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Abstract: Inverters connected to the grid can become unstable under specific grid impedance conditions. In order

to find a solution to this problem, it is possible to ensure system stability and their robustness to R-L type grid impedances

by satisfying two conditions. The first condition is to ensure that the closed-loop poles of the system are in stable positions

to variations in the grid impedance. The second condition is reliant on the admittance model of the equivalent circuit.

Specifically, the product of this admittance and the grid impedance must adhere to the Nyquist stability criterion. In this

work, the stability of the converter connected to the grid through an LCL filter is analysed. For this purpose, the output

admittance is modelled in the Laplace domain taking into account the behaviour of the discrete controller. In addition, to

ensure that the closed-loop poles are in stable positions, the system open-loop response is analysed. These two conditions

are examined across scenarios where system states are partially or completely fed back, for different system parameter

values. Consequently, a robust controller is designed for variations of the R-L type grid impedance.

Keywords: grid-connected inverter, weak grid, output admittance, robustness

Abbreviation

Abbreviation Description

VSI Voltage Source Inverter

PCC Point of Common Coupling

Ts Sampling time (s)

ωs Sampling angular frequency (rad/s)

δ Dirac delta function

~vg Grid voltage source (V)

Zg Grid impedance (Ω)

vdc DC voltage source (V)

~vre f Reference control signal (V)

~v∗i One-sample delayed signal (V)

~vi Signal applied to LCL filter input (V)
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~vs Voltage at PCC (V)
~ii Current through Li (A)
~is Current through Ls (A)

~vc Voltage across C (V)

Li Inverter side inductance (H)

Ls Grid side inductance (H)

C Filter capacitor (F)

YoYoYo(s) Admittance of the output filter (S)

z−1 One-sample delay

RRR(z) Reference prefilter

CCC(z) Feedback controller

C1C1C1(z) Feedback gain for~ii
C2C2C2(z) Feedback gain for~vc

C3C3C3(z) Feedback gain for~is
PI Proportional-integral controller

PR Proportional-resonant controller

C4C4C4(z) Feedback gain for~vi

GhGhGh(s) Zero-order hold (ZOH)

Ii1Ii1Ii1(s) Transfer function of current through Li with respect to vi

Ii2Ii2Ii2(s) Transfer function of current through Li with respect to vs

Vc1Vc1Vc1(s) Transfer function of voltage across C with respect to vi

Vc2Vc2Vc2(s) Transfer function of voltage across C with respect to vs

Is1Is1Is1(s) Transfer function of current through Ls with respect to vi

Is2Is2Is2(s) Transfer function of current through Ls with respect to vs

∆i(z) Transfer function numerator for Ii1Ii1Ii1(z)
∆c(z) Transfer function numerator forVc1Vc1Vc1(z)
∆s(z) Transfer function numerator for Is1Is1Is1(z)
∆r(z) Characteristic polynomial in Z domain

ωr Resonance angular frequency (rad/s)

ωari Anti-resonance angular frequency (rad/s)

LT Total inductance (H)

ωcrit Critical angular frequency (rad/s)

1. Introduction

The increasing demand for energy has driven the expansion of renewable energy sources, leading to the development

of power electronic converters capable of injecting energy into the grid. Consequently, inverter-based resources (IBRs)

have emerged, where electrical variables need to be controlled and synchronized [1]. Primarily, two control strategies

are utilized: in some cases, the converters operate as grid-forming and in others as grid-feeding [2, 3]. The design of

these controllers is based on the knowledge of parameters at the Point of Common Coupling (PCC) and assuming that

the voltage at this point matches the grid voltage. Sometimes the converter is connected to the grid through a line with

unknown parameters. Depending on the short-circuit ratio (SCR), two clearly distinguishable scenarios arise. In one case,

the grid can be considered strong, and the performance of the employed controller is not affected. On the contrary, when

the grid is weak, the system’s performance may deteriorate, potentially leading to unstable behavior [4, 5, 6, 7, 8].

In many cases, renewable energy sources are integrated into the grid using grid-feeding inverters [9]. These inverters

incorporate a passive filter as an output stage to attenuate the harmonic components generated by the PWM modulator.

Typically, either an L filter or an LCL filter is employed. Sometimes, the LCL filters are preferred due to their ability

to create a smaller filter than an L filter for the same attenuation factor. However, LCL filters exhibit resonant behavior,
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making it challenging to control the injected current. To address this, various methods, categorized as passive damping

[10, 11] or active damping [12, 13], have been proposed. Passive damping introduces power losses, impacting efficiency,

thus making active damping more preferable. This article assumes the use of an LCL filter as the grid-feeding output stage.

As the grid impedance value is unknown and subject to variations, so is the resonant frequency of the impedance

formed by the LCL filter and the grid impedance. Therefore, ensuring stability involves designing controllers that are

robust to variations in the grid impedance.

To address these challenges, several control methods have been developed that analyse the open-loop response of

the system, allowing for the determination of the stability of closed-loop poles [14, 12]. Controllers with converter side

current feedback exhibit instability when the resonance frequency surpasses one-sixth of the sampling frequency [14]. In

contrast, for controllers with grid current feedback, instability arises when the resonant frequency falls below one-sixth of

the sampling frequency [12]. To enhance system robustness to variations in grid impedance, controllers with a second

inner current loop were developed [12, 15]. However, certain resonant frequency values may still lead to instability. To

address this, a phase compensator was introduced in [15]. Additionally, the application of full-state feedback controllers

enhances system robustness within a limited range of grid impedance values. A robust design of an observer-based current

controller, considering a converter connected to a weak grid through an LCL filter, was proposed in [16, 17, 18]. Further

proposals, which involve robust H∞ control, can be found in [19].

On the other hand, the grid-connected inverter can be modelled as a current source in parallel to an admittance,

ensuring system stability if the product between the inverter output admittance and the grid impedance satisfies the Nyquist

stability criterion [20, 21, 22]. If the LCL filter parameters are known, the inverter output admittance can be modelled,

offering the advantage of evaluation across the entire frequency range.

Usually, the output admittance of a converter is modelled by considering the system in continuous time [23, 24, 25, 21,

22]. However, the controller is implemented digitally, with equations in the discrete domain. Due to this, the system can

be considered as a mixed-domain system, consisting of continuous and discrete-time signals. It must be noted that, purely

continuous-time models may give erroneous results, in particular for low sampling frequencies [26]. In addition, not all

digital control algorithms can be accurately modelled using continuous-time transfer functions. To improve the accuracy of

the admittance model, the discrete behaviour of the control system is considered, maintaining the continuous characteristic

of the rest of the system [27]. Likewise, there are purely discrete models of the output admittance [28, 29]. However, these

models do not accurately describe the output admittance, especially at frequencies near or above the Nyquist frequency.

