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Abstract: Multiconductor transmission lines (MCTLs) have various applications in electrical engineering. In modeling

and analysis of MCTLs, which are described by a set of coupled partial differential equations, most existing methods rely

on approximation or discretization. For high-speed high-frequency applications, accurate analytical methods are always

desirable. Such a method, however, is not currently available for complex MCTLs. This paper presents an innovative

analytical method for modeling and analysis of MCTLs with various configurations. The proposed method, which is

called the Distributed Transfer Function Method, is capable of delivering closed-form analytical solutions for complex

MCTLs, in both the frequency domain and the time domain. One highlight of the proposed method is that it gives exact

and closed-form solutions for branched transmission lines for the first time. The accuracy, efficiency, and high-frequency

utility of the method is demonstrated in numerical examples.

Keywords: multiconductor transmission lines, multiline systems, branched transmission lines, distributed transfer function
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1. Introduction

Multiconductor transmission lines (MCTLs) have various applications in electrical engineering, including electric

power transmission, electronic devices, communication, high-speed circuits, antennas, and very large-scale integration

(VLSI) technology [1, 2, 3, 4]. The current investigation is concerned with modeling and analysis of complex MCTLs

that are assembled with three configurations: (i) cascaded transmission lines; (ii) coupled transmission lines; and (iii)

branched transmission lines. A cascaded configuration is commonly seen in multi-section transmission lines for impedance

matching in design of microwave systems. A coupled configuration arises from the phenomenon of crosstalk. A branched

configuration is often considered in multiport transmission lines for multichannel communication. Mathematically, a

multiconductor transmission line is described by a set of coupled partial differential equations.

For simplicity of presentation, an MCTL is also called a multiline system. A demonstrative multiline system is shown

in Figure 1, where seven nodes (1, 2, …, 7) define the boundaries of the five transmission lines, and ik denotes the current
in the kth line. At Node 2, Lines 1 and 2 are in cascade connection. Node 2 is also a port with an impedance Zp and

a voltage input vp(t). Such a port describes a transmitter or receiver in a communication application. The dashed area
represents the coupling between Lines 4 and 5 due to crosstalk, showing a coupled configuration. At Node 3, Lines 2, 3
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and 4 are interconnected, exhibiting a branched configuration. Also, at Nodes 1, 4, 5, 6 and 7, the boundary conditions with

sources and load impedances can be specified. The multiline system in Figure 1 is a combination of the aforementioned

three configurations.

Figure 1. Schematic of a multiline system

In modeling and analysis of MCTLs, numerical methods are mostly applied, including the finite difference methods

[5, 6, 7, 8], finite element methods [9, 10], numerical inverse Laplace transform [11, 12, 13], modal analysis [14], and hybrid

finite element-wavelet expansion methods [15, 16]. For design of multichannel interconnects with high-frequency carriers, a

closed-form model in the frequency domain was developed based on some approximation [17]. Besides numerical methods,

semi-analytical methods for time-domain analysis were proposed. In Reference [18], by finite difference approximation in

the spatial coordinate, the governing partial differential equations of a coupled nonuniform multiline system are reduced

to a set of ordinary differential equations, which are then solved analytically. In Reference [19], through introduction of

truncated Tayler series in inverse Laplace transform, a closed-form transient response of coupled transmission lines is

obtained. The above-mentioned numerical and semi-analytical methods have found utilities in development and design of

MCTLs.

In recent years, MCTL models have been widely adopted in a variety of engineering applications. Examples include

circuits for antennas [20, 21], onboard electric wiring on aircraft [22], design of couplers, filters, and transmitters [23],

transformers design [24], the track circuit in a railway signal system [25], and cable lines in power transmission systems

[26, 27, 28]. In these applications, the aforementioned numerical and approximate methods were applied to obtain the

dynamic response of the multiline systems in consideration.

Instead of the rich literature, modeling and analysis of MCTLs mostly relays on numerical and approximate methods.

To the best of the author’s knowledge, exact and analytical solution methods are currently unavailable for complex MCTLs,

especially for branched multiline systems. An analytical method for complex MCTLs that can deliver highly accurate

results and provide deep physical insights is certainly desirable, particularly in high-speed high-frequency applications. The

development of such a modeling and analysis method should significantly benefit the design of many electronic devices

and electrical systems, which, nevertheless, has not been well addressed in the past. The current investigation is motivated

by the need to fill this technical gap in research and development.

