential

strategies aimed at mitigating power losses within electrical network systems. The growing demand for electricity and

high maintenance costs have propelled DSTATCOM into a prominent position for discussion and consideration. This

paper conducted a comprehensive comparative study employing optimization methods such as Differential Evolution (DE),

Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). The objectives of this study are to compare the

performance in terms of Voltage Profile Improvement (VPI), Power Loss Reduction (PLR), and System Cost (SC) while

selecting the best method as a suggestion for future research. The techniques were simulated in a MATLAB environment

and a 50-bus system was used for real testing. The DE method emerged as the most effective technique in the analysis of

the three objective functions. This outcome suggests that DE holds significant promise as a viable and efficient method for

enhancing the performance of DSTATCOM in terms of VPI, PLR, and SC. These findings offer valuable guidance for

future research endeavors in the realm of electrical network system optimization.
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1. Introduction

In the realm of electrical distribution networks, ensuring reliable delivery of electricity to consumers is crucial.

Maintaining power quality and stability is paramount to meet the increasing demand for electricity [1]. A key element in

achieving this is the Distribution Static Synchronous Compensator (DSTATCOM), which plays a critical role in enhancing

the performance of electrical distribution systems. DSTATCOMs are implemented to mitigate power quality issues such

as harmonics, voltage sag, and voltage swell. By effectively managing these parameters, DSTATCOMs contribute to

improved voltage regulation, power factor correction, and overall system stability. Optimizing DSTATCOM is vital for

maximizing its effectiveness and efficiency, leading to reduced energy losses and enhanced system performance [2, 3, 4, 5].

However, a crucial question arises regarding the optimal sizing and placement of DSTATCOM to effectively address

power quality issues. The severity of problems such as voltage sag, swell, and harmonics in distribution networks can vary

significantly based on factors such as network configuration, load characteristics, and external disturbances. Therefore, it

is important to demonstrate the severity of these issues and the need to enhance the performance of distribution systems.
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This paper acknowledges potential skepticism regarding the existence and severity of these problems. Nevertheless,

extensive research and field studies have shown that in many distribution systems, particularly in complex and heavily

loaded networks, these power quality issues are not only present but are significant enough to warrant the deployment of

DSTATCOMs [4, 6, 7].

Moreover, the need to optimize DSTATCOM becomes evident when considering the optimal sizing and placement in

modern distribution networks. Employing various optimization techniques, such as Particle Swarm Optimization (PSO),

Artificial Bee Colony (ABC), and Differential Evolution (DE), to develop effective control strategies for DSTATCOMs is

crucial. These techniques have demonstrated promise across different optimization domains, particularly in power systems.

PSO’s ability to conduct global searches makes it suitable for navigating complex solution spaces. ABC’s decentralized

approach is well-suited for collaborative optimization scenarios, while DE’s proficiency in handling continuous variables

is advantageous for refining control strategies in DSTATCOM applications [4, 6, 7, 8].

While each technique offers distinct advantages and methodologies, a research gap exists in evaluating their

comparative performance, especially in DSTATCOM applications. This paper aims to address this gap by conducting a

comparative analysis within a 33 kV radial distribution system. The study explores potential improvements in Voltage

Profile (VPI), Power Loss Reduction (PLR), and System Cost (SC) that these optimization techniques can offer. By doing

so, this research seeks to quantify the extent to which DSTATCOM can enhance distribution system performance, thereby

addressing concerns about the necessity and magnitude of such improvements.

The study further investigates the specific advantages and methodologies offered by each optimization method. For

instance, PSO is known for its simplicity and global search capabilities [4, 6], ABC mimics the foraging behavior of bees

[7], and DE excels in handling optimization problems with continuous variables [8]. However, without a comparative

analysis, it remains challenging to determine the most effective method for improving Voltage Profile (VPI), reducing

Power Loss (PLR), and optimizing System Cost (SC) in DSTATCOM applications.

Through this comparative analysis, the paper aims to provide valuable insights into the performance of PSO,ABC, and

DE specifically in DSTATCOM scenarios. These insights will assist researchers and practitioners in selecting the optimal

optimization approach tailored to the specific demands of DSTATCOM deployment in distribution systems. Additionally,

by demonstrating the measurable improvements that can be achieved, this study addresses concerns about the existence

and severity of power quality issues and illustrates the real-world impact of optimizing distribution system performance.