On the other hand, in most admittance modelling methods, the sampling process is not taken into account. Such a process

is considered in recent work, where sampling is modelled as intermodulation products [26, 30, 31].

However, to design a controller robust to variations in a grid impedance of the R-L type, it is necessary to meet both

conditions. The closed-loop poles must remain in stable positions despite variations in the grid impedance, and the product

of the grid impedance and the system admittance must satisfy the Nyquist stability criterion [22, 32]. Usually, it is only

proposed that the system be stable for one of the conditions and not both. This paper introduces the analysis of the output

admittance model for a controller by considering two different cases (i.e., partial-state or full-state feedback). Models are

developed in the Laplace domain considering the behaviour of the discrete-time controller. In addition, the open-loop

response of the system is analysed to ensure that the closed-loop poles are located in positions such as system stability is

guaranteed. The open loop is considered with all loops closed except for the output current loop. This analysis allows the

design of a controller robust to variations in the grid impedance of the R-L type. Thus achieving the design of a controller

that satisfies both stability criteria.

The paper is organized as follows. Section 2 describes the system under study. Section 3 analyses the system stability

and its relation with the output admittance. Section 4 develops the admittance model and the open-loop response of the

system when different states are fed back. Furthermore, the extension of the model to a three-phase system is outlined,

considering the dynamics of the phase-locked loop (PLL). Finally, Sections 5 and 6 present the simulation results and

conclusions, respectively.
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2. System description

This section describes the configuration of an inverter (VSI) connected to the grid through an LCL filter. This is shown

in Figure 1, where Li and Ls represent the inverter and grid-side inductances, respectively, and C is the filter capacitor. The

inverter is modelled with a unity gain and~vi denotes the inverter output voltage. We denote~ii as the current on the inductor
Li,~is as the current on the inductor Ls and~vc as the voltage on the capacitor C. The grid is modelled as an ideal voltage
source~vg in series with an impedance Zg. The voltage over the coupling point (PCC) is denoted as~vs. The control signal to

be applied is denoted as~vre f and~v∗i is the voltage applied to the inverter. We assume the one-sample processing delay

between the~vre f and~v∗i signal, represented by the z−1 block [33].

Figure 2 shows the Norton equivalent circuit of the VSI with LCL output filter connected to the grid. There the

converter is modelled as a current source~I in parallel to an admittance Yo(s).

Figure 1. Schematic model of inverter connected to the grid through an LCL filter. The grid is modelled as a voltage source~vg in series with an impedance

Zg. The inverter is represented as the VSI block, the supply voltage source as vdc, the control signal as~vre f ,~v∗i as the one-sample delayed signal, and~vi as

the signal applied to the LCL filter input. ~vs is the voltage at the PCC,~ii the current through Li,~is the current through Ls, and~vc the voltage across C.

Figure 2. Norton equivalent circuit of the VSI with LCL output filter connected to the grid. The converter is modelled as a current source~I in parallel to
an admittance Yo(s). The grid is modelled as an ideal voltage source~vg in series with a grid impedance Zg(s). The voltage at PCC is~vs and the grid

current~is.

3. Admittance modelling for full feedback states

This section models the output admittance for full feedback states, also presenting the open-loop transfer function

of the system response. Figure 3 illustrates the schematic diagram of the controller with full state feedback, where the

switches represent the sampling action on the states. There, RRR(z) is a reference prefilter,CCC(z) a feedback controller. Once
again, a single-sample processing delay is assumed [33] and represented by the block z−1. The block GhGhGh(s) represents the
zero-order hold (ZOH), which models the action of holding the pulse width modulator register for a sampling time [34].

This block is defined by the transfer function:

GhGhGh(s) =
1− e−sTs

sTs
. (1)
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The sampling process is modelled through pulse modulation [35], in which the output signal is modulated by an

infinite series of delta Dirac functions. Thus, for the case of a signal x(t), the sampled output x∗(t), results:

x∗(t) = Ts

∞

∑
k=0

x(t)δ (t − kTs), (2)

where the index ∗ denotes the sampling action and δ the Dirac delta function. Applying the Laplace transform L{·} to the
sampled signal x∗(t), we obtain

x∗(s) = L{x∗(t)}= Ts

∞

∑
k=0

x(kTs)e−skT s. (3)

Note that the Equation (3) can be taken to an expression of the Z transform of x∗ by making z = esTs . On the other

hand, the Equation (3) can be represented, applying the Poisson summation [36], with the form

x∗(s) =
∞

∑
k=−∞

x(s+ jkωs), (4)

where ωs = 2π/Ts is the sampling angular frequency. The sampling operation generates harmonic components of the

signal x at frequencies kωs, with k ∈ Z.
In Figure 3, the states~i∗i ,~v

∗
c ,~i

∗
s and~v

∗
i , are fed back throughC1C1C1(z),C2C2C2(z),C3C3C3(z) andC4C4C4(z), respectively. There, the

grid is modeled again as an impedance in series with a voltage source. The variation in this impedance causes the instability

of the system.

+
-

+

+
-

Figure 3. Schematic diagram of the controller with full state feedback.

The states~ii,~vc,~is, can be defined in terms of the voltages~vi and~vs, from Figure 1, as follows:

~ii(s) = Ii1Ii1Ii1(s)~vi(s)−Ii2Ii2Ii2(s)~vs(s), ~vc(s) =Vc1Vc1Vc1(s)~vi(s)−Vc2Vc2Vc2(s)~vs(s), ~is(s) = Is1Is1Is1(s)~vi(s)−Is2Is2Is2(s)~vs(s), (5)
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through the following transfer functions:

Ii1Ii1Ii1(s) =
[s2 +(b2 −a2)ω2

crit]

LT (1− a2

b2 )s(s2 +b2ω2
crit)

, Ii2Ii2Ii2(s) =−
b2ω2

crit

LT s(s2 +b2ω2
crit)

,

Vc1Vc1Vc1(s) =
a2ω2

crit

(s2 +b2ω2
crit)

, Vc2Vc2Vc2(s) =
(b2 −a2)ω2

crit

(s2 +b2ω2
crit)

,

Is1Is1Is1(s) =
b2ω2

crit

LT s(s2 +b2ω2
crit)

, Is2Is2Is2(s) =−
b2(s2 +a2ω2

crit)

LT a2s(s2 +b2ω2
crit)

,

(6)

with

b =
ωr

ωcrit

, a =
ωari

ωcrit

, ωr =

√
LT

LiLsC
, ωari =

√
1

LiC
, (7)

LT = Li +Ls, Ts the sampling time, ωr the resonance angular frequency, ωari the anti-resonance angular frequency and

ωcrit =
π

3Ts
[12]. Thus, it is possible to define all transfer functions as a function of a, b, LT and ωcrit, with b > a.