This paper presents a new analytical method, namely the Distributed Transfer Function Method (DTFM), for modeling,

synthesis, and analysis of multiconductor transmission lines. The DTFM was originally developed for vibration problems

of elastic continua [29, 30, 31, 32]. In this work, the DTFM is extended to the problems of MCTLs. The proposed method,

as the first of its own kind, does not require any approximation or discretization, and it can systematically deliver analytical

solutions for complex MCTLs, in both the frequency and time domains. One highlight of the DTFM is that it obtains exact

and closed-form solutions for branched transmission lines, which are currently unavailable in the literature. As shall be

seen, the DTFM-based analysis is potentially useful for high-speed high-frequency applications.

The remainder of the paper is organized as follows. In Section 2, the DTFM is developed for single transmission lines

to prepare for modeling and analysis of complex MCTLs. To this end, a distributed transfer function formulation and a

Volume 3 Issue 2|2024| 543 Journal of Electronics and Electrical Engineering



residue formula for inverse Laplace transform are derived, which eventually lead to frequency and time responses in closed

form. By generalizing the DTFM-based analysis in Section 2, the responses of cascaded transmission lines and coupled

transmission lines are determined in Sections 3 and 4, respectively. In Section 5, through introduction of an augmented

state-space formulation, exact and closed-form responses of general MCTLs with branched configuration are obtained. In

Section 6, for validation and comparison purposes, a numerical integration algorithm is derived. The proposed DTFM is

demonstrated in two numerical examples in Section 7. Finally, the main results obtained in this study are summarized in

Section 8.

2. Response of a single transmission line by DTFM

To prepare for modeling, synthesis, and analysis of multiline systems with the three configurations as mentioned

in Section 1, in this section, the dynamic problem of a single transmission line (TL) is formulated and solved by the

Distributed Transfer Function Method (DTFM). With the DTFM, the dynamic responses of the TL are obtained in exact

and closed form. While the DTFM-based modeling and analysis is new even for a single TL, it lays out a foundation for

the development of the proposed analytical method for complex MCTLs, as shall be seen in Sections 3 to 5.

2.1 Spatial state-space formulation

Consider a single TL shown in Figure 2, where v(x, t) and i(x, t) are the distributed voltage and current over the line;
and l is the line length. Without loss of generality, assume zero initial voltage and current. According to the transmission

line theory [1, 2], the TL are governed by the s-domain differential equations:

∂ v̄(x,s)
∂x =−(Ls+R)ī(x,s)

∂ ī(x,s)
∂x =−(Cs+G)v̄(x,s)

(1)

for 0 < x < l. Here, the overbar stands for Laplace transformation, such as v̄(x,s) = L [v(x, t)] and ī(x,s) = L [i(x, t)],
with L being the Laplace transform operator and s the complex Laplace transform parameter; and R, L, G and C are the

unit length resistance, inductance, conductance and capacitance of the TL, respectively. The boundary conditions of the

line are

at x = 0 : ZS(s)ī(0,s) = v̄s(s)− v̄(0,s)
at x = l : ZL(s)ī(l,s) = v̄(l,s)

(2)

where v̄s(s) is the Laplace transform of the applied voltage vs(t) at the left end; and ZS(s) and ZL(s) are the source and
load impedances.

Figure 2. A single transmission line

To determine the response of the TL by the DTFM, define a state vector as follows
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η̂(x,s) =

(
v̄(x,s)
ī(x,s)

)
, x ∈ [0, l] (3)

With the so defined state vector, Equations (1) and (2) are converted to the following spatial state-space formulation [29, 30]

State equation: ∂

∂x η̂(x,s) = F(s)η̂(x,s), 0 < x < l
Boundary condition: Mb(s)η̂(0,s)+Nb(s)η̂(l,s) = γ̂b(s)

(4)

where

F(s) =

[
0 −(Ls+R)

−(Cs+G) 0

]
, γ̂b(s) =

(
v̄s(s)

0

)

Mb(s) =

[
1 ZS(s)
0 0

]
, Nb(s) =

[
0 0
−1 ZL(s)

] (5)

2.2 Exponential matrix

The exponential matrix of the state-space formulation given by Equation (4) plays an important role in the DTFM-based

analysis. By the method of matrix deposition [33], the exponential matrix eF(s)x is obtained in the following analytical form

eF(s)x =

[
cosh(σ(s)x) −β (s)sinh(σ(s)x)

− 1
β (s) sinh(σ(s)x) cosh(σ(s)x)

]
(6)

where

σ(s) =
√
(Ls+R)(Cs+G), β (s) =

√
Ls+R
Cs+G

(7)

which are known as the propagation constant and characteristic impedance of the TL, respectively.