2. Distribution system configuration (33 kV)

The ECG 33 kV distribution network in Ghana’s Ashanti Region is designed in a ring configuration in some areas, but

it predominantly functions as a radial system. This network supplies electricity to residential, commercial, and industrial

customers in the region. To achieve precise representation and analysis, the modeling and simulation were conducted using

a combination of ETAP and MATLAB.

ETAP was used to model the Ashanti Region’s 33 kV distribution network based on real-world data collected from

the field. This software allowed for the extraction of line and bus data, which are crucial for accurately simulating the

network’s behavior under various conditions. The data includes essential parameters such as resistance, reactance, active

and reactive power. These parameters were used to calculate the positive sequence impedance for each branch of the

network, considering the physical and electrical characteristics of the distribution system.

The Ashanti region’s 33 kV network comprises fifty (50) bus bars, including one main bus bar for the Ghana Grid

Company (GridCo), eight bus bars for two base stations, and forty-one bus bars for twenty-one distribution stations. The

network spans a total distance of 574.4 km, with forty-nine branches. Figure 1 depicts a single-line diagram of the ECG 33

kV network [9].
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Figure 1. 33 kV distribution network of ashanti region

The MATLAB software was utilized as a platform for implementing optimization techniques such as PSO, ABC, and

DE. These techniques were employed to determine the optimal size and location of DSTATCOMs in the 33 kV network.

Each optimization technique’s performance was evaluated using predefined metrics, including Voltage Profile Improvement

(VPI), Power Loss Reduction (PLR), and System Cost (SC).

The effectiveness of these optimization techniques was assessed by simulating the optimized configurations obtained

through each method using MATLAB tools. The comparative analysis facilitated the identification of the most effective

optimization technique for DSTATCOM deployment within the 33 kV radial distribution system. Table 1 shows the line

and bus data of ECG’s 33 kV distribution network.

Table 1. Bus and line data of ECG 33 kV distribution network in Ashanti, Ghana

BUS DATA LINE DATA
Bus ID P (MW) Q (Mvar) Bus ID From Bus To Bus R X

1 374.414 137.639 1 1 2 0.04 0.12
2 61.611 23.883 2 2 3 6.21 20.58
3 42.778 13.192 3 3 4 13.03 43.30
4 16.843 4.764 4 3 5 29.12 61.10
5 7.584 2.554 5 5 6 20.60 68.45
6 7.419 2.059 6 2 7 4.97 16.47
7 17.252 5.498 7 1 8 0.04 0.12
8 61.487 24.63 8 8 9 18.62 61.85
9 24.9 4.459 9 9 10 6.21 20.62
10 12.251 2.838 10 8 11 6.21 20.62
11 25.101 11.474 11 11 12 8.69 28.86
12 10.042 4.106 12 11 13 40.98 86.19
13 7.588 2.565 13 13 14 21.10 70.10
14 7.42 2.059 14 1 15 0.04 0.12
15 61.035 23.491 15 15 16 2.91 20.03
16 6.748 1.814 16 16 17 0.01 0.02
17 2.84 0.965 17 15 18 18.62 61.85
18 25.784 5.574 18 18 19 6.21 20.62
19 17.832 4.081 19 19 20 2.00 9.80
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Table 1. Cont.

BUS DATA LINE DATA
Bus ID P (MW) Q (Mvar) Bus ID From Bus To Bus R X

20 9.42 1.928 20 20 21 20.60 68.45
21 4.668 0.883 21 15 22 6.21 20.62
22 19.418 8.148 22 22 23 8.69 28.86
23 7.363 2.909 23 22 24 40.98 86.19
24 4.796 1.296 24 24 25 21.10 70.10
25 4.737 1.157 25 1 26 0.04 0.12
26 63.91 25.452 26 26 27 4.01 19.57
27 41.921 14.567 27 27 28 13.03 43.30
28 20.148 6.043 28 26 29 4.97 16.47
29 20.868 5.937 29 1 30 0.04 0.12
30 47.979 15.877 30 30 31 8.01 39.21
31 33.224 6.896 31 31 32 5.60 27.45
32 19.472 2.966 32 32 33 26.69 88.67
33 6.721 1.944 33 33 34 33.51 111.33
34 6.492 1.313 34 34 35 6.70 22.27
35 3.678 0.735 35 30 36 4.32 21.17
36 13.608 3.464 36 1 37 0.04 0.12
37 31.954 10.725 37 37 38 10.49 51.36
38 21.469 6.101 38 38 39 21.60 71.75
39 11.54 2.558 39 39 40 23.59 78.36
40 3.92 1.102 40 1 41 0.04 0.12
41 11.357 3.843 41 41 42 10.49 51.36
42 11.206 3.158 42 42 43 21.60 71.75
43 4.457 1.198 43 1 44 0.04 0.12
44 34.995 9.456 44 44 45 8.01 39.21
45 19.584 4.14 45 45 46 5.60 27.45
46 12.652 2.508 46 46 47 44.07 92.67
47 5.759 0.708 47 47 48 33.51 111.33
48 2.821 0.613 48 48 49 6.70 22.27
49 2.811 0.608 49 44 50 4.32 21.17
50 9.745 2.333