From Figure 3, the output current~is can be expressed as:

~is(s) = Is1Is1Is1(s)GhGhGh(s)~v∗i (s)−Is2Is2Is2(s)~vs(s), (8)

being

~v∗i (s) = z−1CCC(z)
[
~i∗sR(s)RRR(z)−C1C1C1(z)~i∗i (s)−C2C2C2(z)~v∗c(s)−C3C3C3(z)~i∗s (s)−C4C4C4(z)~v∗i (s)

]
. (9)

On the other hand, let H(s) be a generic transfer function in the Laplace domain, from [35] it is correct to assert:

[H(s)GhGhGh(s)~v∗i ]
∗ = [HHH(s)GhGhGh(s)]∗~v∗i and [HHH(s)GhGhGh(s)]∗ =HHH(z). (10)

Following this criterion, replacing (6) and (9) in (8), and operating, we obtain:

~is(s) =
z−1GhGhGh(s)Is1Is1Is1(s)CCC(z)RRR(z)~i∗sR(s)

DDD(z)
−~vs(s)Is2Is2Is2(s)+Is1Is1Is1(s)

[~vs(s)NNN(s)]∗

DDD(z)
, (11)

being

NNN(s) = z−1GhGhGh(s)CCC(z) [Ii2Ii2Ii2(s)C1C1C1(z)+Vc2Vc2Vc2(s)C2C2C2(z)+Is2Is2Is2(s)C3C3C3(z)] (12)

and

DDD(z) =
{

1+ z−1CCC(z) [Ii1Ii1Ii1(z)C1C1C1(z)+Vc1Vc1Vc1(z)C2C2C2(z)+Is1Is1Is1(z)C3C3C3(z)+C4C4C4(z)]
}
, (13)

where Ii1Ii1Ii1(z), Is1Is1Is1(z) andVc1Vc1Vc1(z) are the Z transforms of Ii1Ii1Ii1(s), Is1Is1Is1(s) andVc1Vc1Vc1(s), respectively, defined as follows:

Ii1Ii1Ii1(z) =
∆i(z)
∆r(z)

, Vc1Vc1Vc1(z) =
∆c(z)
∆r(z)

, Is1Is1Is1(z) =
∆s(z)
∆r(z)

, (14)
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with

∆r(z) = (z−1)Rr(z), Rr(z) = z2 −2zcos(φb)+1, (15)

∆i(z) =C1C1C1(z)ki(z2 +biz+1), ∆c(z) =C2C2C2(z)kvc(z2 −1), and ∆s(z) =C3C3C3(z)ks(z2 +bsz+1). (16)

Being

φb =
πb
3
, ki =

[π

3 + γ]

LT ωcrit

, bi =−2
[π

3 cos(φb)+ γ]

[π

3 + γ]
, γ = sin(φb)

a2

b(b2 −a2)
,

ks =
[π

3 − 1
b sin(φb)]

LT ωcrit

, bs =−2
[π

3 cos(φb)− 1
b sin(φb)]

[π

3 − 1
b sin(φb)]

and kvc =
a2

b2 [1− cos(φb)].

(17)

If the image terms, produced by the sampling process in (11), are neglected, it results:

~is(s) =

~I︷ ︸︸ ︷
z−1GhGhGh(s)Is1Is1Is1(s)CCC(z)RRR(z)~i∗sR(s)

DDD(z)
+

YoYoYo(s)︷ ︸︸ ︷[
−Is2Is2Is2(s)+Is1Is1Is1(s)

NNN(s)
DDD(z)

]
~vs,

(18)

where the identity z = esTs is applied.

OperatingYoYoYo(s) from (18), we obtain:

YoYoYo(s) =
b2

LT s(s2 +b2ω2
crit)︸ ︷︷ ︸

ΩΩΩ(s)


Λ1Λ1Λ1(s)︷ ︸︸ ︷

1
a2 (s

2 +a2
ω

2
crit)+

Λ2Λ2Λ2(s)︷ ︸︸ ︷
ω

2
crit

NNN(s)
DDD(z)


︸ ︷︷ ︸

ΛΛΛ(s)

,
(19)

being

NNN(s) =−3 ωcritb2

πLT a2

(
1− z−1

)
n(s)

zs2(s2 +b2ω2
crit)

, (20)

with

n(s) =CCC(z)

{
C3C3C3(s)s2 −C2C2C2(s)LT a2

(
1− a2

b2

)
ω

2
crits+a2

ω
2
crit

[
C1C1C1(z)+C3C3C3(z)

]}
(21)

and

DDD(z) =
d(z)

z∆r(z)
, (22)

being

d(z) = [z+C4C4C4(z)]∆r(z)+∆i(z)+∆s(z)+∆c(z). (23)
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Replacing, and operating, it results:

Λ2Λ2Λ2(s) =

Φ1Φ1Φ1(s)︷ ︸︸ ︷
(z−1)2

z s2
3
π

ω3
critb

2

LT a2
Rr(z)

z(s2 +b2ω2
crit)︸ ︷︷ ︸

Φ2Φ2Φ2(s)

(−z) n(s)
d(z)︸ ︷︷ ︸
Φ3Φ3Φ3(s)

(24)

It is important to note that Φ1Φ1Φ1(s) and Φ2Φ2Φ2(s) have zero phase for all frequency values, so the phase of Λ2Λ2Λ2(s) will be
given by Φ3Φ3Φ3(s), and therefore, by the phase difference between −n(s) and

d(z)
z .

For the system stability analysis, the disturbance signal ~vg = 0 is considered, since it does not affect the system

stability. From Figure 2, it is straightforward to calculate the output current as follows:

~is =
1

1+YoYoYo(s)Zg(s)
~I (25)

To ensure the stability of the system it is necessary that the denominator of (25) satisfies the Nyquist criterion. Therefore,

for the design of a robust controller for any value of Lg and Rg, the phase of the product YoYoYo(s)Zg(s) must not cross the
negative real axis. In addition, it must be satisfied that~I possesses poles [zeros of d(z)] inside the unit circle.

For the limiting cases where the impedance Zg(s) is a resistance or an inductance, it would contribute respectively a
phase of 0◦ or 90◦ to the phase of the productYoYoYo(s)Zg(s). It follows that for the system to be robust to variations in the grid

impedance, −180◦ < YoYoYo(s)< 90◦, as shown in Figure 4. The difficulty lies in finding the values ofCCC(z),C1C1C1(z),C2C2C2(z),
C3C3C3(z) andC4C4C4(z), which allow the transfer functionYoYoYo(s) (18) to satisfy the phase requirement that guarantees stability in
the presence of an unknown grid impedance.

Figure 4. Phase values allowed forYoYoYo(s).