2.3 Eigenvalue problem

The eigenvalue problem of the TL is described by the homogeneous state equation

∂

∂x
η̂(x,s) = F(s)η̂(x,s), 0 < x < l (8)

subject to the homogeneous boundary condition

Mb(s)η̂(0,s)+Nb(s)η̂(l,s) = 0 (9)

where s is an eigenvalue and η̂(x,s) is the associated eigenvector in the state-space form. Equation (8) can be simply
obtained from Equation (4) by dropping γ̂b(s).

A nontrivial solution of Equation (8) is of the form [34],

η̂(x,s) = eF(s)xη0 (10)
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where η0 is a nonzero constant vector. Substituting Equation (10) into the boundary condition (9) gives the following

homogenous equation

[
Mb(s)+Nb(s)eF(s)l

]
η0 = 0 (11)

To have a nontrivial solution η0, we must have

∆(s)≡ det
[
Mb(s)+Nb(s)eF(s)l

]
= 0 (12)

Equation (12) is a transcendental characteristic equation of s, which has an infinite number of roots as the eigenvalues of

the TL.

Denote the eigenvalues of the TL by s±k, k = 1,2, .... For a lossless TL, its eigenvalues are imaginary, s±k =± jωk,

where j =
√
−1, and ωk are nonnegative real numbers. For a lossy TL, its eigenvalues are of the complex form s±k =

−σk ± jωk, where σk and ωk are nonnegative real numbers. The roots can be determined by standard root-finding

algorithms.

2.4 Transfer function formulation and steady-state response

The solution of Equation (4) takes the form [29, 30]

η̂(x,s) = Ĥ(x,s)γ̂b(s), 0 < x < l (13)

where Ĥ(x,s) is the distributed transfer function of the TL and it is given by

Ĥ(x,s) = eF(s)xZ−1
b (s) (14)

with

Zb(s) =Mb(s)+Nb(s)eF(s)l (15)

With Equation (15), the characteristic Equation (12) can be written as det Zb(s) = 0, indicating that the poles of the transfer
function Ĥ(x,s) are the eigenvalues of the TL. Equation (13) is known as the distributed transfer function formulation for
the line.

Consider a harmonic boundary voltage excitation vs(t) = E0e jωt , where j =
√
−1, and E0 and ω are the amplitude

and frequency of the excitation. By Equation (14), the sinusoidal steady-state response of the TL is obtained as

ηss(x, t) =

(
vss(x, t)
iss(x, t)

)
=

(
V (x,ω)

I(x,ω)

)
e jωt (16)

where vss(x, t) and iss(x, t) are the steady-state voltage and current; and V (x,ω) and I(x,ω) are the frequency response

functions of the line given by

(
V (x,ω)

I(x,ω)

)
= E0Ĥ(x, jω)

(
1
0

)
(17)
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2.5 Time response

By performing inverse Laplace transform of Equation (13) with respect to time, the time response of the TL is given

by

η(x, t) =

(
v(x, t)
i(x, t)

)
=

t∫
0

H(x, t − τ)vs(τ)dτ

(
1
0

)
, 0 < x < l (18)

where η(x, t) is the inverse Laplace transform of the state vector η̂(x,s); H(x, t) is the Green’s function of the TL and it is
the inverse Laplace transform of the transfer function Ĥ(x,s).

By following Reference [31], the Green’s function can be written as follows

H(x, t) =
±∞

∑
k=±1

eF(sk)xRekeskt (19)

where sk is the kth eigenvalue of the TL; and Rek is the transfer function residue at sk and it is defined by

Rek = Res
s=sk

[
Z−1

b (s)
]

(20)

with Zb(s) given in Equation (15). Subsuming Equation (19) into Equation (18) yields the time response of the TL in the
following infinite series:

η(x, t) =
±∞

∑
k=±1

eF(sk)xRek

t∫
0

esk(t−τ)vs(τ)dτ

(
1
0

)
(21)

Given a load vs(t), the integral in Equation (21) can be evaluated by exact quadrature.
The key in the transient analysis by the infinite series (21) is to determine the transfer function residues. The transfer

function residue at sk can be written as [35, 36]

Rek =
adjZb(sk)

d
ds |Zb(s)|s=sk

(22)

where |Zb|= detZb, and adjZb is the adjoint of Zb. Note that F(s),Mb(s) and Nb(s) are two-by-two matrices. By matrix
theory, it is easy to show that

d
ds |Zb(s)|=

∣∣∣ dMb(s)
ds +Nb(s)eF(s)l

∣∣∣+ ∣∣∣Mb(s)+
dNb(s)

ds eF(s)l
∣∣∣

+
∣∣∣Mb(s)+Nb(s) deF(s)l

ds

∣∣∣ (23)