3. Problem formulation and constraints

When a DSTATCOM is linked to a bus, it has the ability to regulate the reactive power on that particular bus [9].

This, in turn, influences the bus voltage profile, as detailed in [9, 10]. The goal of incorporating DSTATCOM into the

distribution system is to reduce overall power losses, enhance system voltage, and optimize system cost. Therefore, the

first objective function (Power Loss Reduction) can be formulated as [9],

PLR = f 1 = Slosses (1)

Therefore, Slosses = Ploss + Qloss

Ploss = ∑
NBr
i=1 RiI2

i (2)

Qloss = ∑
NBr
i=1 XiI2

i (3)

where, f1 serve as first objective function (which pertains to power losses (Slosses)), Ploss as active power loss, Qloss as

reactive power loss, Ii stands as line i current, Ri serve as resistance of ith line, Xi happens as line’s reactance of ith, and NBr
stands as the number of system branches. The percentage reduction of total power loss can be expressed as [11, 12, 13]:

total loss (%)=
total loss with DSTATCOM

total loss without DSTATCOM
∗100 (4)
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where, total loss with DSTATCOM and total loss without DSTATCOM refer to the entire line losses in the system. The

system’s second objective function, which focuses on improving the voltage profile, can be written as follows,

V PI = f2 = ∑
NBr
i=1 (V n−Vi)

2
(5)

where, V PI represents the improvement in voltage profile, Vn denotes the nominal voltage of the system (set at 1 per unit),

Vi signifies the voltage at the ith bus, and NBr serve as the total sum of system buses. One key objective of this study was

to evaluate the costs associated with the compensating device, specifically its impact on the distribution system. This

includes the expenses related to energy losses, the DSTATCOM, and the total annual savings. The equations representing

energy loss and DSTATCOM cost can be found in [9, 14].

The third objective function which serve as total annual saving cost can be formulated as [9],

Tcs = kq(T ∗PT loss)− kq
(

T ∗Pwith DSTATCOM
T loss

)
−
(

kc∗DSTATCOM cost
year

)
(6)

where, T represents the time period (hour/year), kc signifies the fraction of time when the loss occurs, kq denotes the cost

associated with energy losses, PT loss refers to the total power loss before DSTATCOM integration, and Pwith DSTATCOM
T loss

represents the total power loss after DSTATCOM integration. The system constraints and backward/forward sweep load

flow formulations can be found in [9, 14, 15, 16, 17, 18].

4. Mathematical formulation of PSO, ABC and DE optimization

4.1 Particle swarm optimization method

The potential solutions entail the synchronization of two paths denoting the velocity (V ) and position (X) of a particle.
After each iteration, the particle that holds the best solution conveys its position coordinates (Pgbd) to the entire swarm [19].

The variables within the PSO algorithm are delineated as follows: At a given time (t), the updated position and velocity of
the (ith) particle are signified by Equations (7) and (8) respectively.

V t+1
id = w∗V t

id +C1 ∗ r1 ∗
(
Pt +X t)+C2 ∗ r2 ∗

(
Pt

gbd −X t
id
)

(7)

X t+1
id = X t

id +V t+1
id (8)

where, C1 and C2 represent the acceleration coefficients, d = 1, 2 . . .m (members of the particle-searching space). The

variables r1 and r2 introduce stochasticity (as the model incorporates uniformly distributed random numbers between 0 and

1). The index i signifies the particles in the swarm (i = 1, 2 . . .n), V t
id denotes the current velocity of particle (

′i′), V t+1
id

indicates its updated velocity of the particle. Pid represents the optimal position of the particle, Pgbd represents the best

value for the particle group, X t
id signifies the current search point of a particle, X t+1

id represents the updated search point

and w denotes the inertial weight. The function for the inertial weight can be expressed as follows:

w = wmax −
wmax −wmin

tmax
∗ t (9)