From Equation (19), it is evident that ΩΩΩ(s) exhibits a phase of −90◦ for ω < bωcrit , and 90◦ for ω > bωcrit .

Consequently, for the scenario where ω < bωcrit , −90◦ < ΛΛΛ(s) < 180◦ must be ensured. Likewise, for ω ≥ bωcrit,

it is necessary that 90◦ < ΛΛΛ(s)< 360◦, to satisfy the Nyquist criterion detailed in Equation (25).
Additionally, it is evident from Equation (19) that the gains of feedback dominating the phase behavior ofYoYoYo(s) are

contained within Λ2Λ2Λ2(s), specifically within Φ3Φ3Φ3(s). Moreover, note that s → 0: YoYoYo(s) approaches
[

1+C2C2C2(z)+C4C4C4(z)
C1C1C1(z)+C3C3C3(z)

]
|z=1.

On the other hand, to ensure the closed-loop stability of the system, the zeros of d(z) must be inside the unit circle.
For this, it is necessary to ensure that the open-loop response of the system does not cross 180◦ with modulus greater than
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or equal to one. Considering the schematic depicted in Figure 3, the open-loop response, for the case where the current

loop~is is opened, results:

OLOLOL(z) =
∆s

[z+C4C4C4(z)]∆r(z)+∆i(z)+∆c(z)
, (26)

where OLOLOL(z) is the open-loop transfer function.
The following section will detail the behaviour of the output admittance and the open-loop response of the system, for

the case where different states are fed back. In the following, the parameter values defined in Table 1 will be used for the

output admittance analysis.

Table 1. Parameters

Parameters Values

LT 3.78 mH
fs 9 kHz

ωcrit 2π 1.5 kHz

4. System analysis for different feedback types

In this section, the stability of the system will be studied for different types of feedback, determining the stability

limits of each one. Then, a criterion of gain choices will be proposed to ensure the stability of the system for any R-L

type impedance values. Ensuring that the closed-loop poles are in positions that guarantee stability, for any value of grid

inductance, and that the Nyquist stability criterion is satisfied. For this, the transfer functions of the controller will be

defined as gains, beingCCC(z) = 1,C1C1C1(z) = k1,C2C2C2(z) = k2,C3C3C3(z) = k3 andC4C4C4(z) = k4.

4.1 Inverter-side current feedback system analysis

In this section, the behaviour of the output admittance where only~i∗i is fed back through the gain k1, while k2, k3, and

k4 are set to zero is analysed. When the value of b (7) is less than 1, it becomes feasible to achieve stable positions for all

the closed-loop poles of the system by feeding back only~i∗i through the gain k1 [14, 37].

Furthermore, by considering Equations (21) and (23), it follows that n(s) = a2ω2
critk1 and d(z) = z∆r(z)+∆i(z).

Consequently, the expression for the Φ3Φ3Φ3(s) term in Equation (24) can be determined as follows:

Φ3Φ3Φ3(s) =
(−1)n(s)

d(z)
z

=
(−1)(a2ω2

critk1)

∆r(z)+
∆i(z)

z

. (27)

In this scenario, Φ3Φ3Φ3(s) is influenced by ∆r(z)+
∆i(z)

z . Figure 5 presents the frequency response of ∆r(z) (15) for different
values of b. It is evident that when b < 1, ∆r(z) avoids crossing the 180◦ phase boundary. At b = 1, ∆r(z) has a phase of
180◦ at ω = ωcrit. Moreover, for values of b > 1, ∆r(z) crosses the 180◦ phase point at both ω = ωcrit and ω = bωcrit.
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Figure 5. Frequency response of ∆r(z) for different values of b. ∆r1(z) corresponds to b = 2
3 , ∆r2(z) corresponds to b = 1 and ∆r3(z) corresponds to

b = 4
3 .

Furthermore, the quotient
∆i(z)

z can be expressed as a function of ω , such that ∆i
z (ω) = k1ki [2cos(ωTs)+bi]. This

function exclusively assumes real values and has a phase shift from 0◦ to 180◦ for ω ≤ bωcrit, with the frequency of the

phase shift depending of the value of bi (16).

Additionally, in coherence with the preceding section, it is crucial to verify that −90◦ < ΛΛΛ(s)< 180◦ remains valid
for ω < bωcrit and 90◦ < ΛΛΛ(s)< 360◦ for ω ≥ bωcrit to fulfill the Nyquist stability criterion for the product ofYoYoYo(s) and
Zg(s).

For values of b < 1, the phase of d(z)
z remains constrained within the range between −90◦ and 180◦. Consequently,

the phase ofΛΛΛ(s) also follows the condition −90◦ < ΛΛΛ(s)< 180◦ for ω < bωcrit. This ensures that the phase requirement

forYoYoYo(s) is satisfied.
On the other hand, for values of b ≥ 1 and within the range ωcrit < ω < bωcrit,

d(z)
z assumes phase values between

−180◦ and 0◦. Consequently, Λ2Λ2Λ2(s) has a phase greater than 180◦ within this frequency range. As a result,YoYoYo(s) exceeds
90◦, and the phase requirement is not satisfied.

Hence, when only~ii is fed back, the Nyquist criterion is satisfied in Equation (25) exclusively for values of b that are

less than 1.

Furthermore, considering the situation where only~ii is fed back and the current loop~i∗i remains open, the open-loop
response of the system can be expressed as follows:

OLiOLiOLi(z) =
∆i(z)
z∆r

. (28)

The open-loop transfer functionOLiOLiOLi(z) crosses the 180◦ at ω = ωcrit. Therefore, ifOLiOLiOLi(z) |ω=ωcrit
is equal to−1, we derive:

k1crit =
LT ωcrit [1−2cos(φb)]

π

3 [1−2cos(φb)]− γ
. (29)
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Here, k1crit represents the value of k1 at which a pair of closed-loop poles reside on the unit circle. To guarantee stable

positions for the closed-loop poles of the system, it is essential for k1 to be set at values lower than k1crit .

Additionally, when considering a non-zero grid inductance Lg, the open-loop response of the system OLOLOL(z) changes,
causing a shift in the resonance of the LCL filter. This resonance value becomes

ωrg =

√
LT g

Li(Ls +Lg)C
= bgωcrit, (30)

where LT g = Li+Ls+Lg. As a consequence, the value of k1crit (29) changes with varying Lg. In the scenario where Lg → ∞,

bg → a, and k1crit → k1critmax , with

k1critmax =
(−1)LT

(
1− a2

b2

)
ωcrit a [1−2cos(φa)]

sin(φa)
, (31)

being φa = a π

3 . Thus, as k1critmax increases with larger Lg, it is feasible to guarantee closed-loop pole stability by selecting a

gain value k1 < k1crit for Lg = 0 and b < 1.