With Equations (6) and (7), it can be shown that

deF(s)l

ds
≡Φ(s) =

[
φ11(s) φ12(s)
φ21(s) φ22(s)

]
(24)

where
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φ11(s) = φ22(s) = l sinh(σ(s)l) dσ(s)
ds

φ12(s) =−sinh(σ(s)l) dβ (s)
ds −β (s)l cosh(σ(s)l) dσ(s)

ds

φ21(s) = 1
β 2(s) sinh(σ(s)l) dβ (s)

ds − l
β (s) cosh(σ(s)x) dσ(s)

ds

(25)

with

dσ(s)
ds

=
2LCs+LG+RC

2σ(s)
,

dβ (s)
ds

=
1

2σ(s)
LG−CR
(Cs+G)

(26)

In summary of this section, by the distributed transfer function formulation (13) and the residue formula described

by Equations (22)–(26), the frequency and time responses of the TL are obtained in exact and closed form. The results

presented here are readily extensible to MCTLs in the subsequent sections.

3. Analysis of multi-section transmission lines

Multi-section transmission lines (MSTLs), which are also called multi-segment or cascaded transmission lines, exhibit

one of the three configurations as mentioned in Section 1. In this section, the DTFM-based modeling and analysis presented

in Section 2 is extended to MSTLs. The keys in the developments are the spatial state-space equations and the distributed

transfer function formulation.

3.1 Spatial state-space equations

An MSTL consisting of n serially connected sections of transmission lines is shown in Figure 3, where the numbers

in paratheses, (1), (2), …, (n), indicate the section numbers; x1,x2, . . . , xn−1 are the interior nodes, where two adjacent

sections are interconnected; and x0 and xn are the boundary nodes where the source and load are specified. All the nodes

are described in a global coordinate x, such that x0 < x1 < x2 < · · ·< xn.

Figure 3. An n-section transmission line

Without loss of generality, assume zero initial conditions on the voltage and current of each section. In the Laplace

transform domain, the governing equations of the kth section are

∂ v̄k(x,s)
∂x =−(Lks+Rk)īk(x,s)

∂ īk(x,s)
∂x =−(Cks+Gk)v̄k(x,s)

(27)

for x ∈ (xk−1,xk), where v̄k(x,s) and īk(x,s) are the voltage and current of the section. According to Figure 3, the boundary
conditions of the MSTL are specified as follows

at x = x0 : ZS(s)ī1(x0,s) = v̄s(s)− v̄(x0,s)
at x = xn : ZL(s)ī(xn,s) = v̄(xn,s)

(28)
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The matching conditions at the interior nodes, by KVL and KCL, are given as

ī j+1(x j,s) = ī j(x j,s)
v̄ j+1(x j,s) = v̄ j(x j,s)

(29)

for j = 1,2, ...,n−1.
Define the state vectors of the sections as follows

η̂k(x,s) =

(
v̄k(x,s)
īk(x,s)

)
, x ∈ [xk−1,xk] , k = 1,2, ...,n (30)

By following Section 2, Equations (27)–(29) are converted to the following state-space form

(a) State equations:

∂

∂x
η̂k(x,s) = Fk(x,s)η̂k(x,s), x ∈ [xk−1,xk], k = 1,2, ...,n (31)

(b) Boundary condition

Mb(s)η̂1(x0,s)+Nb(s)η̂n(xn,s) = γ̂b(s) (32)

(c) Matching conditions

η̂ j+1(x j,s) = η̂ j(x j,s), j = 1,2, ...,n−1 (33)

Here,

Fk(s) =

[
0 −(Lks+Rk)

−(Cks+Gk) 0

]
, k = 1,2, ...,n

Mb(s) =

[
1 ZS(s)
0 0

]
, Nb(s) =

[
0 0
−1 ZL(s)

]
, γ̂b(s) =

(
v̄s(s)

0

) (34)

3.2 System response

The solutions of the state equations given by Equation (31) are of the form

η̂k(x,s) = eFk(s)(x−xk−1)ak, x ∈ [xk−1,xk] , k = 1,2, ...,n (35)

where ak are constant vectors to be determined. The exponential matrices of the sections can be obtained by following