The minimum and maximum inertia weights are denoted as wmin and wmax, respectively, while t and tmax refer to the

present and maximum iteration.
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4.2 Artificial bee colony method

A swarm intelligence optimization method called Artificial Bee Colony (ABC) was motivated by honeybees’ feeding

habits. To identify the best solution to optimization issues, the population-based algorithm, ABC mimics the foraging

behavior of bees [7, 20]. The fitness function of ABC quantifies the quality of a candidate solution, which can be expressed

as.

f f it =
1

1+ plosses
(10)

The onlooker bees improve their solution by examining the information surrounding a food source and updating their

memory using Equation (11).

fi j = fmin j + rand( fmax j − fmin j) (11)

The solution for the jth variable at its minimum and maximum is denoted by fmin j and fmax j, respectively. A random

number (rand) is chosen from the range of −2 to 2 [21]. Equation (12) guides the onlooker bee in the random selection of

food sources.

pprob(i) =
fit(i)

∑
N
k fit(k)

(12)

where, fit(i) represents the fitness value corresponding to the selected solution (i). The fitness value at every iteration is
indicated as fit(k), where the variable length is k. The scout bee utilizes Equation (11) when the newly updated solution is
inferior to the previous best solution.

Therefore,

fit(i) =

{
1

1+ fi
i f fi ≥ 0

1+abs( fi) i f fi < 0
(13)

where, fi denotes the cost value of the objective function.

4.3 Differential evolution method

Differential Evolution (DE) is an evolutionary optimization method that relies on populations and stochastic processes

to tackle various problems. DE was created in 1997 by Storn and Price and is particularly beneficial for linear and nonlinear

optimization applications [22, 23]. The population in successive generations undergoes evolution through the application

of evolutionary operators, such as mutation, crossover, and selection, until the specified termination condition is reached.

At the start, the population size, and the dimensions of optimization variables within each individual string, known as the

target vector (TV), are randomly initialized using Equation (14) [22].

TV j
iG = round [ TV j

mi + rand() ∗ (TV j
mx − TV j

mi) ] (14)

where i = 1, 2, ..., N p, j = 1, 2, ..., D, G represents the generation number, and mi and mx denote the minimum

and maximum vectors, respectively. Equation (15) generates a mutation vector (MV i) for each target vector. It can be

expressed as:

MV iG = TV bG +F ∗ ( TV r1G − TV r2G) (15)
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where F represents a constant scaling factor ranging from 0 to 2, and r1 and r2 are two random selected integers and TV b

denotes the best target vector within the population of that generation (G), determined by the fitness (objective) function

values. After the mutation operation, the crossover operation is carried out on each pair consisting of the target vector

(TV iG) and its corresponding mutant vector (MV iG) to generate a crossover vector (CV jiG) using the following equation:

CV jiG =

{
MVjiG i f rand()≤CF
TVjiG otherwise

(16)

where, crossover factor (CF) is a user-defined parameter within the range of [0, 1]. The selection operation performed
after the crossover can be expressed as

TV iG+1 =

{
CViG i f f (CFiG ≤ f (TViG))

TViG otherwise
(17)

where f denotes the objectives function.

5. Experimental verification of real and simulated data

To ensure long-term reliability and stability in power distribution system analysis, the study focuses on comparing

simulated data with real data collected over an extended period, from October 2022 to September 2023 [9]. Figure 2

presents the system verification of the real and the simulated data.

Figure 2. System verification of real and simulated voltages

The error margins of average voltages in the comparison between real and simulated data were found to range between

−0.1 kV and 2.8 kV. This falls within the acceptable range according to IEC standards, which allow for a voltage margin

of up to 5%. The Pearson correlation coefficient of 0.878 further demonstrates a strong correlation between the real and

simulated data, indicating a high level of confidence (95%) in the accuracy of the simulation models.

6. Results and discussion

The assessment of power system is conducted through the utilization of PSO, ABC, and DE methods, with the

integration of DSTATCOM as the primary control variable. The optimal system performance relies on the placement
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and size of the DSTATCOM. To assess the efficacy of the proposed methods, this study investigated four scenarios: the

baseline system without DSTATCOM (referred to as Case 1), Case 2 with PSO implementation, Case 3 utilizing ABC, and

Case 4 involving DE implementation. The Backward/Forward Sweep power flow analysis technique was utilized to assess

the effects of integrating DSTATCOM. This technique allowed for an exploration of different facets of the distribution

system, such as active and reactive power losses, voltage profile, and system cost. Through comparison of results obtained

with and without DSTATCOM integration, the effectiveness of these techniques was evaluated. The optimization process

was conducted using MATLAB software, which offered the essential functionalities for optimizing the integration of

DSTATCOM in the 33 kV distribution system.