(a)

Figure 6. Cont.
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Figure 6. (a) Output admittancesYoYoYo(s) for the case in which~ii is fed back. The admittanceYo1Yo1Yo1(s) represents the case in which b = b1 =
2
3 . The admittance

Yo2Yo2Yo2(s) represents the case in which b = b2 =
4
3 . (b) Location of the closed-loop poles when

~ii is fed back, for b = b1 =
2
3 (red) and b = b2 =

4
3 (blue)

In Figure 6a, the output admittance is depicted for the case where~ii is fed back, with values of b = b1 =
2
3 , b = b2 =

4
3 ,

and a = 1
3 . Here, k1 =

k1crit√
2
(29) was considered. For theYoi1Yoi1Yoi1(s) case, with b = b1 =

2
3 , the output admittance satisfies the

phase requirement, and the Nyquist stability criterion in (25). Conversely, consideringYoi2Yoi2Yoi2(s) with b = b2 =
4
3 , the output

admittance does not satisfies the phase requirement within the ωcrit ≤ ω < bωcrit frequency range.

Moreover, Figure 6b illustrates the positions of the closed-loop [zeros of d(z)] poles when only~ii is fed back, being

k1 =
k1crit√

2
. The cases considered involve a = 1

3 for b = b1 =
2
3 (shown in blue) and b = b2 =

4
3 (shown in red), varying Lg.

In the case of b = b1 =
2
3 , the poles reside within the unit circle. However, in the scenario of b = b2 =

4
3 , there are poles

located outside the unit circle as expected.

Based on the preceding analysis, it can be concluded that when b < 1 and~ii is fed back, the product between the
output admittanceYoYoYo(s) and Zg(s) satisfy the Nyquist criterion and the closed-loop poles are positioned in stable locations.
Conversely, for values of b ≥ 1, ensuring the stability of the system becomes unattainable.

4.2 Grid-side current feedback system analysis

In this section, the scenario in which~i∗s is fed back through the gain k3, with k1, k2, and k4 set to zero, is analysed. In

this specific case, the closed-loop poles of the system will invariably exist outside or on the unit circle for values of b ≤ 1
(7). However, for values of b greater than 1, it becomes feasible to position the closed-loop poles in stable locations [12].

In this case, by utilizing (21) and (23), we deduce that n(s) = k3(s2 +a2ω2
crit) and d(z) = z∆r(z)+∆s. Consequently,

the expression for Φ3Φ3Φ3(s) (27) can be formulated as follows:

Φ3Φ3Φ3 =
−n(s)

d(z)
z

=
(−1)k3(s2 +a2ω2

crit)

∆r(z)+ ∆s
z

. (32)
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Observe in (32) that it contains the same zero as Λ1Λ1Λ1(s) (19). Thus, it becomes possible to rearrange ΛΛΛ(s) as follows:

ΛΛΛ(s) =Λ1Λ1Λ1(s)
[
1+Λ2Λ2Λ2

′(s)
]
, (33)

where Λ2Λ2Λ2
′(s) = Λ2Λ2Λ2(s)

Λ1Λ1Λ1(s)
.

On the other hand, it is feasible to express the ratio
∆s(z)

z as a function of ω , denoted as ∆s
z (ω) = k3ks [2cos(ωTs)+bs].

This function takes real and positive values (with a phase of zero) within the frequency range that is being analysed.

In Figure 5, it is evident that in situations where ω < ωcrit and ω < bωcrit, ∆r(z) remains confined to phase values
ranging from 90◦ to 180◦. Furthermore, given the zero phase of ∆s

z , the phase of
d(z)

z will be constrained within the phase

interval of 0◦ to 180◦. Consequently, Λ2Λ2Λ2
′(s) will exhibit a phase greater than 0◦ and less than 180◦ for ω < ωcrit. The same

principle applies to the (1+Λ2Λ2Λ2
′(s)) term in (33), which will also be confined to this phase range for ω < ωcrit.

In cases where a < 1 (7),Λ1Λ1Λ1(s) crosses the 180◦ boundary for ω < ωcrit. Consequently, the phase ofΛΛΛ(s) takes values
between −180◦ and −90◦ within the range of aωcrit < ω ≤ ωcrit. This results inYoYoYo(s) assuming a phase greater than 90◦,
which means it does not satisfies the phase requirement. Conversely, in the scenario where a = 1,YoYoYo(s) holds a phase of
90◦ exclusively at ω = ωcrit.

In cases where a > 1, it is possible to get YoYoYo(s) satisfies the phase requirement. To achieve this, it is imperative

that ΛΛΛ(s) avoids taking values between −180◦ and −90◦ for ω < bωcrit. Referring to (33), it becomes necessary that

ℜ{Λ2Λ2Λ2
′(s)} exceeds −1 within the range of ωcrit ≤ ω ≤ aωcrit. This objective can be accomplished by ensuring that k3

remains below a critical threshold value, denoted as k3crit , at which ℜ{Λ2Λ2Λ2
′(s)}=−1 for the frequency ω = aωcrit.

On the other hand, from (26), the open-loop response for the case where only~is is fed back results in OLsOLsOLs(z) = ∆s
z∆r

.

OLsOLsOLs(z) only crosses the 180◦ phase at ω = ωcrit and ω = bωcrit. Once again, by evaluating the open-loop response at

ω = ωcrit, equalling to −1, and resolving, results:

k3crit =
LT ωcrit [1−2cos(φb)]

π

3 [1−2cos(φb)]+
sin(φb)

b

, (34)

where k3crit is the critical gain value for which the closed-loop poles are located on the unit circle. Hence, to position the

closed-loop poles in stable positions, it is imperative that k3 remains below k3crit . As the open-loop response changes with

variations in Lg, the value of k3crit also changes, decreasing as Lg increases. In the scenario where Lg → ∞, bg → a (30)

and k3crit → k3critmin
, being:

k3critmax =
LT ωcrit [1−2cos(φa)]

π

3 [1−2cos(φa)]+
sin(φa)

a

. (35)

Therefore, to ensure that the closed-loop poles are located in stable positions for any value of Lg and bg > 1, it is necessary
to satisfy the condition k3 < k3critmin

.

Figure 7a shows the output admittancesYos1Yos1Yos1(s) andYos2Yos2Yos2(s) corresponding to a = a1 =
4
3 and a = a2 =

2
3 , respectively,

being b = 5
3 and k3 =

1√
2
k3critmin for a = a1. Notably, for Yos2Yos2Yos2(s), within the frequency range of aωcrit < ω < ωcrit, the

phase exceeds 90◦, thereby not satisfying the phase requirement. Conversely, for the case ofYos1Yos1Yos1(s), the phase remains
confined within the permissible limits, thereby satisfying the Nyquist stability criterion.