Equation (6). With Equation (35) and by the matching conditions (33),

a j+1 = eF j(s)l ja j, j = 1,2, ...,n−1 (36)

where l j = x j − x j−1, which is the length of the jth section. It follows that

a j+1 = eF j(s)l j eF j−1(s)l j−1 · · ·eF1(s)l1a1, j = 1,2, ...,n−1 (37)
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Substituting Equations (35) and (37) into the boundary condition (32) gives

Zb(s)a1 = γ̂b(s) (38)

where

Zb(s) =Mb(s)+Nb(s)Ψ(s) (39)

with

Ψ(s) = eFn(s)lneFn−1(s)ln−1 · · ·eF2(s)l2eF1(s)l1 (40)

With the state-space formulation described by Equations (35)–(40), the solutions of the eigenvalues, frequency

response and time response of the MSTL are obtained as follows.

(A) Eigenvalues

The characteristic equation of the MSTL, by Equation (38) with γ̂b(s) = 0, is

∆(s)≡ detZb(s) = det [Mb(s)+Nb(s)Ψ(s)] = 0 (41)

from which the eigenvalues (roots sk) can be determined.

(B) Frequency Response

Define a global state vector

η̂(x,s) = η̂k(x,s), x ∈ [xk−1,xk] , k = 1,2, ...,n (42)

Let the total length of the MSTL be lT = l1 + l2 + · · ·+ ln = xn − x0. From Equation (38),

a1 = Z−1
b (s)γ̂b(s) (43)

It follows from Equations (35) and (43) that the s-domain response of the MSTL is

η̂(x,s) = Ĥ(x,s)γ̂b(s), 0 < x < lT (44)

Where the distributed transfer function is given by

Ĥ(x,s) = eFk(s)(x−xk−1)eFk−1(s)lk−1 · · ·eF1(s)l1Z−1
b (s), for x ∈ [xk−1,xk] (45)

Note that the transfer function formulation (44) is the same in format as given in Equation (13). Thus, under a harmonic

boundary excitation vs(t) = E0e jωt , the sinusoidal steady-state response of the MSTL can be presented by Equations (16)

and (17), except that Ĥ(x, jω) is computed by using Equation (45). Thus, the frequency response of the multi-section line

is obtained in closed form without approximation.

(C) Time Response

By following Section 2.5, inverse Laplace transform of Equation (44) and use of the residue formula [31] gives the

closed-form time response of the MSTL as follows
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η(x, t) =
±∞

∑
k=±1

eF j(sk)(x−x j−1)eF j−1(sk)l j−1 · · ·eF1(sk)l1Rek

t∫
0

esk(t−τ)vs(τ)dτ

(
1
0

)
(46)

for x ∈ [xk−1,xk], k = 1,2, ...,n, where sk are the eigenvalues of the line, which are the roots of the characteristic Equation

(41); andRek are the transfer function residues specified in Equation (22). It is easy to show that the derivative d |Zb(s)|/ds
in Equation (22) for the MSTL is given by

d
ds |Zb(s)|=

∣∣∣ dMb(s)
ds +Nb(s)Ψ(s)

∣∣∣+ ∣∣∣Mb(s)+
dNb(s)

ds Ψ(s)
∣∣∣

+
∣∣∣Mb(s)+Nb(s)

dΨ(s)
ds

∣∣∣ (47)

where, by the chain rule,

dΨ(s)
ds = deFn(s)ln

ds eFn−1(s)ln−1 · · ·eF1(s)l1 + eFn(s)ln deFn−1(s)ln−1
ds · · ·eF1(s)l1

+ · · ·+ eFn(s)lneFn−1(s)ln−1 · · · deF1(s)l1
ds

(48)

The analytical expressions of deF j(s)l j/ds can be obtained by following Equations (24)–(26). Thus, the closed-form time

response of the MSTL can be obtained by Equations (46) to (48).

4. Analysis of coupled transmission lines

In this section, the DTFM-based modeling and analysis as presented in Section 2 is extended to coupled transmission

lines, which is another configuration as mentioned in Section 1.