6.1 Power losses reduction (active and reactive)

The results regarding power losses across various cases (Case 1, Case 2, Case 3, and Case 4) were illustrated in

Figures 3–6. These figures presented key parameters such as total power losses and the percentage of loss reduction.

Specifically, Figures 3 and 4 visually represented the total active loss and its percentage reduction, while Figures 5 and 6

depicted the reactive power loss and its corresponding percentage reduction (PLR).

Figure 3. Total active loss of cases 1, 2, 3 & 4

Figure 4. Total active loss reduction percentage
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Figure 5. Total reactive loss of cases 1, 2, 3 & 4

Figure 6. Total reactive loss reduction percentage

A comparison of power loss reductions across these cases with the original system (Case 1) reveals significant

differences, as shown in Figures 3–6. In Case 2, total active and reactive power losses were 5.998 MW and 2.181 Mvar,

respectively, with reductions of 8.53 MW and 64.469 Mvar, resulting in percentage reductions of 58.72% and 96.73%. Case

3 reported total power losses of 0.543 MW and 1.995 Mvar, with reductions of 13.99 MW and 64.655 Mvar, corresponding

to percentage reductions of 96.26% and 97%. In Case 4 (DE), total power losses were 0.484 MW and 1.788 Mvar,

achieving reductions of 14.05 MW and 64.862 Mvar, leading to percentage reductions of 99.67% and 97.32%. These

results demonstrate that DE outperforms PSO and ABC, showing improvements in active and reactive loss of 37.95%

and 0.41%, respectively. The optimal power loss values were achieved through the strategic placement and sizing of

DSTATCOM, as detailed in Table 2.

6.2 Voltage Profile Improvement (VPI)

Figure 7 depicts the voltage profile improvement (VPI) results for Cases 1, 2, 3, and 4. VPI is evaluated based on the

increase in the voltage profile value per unit (p.u).
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Figure 7. Voltage profile improvement of Cases 1, 2, 3 & 4

The VPI results in Figure 7 show that the DE approach outperforms the PSO andABC methods, with an improvement

from 0.994 p.u. to 1.001 p.u. Furthermore, when comparing PSO and ABC with DE, there are substantial increases at

many buses (9, 10, 14, 18, 19, 20, 21, 31, 32, 33, 34, 35, 45, 46, 47, 48, and 49).

6.3 System Cost (SC)

The purpose of this study segment was to assess the cost-effectiveness of Cases 1, 2, 3, and 4. This assessment

involved analyzing both the overall system cost and the percentage reduction in cost for each case. Figures 8 and 9 illustrate

the total system cost and the corresponding percentage reduction.

The data provided in Figures 8 and 9 offers insights into the system cost and the corresponding percentage of cost

reduction for various cases within a power system. Case 1, with a system cost of $2,441,040.00, serves as the reference point

for evaluating cost reduction across the subsequent cases. Case 2 displays a cost reduction percentage of 58.71%, marking

a higher reduction compared to Case 1. Case 3 shows the highest cost reduction percentage, standing at 96.11% relative to

Case 1. However, Case 4 surpasses all, with a cost reduction percentage of 96.55% and a notably lower system cost of

$84,096.00. This remarkable reduction in system cost in Case 4 indicates the efficacy of the implemented optimizations.

Whether in terms of technology, design, or operational strategy, the changes made in Case 4 have successfully contributed

to a more efficient and economical power system.

Figure 8. Total system cost of Cases 1, 2, 3 & 4
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Figure 9. Total system cost reduction percentage of Cases 2, 3 & 4

The high percentage of cost reduction in Case 4 positions it as a favourable option for consideration, especially

when balancing the trade-off between system cost and desired performance metrics. The data justifies Case 4 as the most

cost-effective option among the analyzed cases, making it a potential preferred solution in the context of the power system

analysis. Table 1 contains a full description of the findings from all cases. The data shown in Table 2 can be used to analyze

the feasibility and possible benefits of implementing DSTATCOM into similar distribution systems, which could enhance

decision-making for future projects.