In Figure 7b, the placements of the closed-loop poles are illustrated while varying Lg for the previously discussed

case. Notably, for the instance where a = a1 =
4
3 (depicted in red), as Lg → ∞, bg → a1 (30), consequently maintaining the

closed-loop poles within the unit circle. Conversely, in the case of a = a2 =
2
3 (shown in blue), as Lg → ∞, bg → a2, there

are some closed-loop poles located outside the unit circle.
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Figure 7. (a) Output admittances YoYoYo(s) for the case in which~is is fed back. The admittance Yos1Yos1Yos1 (s) represents the case in which a = a1 = 4
3 . The

admittance Yos2Yos2Yos2 (s) represents the case in which a = a2 = 2
3 . (b) Location of the closed-loop poles when~is is fed back, for a = a1 = 4

3 (blue) and

a = a2 =
2
3 (red)

In summary, in cases where~is is fed back and a > 1, it becomes feasible for the the product betweenYoYoYo(s) and Zg(s) to
satisfy the Nyquist criterion and position the closed-loop poles in stable locations even when subjected to variations in Lg.
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However, when a ≤ 1, despite the closed-loop poles potentially being stable (for bg > 1), it is unachievable to guarantee
thatYoYoYo(s) complies with the phase requirement.

4.3 Currents feedback system analysis

In this section, we will analyse the scenario where both~i∗i and~i
∗
s are fed back through the gains k1 and k3, respectively,

while considering k2 and k4 as zero, for the case where a < 1 and b ≥ 1 (7).

For this case, based on (21) and (23), results n(s) = [k3s2 +a2ω2
crit(k1 + k3)] and d(z) = z∆r(z)+∆i +∆s. Moreover,

if the gains k1 and k3 are defined as follows:

k1 = λωcritLT (λ
2
1 −a2) and k3 = λωcritLT a2, (36)

results n(s) = λωcritLT a2[s2 +λ 2
1 ω2

crit], where λ and λ1 are gains to be defined.

For values of 1 < λ1 < b, within the frequency range ω < ωcrit,
−z

d(z) exhibits a phase between 0◦ and 180◦.
Consequently, it is possible to achieve that, for ω < ωcrit and 1 < λ1 < b, 0◦ < ΛΛΛ(s) < 180◦, ensuring that YoYoYo(s)
satisfies the phase requirement.

(a)

Figure 8. Cont.
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Figure 8. (a) Output admittanceYoisYoisYois(s) for the case when the currents~ii and~is are fed back. Output admittanceYoiscYoiscYoisc(s) for the case in which the states~ii,
~vc and~is are fed back. (b) Location of the closed-loop poles for the case in which the currents~ii and~is are fed back (blue) and in which~ii,~vc and~is are
fed back (red)

In the frequency range ωcrit ≤ ω ≤ λ1ωcrit, for 1 ≤ λ1 ≤ b, the feedback of~ii and~is currents does not guarantee that
YoYoYo(s) satisfy the phase requirement. This is due to for values between ωcrit ≤ ω ≤ bωcrit,

−z
d(z) takes phase values less than

zero. This produces that for ωcrit ≤ ω ≤ λ1ωcrit, −180◦ < ΛΛΛ(s)−90◦ and YoYoYo(s)> 90◦. On the other hand, for the case
where λ1 = 1, the only point of YoYoYo(s) = 90◦ is at ω = ωcrit.

Furthermore, for ω > bωcrit, 180◦ < ΛΛΛ(s)< 0◦, thusYoYoYo(s) satisfies the phase requirement for this frequency range.
Indeed, when dealing with the scenario where a < 1 and b ≥ 1, it is not feasible to satisfy the Nyquist stability criterion

by fed back~ii and~is. In the particular case where λ1 = 1, YoYoYo(s) = 90◦ at ω = ωcrit.

On the other hand, to determine the closed-loop stability of the system, the open-loop responseOLOLOL(z) (26), is analysed.
When exclusively~ii and~is are fed back, the frequencies at which the open-loop response crosses the 180◦ phase are
ω = ωcrit and ω = bωcrit. Consequently, upon assessing the open-loop response at these frequencies, we obtain:

OLωcrit
=

num{OLωcrit
}

den{OLωcrit
}
, (37)

num{OLωcrit
}= λa2

{
π

3
[1−2cos(φb)]+

1
b

sin(φb)

}
,

den{OLωcrit
}= (−1) [1−2cos(φb)]+λ (λ 2

1 −a2)
[

π

3
[1−2cos(φb)]− γ

]
,

(38)

OLbωcrit
=

(b2 −a2)

(−1)(λ 2
1 −a2)

, (39)

Volume 3 Issue 2|2024| 503 Journal of Electronics and Electrical Engineering



where OLωcrit
and OLbωcrit

represent the open-loop frequency response at ω = ωcrit and ω = bωcrit, respectively. In the

specific instance where b = λ1 = 1, the open-loop response OLbωcrit
equates to −1, indicating the presence of a pair of

closed-loop poles [zeros of d(z)] situated above the unit circle.
For the scenario where OLωcrit

=−1 and operating in (37), results:

λcrit =

(
1− a2

b2

)
ψ, (40)

being

ψ =

sin(φb)
a2

b

(
1− λ 2

1
b2

)
[1−2cos(φb)]

+λ
2
1

π

3

(
1− a2

b2

)
−1

. (41)

where λcrit represents the value of λ at which the open-loop response intersects the 180◦ phase line with a modulus of
one at ω = ωcrit. Hence, in order to guarantee that the closed-loop poles remain inside the unit circle, it is imperative that

λ < λcrit. Given that ψ is consistently greater than 3
π
, λ can be defined as:

λ = ε
3
π
(1− a2

b2 ).
(42)

For ε < 1, λ will consistently remain less than λcrit. This ensures that the open-loop response will never cross the 180◦

phase line with a modulus greater than one at ω = ωcrit, except when b = 1.
Additionally, changes in Lg lead to variations in OLOLOL(z) and λcrit. In the particular scenario where Lg → ∞, bg → a

(30), and λcrit → λcritmin , where

λcritmin =
[1−2cos(φa)]a
sin(φa)(a2 −λ 2

1 )

(
1− a2

b2

)
, (43)

the minimum value that λcrit could attain. Therefore, it is possible to ensure that the closed-loop poles are in stable positions

for variations in Lg by choosing a value of λcrit that is less than λcritmin , except for the case where bg = 1, which results in a
pair of poles on the unit circle.

In Figure 8a, the output admittance is shown. There,Yois(s)Yois(s)Yois(s) represents the value of the output admittance for a = 2
3 ,

b = 4
3 , ε = 1

2 , and λ1 = 1, when~ii and~is are fed back. It can be observed that the output admittanceYoisYoisYois(s) satisfies the
phase requirement for all frequency values except at ωcrit, where the output admittance phase is 90◦.