In a crosstalk phenomenon, undesired capacitive, indicative and conductive coupling between two or more transmission

lines occurs. Consider two coupled transmission lines of equal length that are parallel and close to each other. The coupling

of the lines is described by the following s-domain matrix differential Equation [3, 37]

∂ V̂(x,s)
∂x +(Ls+R)Î(x,s) = 0

∂ Î(x,s)
∂x +(Cs+G)V̂(x,s) = 0

(49)

for 0 < x < l, where

V̂(x,s) =

(
v̄1(x,s)
v̄2(x,s)

)
, Î(x,s) =

(
ī1(x,s)
ī2(x,s)

)
(50)

with v̄k(x,s) and īk(x,s) being the voltage and current of the kth line; and L, R, C and G are two-by-two matrices of per-

unit-length inductance, resistance, capacitance and conductance, respectively. For instance, the inductance and capacitance

matrices may be of the form

L=

[
L1 Lm

Lm L2

]
, C=

[
C1 +Cm −Cm

−Cm C2 +Cm

]
(51)

where Lm and Cm are the mutual inductance and capacitance per unit length, characterizing the coupling of the lines.

The boundary of the coupled system are
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at x = 0 : A0(s)V̂(0,s)+B0(s)Î(0,s) = p̂0(s)
at x = l : Al(s)V̂(0,s)+Bl(s)Î(l,s) = p̂l(s)

(52)

where A0(s),B0(s),Al(s) and Bl(s) are two-by-two matrices describing boundary impedances; and p̂0(s) and p̂l(s) are
vectors of boundary excitations.

Define the state vector of the coupled system by

η̂(x,s) =

(
V̂(x,s)
Î(x,s)

)
∈C4, x ∈ [0, l] (53)

Equations (49) and (52) are cast into the spatial state-space formulation (4), with

F(s) =

[
0 −(Ls+R)

−(Cs+G) 0

]

Mb(s) =

[
A0(s) B0(s)

0 0

]
, Nb(s) =

[
0 0

Al(s) Bl(s)

]
, γ̂b(s) =

(
p̂0(s)
p̂l(s)

) (54)

Accordingly, the closed-form solutions of the coupled system can be obtained by following Section 2. The eigenvalues

of the coupled system can be determined by solving Equation (12) and the frequency response can be obtained by following

Equation (16), with the quantities given in Equation (54). A time response of the coupled system can be obtained by using

Equation (21). The transfer function residues are still given by following Equation (22). However, the expression of
d
ds |Zb(s)|s=sk

given by Equation (23) is invalid because Zb(s) is a matrix of order four for the coupled system. According
to Jacobi’s formula in matrix calculus [38],

d
ds

|Zb(s)|= tr
(

adjZb(s)
dZb(s)

ds

)
(55)

where adjZb is the adjoint of Zb and tr(A) is the trace of a square matrix A; and

dZb(s)
ds

=
dMb(s)

ds
+

dNb(s)
ds

eF(s)L +Nb(s)
d
ds

[
eF(s)l

]
(56)

An analytical form of d
[
eF(s)l

]
/ds can be obtained by following Section 2.5. Thus, the closed-form time response of the

coupled line system can be obtained.

Although only two coupled lines are considered, with some modifications, the formulas presented in this section can

be extended the coupled system with more than two lines.

5. Synthesis and analysis of branched multiline systems

In many applications multiple transmission lines are assembled with a branched configuration, rendering a multibody

problem that is described in a set of interconnected subregions (see Figure 1 for instance). For such a multibody problem,

conventional analytical methods cannot deliver closed-form solutions without approximation. In this section, the proposed

DTFM, with an augmented state-space formulation, is shown to be able to deliver exact and closed-form solutions for

branched multiline systems for the first time.
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5.1 System description

For demonstrative purposes, we consider the multiline system in Figure 1, which is a combination of cascaded,

coupled and branched configurations. For convenience of description, a local coordinate for each line is used. The local

spatial coordinate x of the kth line is in the direction of ik, varying from 0 to lk (the length of the line). In other words, the
origin of the local coordinate is at Node 1 for Line 1, Node 2 for Line 2, Node 3 for Lines 3 and 4, and Node 6 for Line 5.

In many problems, the dynamic response of a multiline system is caused by loads (say, voltage inputs) at its nodes,

which are boundary excitations. Hence, without loss of generality, zero initial currents and voltages of the transmission

lines are assumed in this work. (The free response of the multiline system due to initial disturbances can be determined by

following the reference [31]). With this assumption, the s-domain governing equations of the lines are given by [1, 2]

∂ v̄k(x,s)
∂x =−(Lks+Rk)īk(x,s)+ v̄e,k(x,s)

∂ īk(x,s)
∂x =−(Cks+Gk)v̄k(x,s)+ īe,k(x,s)

(57)

for x ∈ (0, lk) and k = 1, 2 and 3 (Lines 1, 2 and 3), and

∂ v̄c(x,s)
∂x =−(Lcs+Rc) īc(x,s)