From Table 2, Case 4 outperforms other cases in the power system evaluation, showcasing superior results in active

and reactive power reduction, the lowest energy and system costs, highest net savings, and the shortest payback period.

These outcomes affirm Case 4 as the most favourable solution, excelling both in enhancing power system performance and

delivering substantial economic benefits.

Table 2. The summary results of all cases

Performance Measurement Case 1 Case 2 Case 3 Case 4

Minimum Bus Voltage (p.u) 0.817 0.992 0.993 0.994
Maximum Bus Voltage (p.u) 1 1 1 1.001

Total Active Power Loss (MW) 14.53 5.99832 0.543 0.484
Total Reactive Power Loss (MVAR) 67.005 2.2205 1.995 1.788

DSTATCOM Power Injection (kvar) and Location -
150 at bus 26
150 at bus 30

1200 at bus 26
1200 at bus 8
1200 at bus 15
1200 at bus 30
1200 at bus 3
1200 at bus 44
12,000 at bus 31
1200 at bus 37
1050 at bus 18
1200 at bus 11
750 at bus 9
900 at bus 29
1200 at bus 28
900 at bus 45
1200 at bus 32
450 at bus 19
1200 at bus 4
1200 at bus 36
1200 at bus 46
150 at bus 10

1200 at bus 26
1200 at bus 8
1200 at bus 30
1200 at bus 31
1200 at bus 37
1200 at bus 11
12,000 at bus 9
1200 at bus 29
1200 at bus 45
1200 at bus 19
1200 at bus 4
1200 at bus 36
1200 at bus 46
600 at bus 10

Number of DSTATCOM - 2 20 14
Active Power Reduction Percentage - 58.72% 96.26% 96.67%
Reactive Power Reduction Percentage - 96.73% 97.01% 97.32%

Total Energy Cost ($/kW) 2,441,040.00 1,007,717.76 91,224.00 81,312.00
Total System Cost ($/year) 2,441,040.00 1,007,867.76 95,044.65 84,096.00

Net Saving ($/year) - 1,433,172.24 2,345,995.35 2,356,944.00
System Cost Reduction Percentage - 58.71% 96.11% 96.55%

Payback Period - 7 months 4 weeks 3 weeks and 5 days
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7. Conclusions

This study evaluated the impact of deploying Distribution Static Synchronous Compensators (DSTATCOMs) on a

33 kV radial distribution network, focusing on performance improvements and cost efficiency. Various scenarios were

analyzed to assess how DSTATCOMs affect power losses, voltage stability, and overall system economics.

Case 1 served as the baseline without DSTATCOMs, with a total system cost of $2,441,040.00. It displayed a

minimum bus voltage of 0.817 p.u. and a maximum of 1.0 p.u., highlighting the challenges of voltage maintenance without

compensation devices.

Case 2, incorporating 2 DSTATCOMs, reduced active power losses by 58.72% and reactive power losses by 96.73%.

This led to a net saving of $1,433,172.24 and a payback period of 7 months. Voltage regulation improved, with the

minimum bus voltage rising to 0.992 p.u. and the maximum remaining at 1.0 p.u.

Case 3, with 20 DSTATCOMs, achieved further reductions: 96.26% in active power losses and 97.01% in reactive

power losses. The increased number of DSTATCOMs in this case was necessary to provide more granular control and

support across the network, thereby achieving superior voltage stability and loss reduction. This configuration led to a net

saving of $2,345,995.35, with a reduced payback period of 4 weeks. The minimum bus voltage was 0.993 p.u., and the

maximum stayed at 1.0 p.u., indicating improved voltage stability.

Case 4 deployed 14 DSTATCOMs, yielding the highest reductions—96.67% in active power and 97.32% in reactive

power. The number of DSTATCOMs in this case was optimized to achieve the best balance between performance and cost.

This case had the lowest system cost of $84,096.00 and the fastest payback period of 3 weeks and 5 days. The minimum

bus voltage was 0.994 p.u., and the maximum was 1.001 p.u., demonstrating optimal voltage stability and cost efficiency.

Overall, the analysis confirms that DSTATCOMdeployment significantly reduces power losses and enhances economic

performance. The varying numbers of DSTATCOMs in each case reflect the strategic decisions to balance cost, performance,

and voltage stability. Case 4 emerged as the most cost-effective option, offering the greatest reduction in power losses, the

lowest system cost, and the quickest payback period, supported by detailed simulations and real data comparisons.
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