In Figure 8b, the location of the closed-loop poles of the system is depicted by varying Lg, with~ii and~is fed back
(shown in blue). The parameters used are a = 2

3 , b = 4
3 , ε = 1

2 , and λ1 = 1. It can be observed that all the poles are

positioned within the unit circle, except for the case where bg = 1, leading to a pair of poles on the unit circle.
Absolutely, despite the potential to achieve stable locations for closed-loop poles in cases where bg 6= 1, it remains

impossible forYoYoYo(s) to fulfil the phase requirement at ω = ωcrit. To overcome these challenges concerning both closed-loop

pole stability and the phase characteristic ofYoYoYo(s), the following section includes the fed back of~v∗c and~v
∗
i through k2 and

k4 gains, respectively.

4.4 Full state feedback system analysis.

In this section, we will analyse the scenario in which the state variables~i∗i ,~v
∗
c ,
~i∗s , and~v

∗
i are fed back using the gains

k1, k2, k3, and k4 respectively.
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For the defined gain values in (36), k2 = λλ2 and currently k4 = 0, results:

n(s) = λωcritLT a2
[

s2 −λ2

(
1− a2

b2

)
ωcrits+λ1ω

2
crit

]
, (44)

and d(z) = z∆r(z)+∆i(z)+∆s(z)+∆c(z) (23), being λ2 a gain to be defined. Indeed, when~vc is fed back, it results in n(s)
having a phase equal to ±90◦ for the case of λ1 = 1 and at ω = ωcrit. Additionally, the phase of

∆c(z)
z (16) becomes ±90◦,

with both signs determined by the value of k2.

Certainly, the open-loop response OLOLOL(z) evaluated at ω = ωcrit and ω = bωcrit is given by the following expressions:

OLωcrit
=

num{OLωcrit
}

den{OLωcrit
}
, (45)

being

num{OLωcrit
}= λa2

{
π/3[1−2cos(φb)]+

1
b

sin(φb)

}
,

den{OLωcrit
}= (−1)[1−2cos(φb)]+λ (λ 2

1 −a2)
[

π

3
[1−2cos(φb)]− γ

]
+ j

√
3λλ2

a2

b2 [1− cos(φb)],

(46)

and

OLbωcrit
=

(b2 −a2)

(−1)(λ 2
1 −a2)+ j λ2

b (b2 −a2)
. (47)

Thus, with the correct choice of λ2, it is possible to achieve that OL crosses the 180◦ with modulus less than one,
similar to what was developed in [17].

On the other hand, if λ2 =−ρ

(
1− a2

b2

)−1
, results n(s) = λωcritLT a2

[
s2 +ρωcrits+λ1ω2

crit

]
, where ρ is a gain to be

defined.

It is possible to define a value of ρ that achieves the phase requirement of the output admittance for ω = ωcrit. Note

that for λ = λcrit, the real part of d(z) changes sign at ω = ωcrit. Thus, to satisfy the phase requirement, it is necessary for

ρ to take positive values when λ < λcrit.

In Figure 8a, the output admittanceYoiscYoiscYoisc(s) is shown for a = 2
3 , b = 4

3 , ε = 0.5, λ1 = 1, and ρ = 0.1. There, the phase
requirement in the output admittance is satisfied.

Furthermore, in Figure 8b, the locations of the closed-loop poles when~ii,~vc, and~is are fed back, are shown in red, for
a = 2

3 , b = 4
3 , ε = 0.5, λ1 = 1, and ρ = 0.1, while varying Lg. As observed, the closed-loop poles remain within the unit

circle for all values of Lg.

Therefore, by selecting appropriate values of ε , λ1, and ρ , it is possible to satisfy the phase requirement forYoYoYo(s) and
also guarantee the stability of closed-loop poles regardless of the value of Lg.

In addition, Figure 9a illustrates the output admittanceYoYoYo(s) for different values of k4, for the given parameters a, b, ε ,

λ1, and ρ . For all cases the output admittance phase requirement is satisfied. Furthermore, as for s → 0,YoYoYo(s)→ 1+k2+k4
k1+k3

,

then, it must be satisfied that k2 + k4 >−1.
On the other hand, Figure 9b presents the variations in the closed-loop poles positions for different values of k4, when

Lg is varied. It is evident that all the closed-loop poles are situated within the unit circle. Thus, there are small values of k4

that allow the system to remain stable.
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Figure 9. (a) Output admittance when~ii,~is,~vc and~v∗i are fed back, for different values of k4. YoiscYoiscYoisc(s) corresponds to k4 = 0,Yoisc1Yoisc1Yoisc1(s) corresponds to
k4 = 0.2,Yoisc2Yoisc2Yoisc2(s) corresponds to k4 = 0.4 andYoisc3Yoisc3Yoisc3(s) corresponds to k4 =−0.2. (b) Closed-loop poles location when~ii,~vc,~is, and~vi∗ are fed back,
using different values of k4. The poles are shown for k4 = 0.2 (red), k4 = 0.4 (yellow), and k4 =−0.2 (violet)
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By following the outlined gain selection method, it is feasible to guarantee the system stability based on the Nyquist

stability criterion for the product of the grid impedance and the output admittance. Additionally, this approach ensures that

the closed-loop poles are positioned in stable locations, regardless of variations in the grid inductance value.

4.5 Model extension

Finally, for the case where the effect of phase-locked loop (PLL) on a three-phase system is considered, the proposed

model must be extended. The presence of the PLL results in the converter output admittance becoming dq unsymmetric [38],
requiring its modeling in synchronous coordinates. The pertinent transfer functions can be transformed into synchronous

coordinates, rotating at the grid angular frequency ωg, by substituting the s-domain variable with s+ jωg. For this case,

the space vectors are represented as column vectors, denoted with the super-index dq. Furthermore, the transfer functions
are represented using 2 × 2 transfer functions matrices, denoted by an overline. This is detailed in Appendix A, along

with the PLL dynamics transfer functions matrices.

The block diagram of the linearized model of the grid converter system, incorporating the dynamics of the PLL,

is illustrated in Figure 10. Additionally, the PLL dynamics add four variables,~id,qiPLL(z),~v
d,q
cPLL(z),~i

d,q
sPLL(z) and~v

d,q
re f PLL(z),

detailed in Appendix A.

The extent of frequencies impacted by the PLL in the mentioned admittance elements is dictated by the bandwidth of

the PLL. For a more in-depth analysis of the influence of the PLL on the converter admittance, the interested reader is

directed to [39] and the referenced papers therein.

+

+

+

+

+
-

+

+
-

+

Figure 10. Schematic diagram of the controller with full state feedback, including de dynamics of the PLL.