∂ īc(x,s)
∂x =−(Ccs+Gc) v̄c(x,s)

(58)

for x ∈ (0, l4) and k = 4 and 5 (Lines 4 and 5), with

v̄c(x,s) =

(
v̄4(x,s)
v̄5(x,s)

)
, īc(x,s) =

(
ī4(x,s)
ī5(x,s)

)
(59)

where Lc, Rc, Cc and Gc are two-by-two parameter matrices that are similar to those in Equation (49). In the previous

equations, the overbar stands for Laplace transformation; and Lines 4 and 5 have the equal length, l4 = l5.
The boundary conditions of the multiline system are specified as follows

at Node 1 : a1v̄1(0,s)+b1 ī1(0,s) = q̄1(s)
at Node 4 : a4v̄4(l4,s)+b4 ī4(l4,s) = q̄4(s)
at Node 5 : a5v̄3(l3,s)+b5 ī3(l3,s) = q̄5(s)
at Node 6 : a6v̄5(0,s)+b6 ī5(0,s) = q̄5(s)
at Node 7 : a7v̄5(l5,s)+b7 ī5(l5,s) = q̄7(s)

(60)

where q̄k(s) are the boundary excitations, and coefficients ak and bk in general can be functions of s. The matching

conditions at Node 2, by KVL and KCL, are written as follows

v̄1(l1,s) = v̄2(0,s)
ī1(l1,s)− ī2(0,s) = 1

Zp(s)
{v̄1(l1,s)− v̄p(s)}

(61)

where v̄p(s) is the Laplace transform of vp(t), and Zp(s) is the impedance at the node (port). The matching conditions at
Node 3, at which three lines are interconnected, are given by

v̄2(l2,s) = v̄3(0,s) = v̄4(0,s)
ī2(l2,s) = ī3(0,s)+ ī4(0,s)

(62)
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5.2 Augmented state-space formulation

Equations (57) and (58) are described in five interconnected subregions of different lengths, (0, lk), k = 1,2, ...,5. For
such a multibody (multi-region) problem, it is difficult to obtain exact analytical solutions by conventional methods. In

this work, an augmented state-space formulation is introduced such that the multibody problem is reduced to the format

of a single-body problem as described in Section 2, which then can be solved by the DTFM. This approach is called the

augmented Distributed Transfer Function Method [32].

Define a nondimensional coordinate z for each line by

z =
x
lk
, k = 1,2, ...,5 (63)

which has the same direction as x and varies in the range 0 ≤ z ≤ 1. With the coordinate transformation (63), Equation (57)

is converted to

∂ v̄k(z,s)
∂ z =−lk(Lks+Rk)īk(z,s)

∂ īk(z,s)
∂ z =−lk(Cks+Gk)v̄k(z,s)

(64)

for k = 1, 2 and 3, and Equation (58) is converted to

∂ v̄c(z,s)
∂ z =−l3 (Lcs+Rc) īc(z,s)

∂ īc(z,s)
∂ z =−l3 (Ccs+Gc) v̄c(z,s)

(65)

In the previous equations, the coordinate z is universal for all the lines; and v̄k(z,s) = v̄k(x,s)|x=lkz and īk(z,s) = īk(x,s)|x=lkz.

Similarly, the boundary conditions (60) are reduced to

at Node 1 : a1v̄1(0,s)+b1 ī1(0,s) = q̄1(s)
at Node 4 : a4v̄4(1,s)+b4 ī4(1,s) = q̄4(s)
at Node 5 : a5v̄3(1,s)+b5 ī3(1,s) = q̄5(s)
at Node 6 : a6v̄5(0,s)+b6 ī5(0,s) = q̄5(s)
at Node 7 : a7v̄5(1,s)+b7 ī5(1,s) = q̄7(s)

(66)

and the matching conditions (61) and (62) are reduced to

at Node 2
v̄1(1,s) = v̄2(0,s)
Zp(s)(ī1(1,s)− ī2(0,s)) = v̄1(1,s)− v̄p(s)

at Node 3
v̄2(1,s) = v̄3(0,s) = v̄4(0,s)
ī2(1,s) = ī3(0,s)+ ī4(0,s)

(67)

Define the state vectors for Lines 1 to 3 by

η̂k(z,s) =

(
v̄k(z,s)
īk(z,s)

)
∈C2, z ∈ [0,1] , k = 1,2,3 (68)

Define the state vector for the coupled lines (Lines 4 and 5) by

η̂c(z,s) =

(
v̄c(z,s)
īc(x,s)