In this paper, stability is achieved both by satisfying the Nyquist stability criterion between the output admittance and

the grid impedance, and by ensuring the closed-loop poles of the system are in stable positions, despite variations in grid

impedance. This design overcomes the limitations of the controllers developed in [16, 28, 18], where the system failed to

achieve robustness under any type of grid impedance variations.
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5. Simulation results

To validate the proposed full state feedback control system, simulations were performed using Matlab/Simulink. The

simulation model includes the inverter, LCL filter, and grid modelled as described in previous sections. The parameters

used in the simulation are presented in Table 1. Additionally, the DC voltage source vdc was set to 400 V, a = 2
3 and b = 4

3 .

For this was incorporated a Proportional-Resonant (PR) regulator stage between the reference signal and the output

current in the full state feedback system. The PR discrete transfer function, obtained with the Tustin transform method

with prewarping [12, 40], is given by

PRPRPR(z) = k3

[
1+

1
Tr

sin(a0
π

3 )

2a0ωcrit
z2 −1

z2 −2cos(a0
π

3 )+1

]
(48)

where a0 =
ω0

ωcrit
, ω0 = 2π50, and Tr the resonant time, defined as:

Tr =
θ

λωcrit

, (49)

being θ is a gain to be defined (θ =10 in [12, 40]).

Due to the fact that both proportional-integral (PI) and PR regulators can be approximated to a proportional gain at

the crossover frequency, when the integral or resonant gain is sufficiently small, they do not affect the stability conditions

and were not considered in the stability analysis [12, 15, 41].

Figure 11 shows the output admittance values for both simulated and theoretical cases, considering different values of

the gain Tr. BothYo1Yo1Yo1(s) andYo1simYo1simYo1sim(s) represent the cases with PR for θ = 10, where one corresponds to the theoretical
result and the other to the simulated result, respectively. Similarly, Yo2Yo2Yo2(s) and Yo2simYo2simYo2sim(s) reflect the cases for θ = 1, also
differentiating between theoretical and simulated results. Finally, YoiscYoiscYoisc(s) denotes the case without the use of the PR
controller. It can be observed that for the case of the PR controllers, there is a phase jump at the resonance frequency

a0 ωcrit, for which the output admittance is zero.

Figure 11. Output admittances for the case in which the states~ii,~vc and~is are fed back. BothYo1Yo1Yo1(s) andYo1simYo1simYo1sim (s) represent the cases with PR for θ =10,

with one being the theoretical result and the other the simulated result, respectively. The same applies to Yo2Yo2Yo2(s) and Yo2simYo2simYo2sim (s), but for θ = 1. YoiscYoiscYoisc(s)
represents the case without the use of the PR controller.
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Figures 12 and 13 present the step response of the current reference at t = 0.5 s for the two previously discussed

cases of the PR controllers. In the first case, θ = 1, while in the second case, θ = 10. It is evident that the output current
successfully tracks the reference in both scenarios. However, as expected, for θ = 10, the higher gain Tr results in a longer

convergence time.

Figure 12. Step response of the output current to a current reference step for the PR controller with θ = 1.

Figure 13. Step response of the output current to a current reference step for the PR controller with θ = 10.
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6. Conclusions

This paper presents the analysis of the output impedance modeling of an electronic converter connected to the grid

through an LCL filter. The output admittance is calculated as a composition of continuous and discrete signals in the

Laplace domain. To ensure system stability, it is necessary that the product between the output admittance and the grid

impedance satisfies the Nyquist stability criterion and that the closed-loop poles of the system are in stable positions. By

applying the output admittance model to a controller with full state feedback, it is possible to ensure that the output always

meets the Nyquist stability criterion. Furthermore, by choosing the correct gain values, the closed-loop poles can be kept

in stable positions despite grid inductance variations. This allows the design of a robust controller that remains stable with

R-L type grid impedance, satisfying both stability criteria.

This approach surpasses the limitations of other controllers that are not robust against grid impedance variations, as

demonstrated by the simulations obtained, which verify the proposed analysis. The system exhibited excellent performance,

confirming the effectiveness of the robust controller design.

Appendix A

The inclusion of a synchronous reference frame PLL (SRFPLL) introduces asymmetry into the system, rendering it

dq unsymmetric [25]. This unsymmetry results in the representation of complex space vectors using column vectors [38].

~id,qs =

[
isd

isq

]
, (50)

where isd and isq represent the d and q components, respectively. Furthermore, the complex transfer functions YoYoYo(s) =
YoddYoddYodd(s)+ jYoqqYoqqYoqq(s) are transformed into symmetric transfer function matrices

Y oY oY o(s) =

[
YoddYoddYodd(s) YodqYodqYodq(s)
YoqdYoqdYoqd(s) YoqqYoqqYoqq(s)

]
, (51)

being,YoddYoddYodd(s) =YoqqYoqqYoqq(s) = ℜ{YoYoYo(s)}= 1
2

[
YoYoYo(s)+YoYoYo(s)†

]
and−YodqYodqYodq(s) =YoqdYoqdYoqd(s) = ℑ{YoYoYo(s)}= 1

2

[
YoYoYo(s)−YoYoYo(s)†

]
, where

the superscript † denotes the complex conjugate operation.

Integrating the dynamics of the PLL into the admittance model introduces a dependency on the operating point,

necessitating linearization [38]. The dynamic effects of the PLL on the transformed controller variables,~ii,~vc,~is,~v∗i , are
expressed as:

~id,qiPLL(z) =

[
0 −HPLL(z)iiq,0
0 HPLL(z)iid,0

][
vsd(z)
vsq(z)

]
, ~vd,q

cPLL(z) =

[
0 −HPLLHPLLHPLL(z)vcq,0

0 HPLLHPLLHPLL(z)vcd,0

][
vsd(z)
vsq(z)

]
, (52)

~id,qsPLL(z) =

[
0 −HPLLHPLLHPLL(z)isq,0

0 HPLLHPLLHPLL(z)isd,0

][
vsd(z)
vsq(z)

]
, ~vd,q

re f PLL(z) =

[
0 −HPLLHPLLHPLL(z)vre f q,0

0 HPLLHPLLHPLL(z)vre f d,0

][
vsd(z)
vsq(z)

]
, (53)

where iid,0, iiq,0, vcd,0, vcq,0, isd,0, isq,0, vre f d,0 and vre f q,0 are the components values of iiii, vvvc, iiis and vvvi at the operating point

os the system. The pulse transfer function of the linearized SRF-PLL is expressed in [25] as:

HPLLHPLLHPLL(z) =
Ts (kpz+Tski − kp)

z2 +(Tsvs,0kp −2)z+Tsvc,0(Tski − kp)+1
, (54)
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where kp and ki are the proportional and integral gains of the PLL, and vs,0 is the magnitud of the grid voltage vector ar the

operating point.
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