)
∈C4, z ∈ [0,1] (69)
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The state equations for Lines 1 to 3 are obtained from (64) as follows

∂

∂ z
η̂k(z,s) = Fk(s)η̂k(z,s), z ∈ (0,1), k = 1,2,3 (70)

with

Fk(s) =−lk

[
0 Lks+Rk

Cks+Gk 0

]
(71)

For the coupled lines, the state equation is obtained from Equation (66) as follows

∂

∂ z
η̂c(z,s) = Fc(s)η̂c(z,s), z ∈ (0,1) (72)

where

Fc(s) =−l4

[
0 Lcs+Rc

Ccs+Gc 0

]
(73)

Now, introduce a global state vector for the branched multiline system by

η̂(z,s) =


η̂1(z,s)
η̂2(z,s)
η̂3(z,s)
η̂c(z,s)

 ∈C10, z ∈ [0,1] (74)

Assembly of Equations (70) and (72) yields a global state equation as follows

∂

∂ z
η̂(z,s) = FG(s)η̂(z,s), z ∈ (0,1) (75)

where

FG(s) = diag
{

F1(s), F2(s), F3(s), Fc(s)
}
∈C10×10 (76)

Also, the boundary conditions (66) and matching conditions (67) are converted to the following global boundary

condition

MG(s)η̂(0,s)+NG(s)η̂(1,s) = γ̂G(s) (77)

where

MG(s) =

[
Mb(s)
Mm(s)

]
, NG(s) =

[
Nb(s)
Nm(s)

]
, γ̂G(s) =

(
γ̂b(s)
γ̂m(s)

)
(78)

with
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Mb(s) =


a1 b1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a6 0 b6

0 0 0 0 0 0 0 0 0 0



Nb(s) =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a4 0 b4 0
0 0 0 0 a5 b5 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a7 0 b7

 , γ̂b(s) =


q̄1(s)
q̄4(s)
q̄5(s)
q̄6(s)
q̄7(s)



Mm(s) =


0 0 −1 0 0 0 0 0 0 0
0 0 0 Zp(s) 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 0



Nm(s) =


1 0 0 0 0 0 0 0 0 0
1 −Zp(s) 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

 , γ̂m(s) =


0

v̄p(s)
0
0
0



(79)

Equations (75) and (77) are known as an augmented state-space formulation. With this formulation, which does

not depend on any discretization or approximation, the original multibody problem of the multiline system in Figure 1 is

converted to a single-body problem defined over the region 0 ≤ z ≤ 1. Consequently, the formulas presented in Section 2
for a single transmission line can be extended to the branched multiline system here.

5.3 Eigenvalues and dynamic response by augmented DTFM

After introducing a universal nondimensional coordinate z, the resulting Equations (75) and (77) have the same format

as the state-space formulation given by Equation (4). Thus, the eigenvalues and dynamic response of a branched multiline

system can be obtained by following Section 2.

The eigenvalues of the system, by following Equation (12), can be determined by solving the characteristic equation

∆(s)≡ detZG(s) = 0 (80)

where

ZG(s) =MG(s)+NG(s)eFG(s) (81)

The s-domain response of the system, by following Equation (13), is given by

η̂(z,s) = ĤG(z,s)γ̂G(s), z ∈ (0,1) (82)

where the global distributed transfer function is

ĤG(z,s) = eFG(s)zZ−1
G (s) (83)
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Consider harmonic excitations described by

γG(t) = γ0e jωt , j =
√
−1 (84)

where γ0 is a constant vector. The sinusoidal steady-state response of the multiline system, by following Equations (16)

and (17), is obtained as

ηss(x, t) = ĤG(z, jω)γ0e jωt , z ∈ (0,1) (85)

where ĤG(z, jω) is the frequency response function of the system.

The time response of the MCTL, by following Equations (18) and (21), is given by the infinite series

η(z, t) =
±∞

∑
k=±1

eFG(sk)zRek

t∫
0

esk(t−τ)γG(τ)dτ, z ∈ (0,1) (86)

where η(x, t) is the inverse Laplace transform of η̂(x,s); sk are the eigenvalues of the system that are the roots of the

characteristic Equation (80); and

γG(t) =
(

q1(t) q4(t) q5(t) q6(t) q7(t) 0 vp(t) 0 0 0
)T

(87)

with the elements being the inverse Laplace transforms of the elements of γ̂G(s) that are given in Equations (78) and (79).
The transfer function residues Rek in Equation (86) are given by

Rek =
adjZG(sk)

d
ds |ZG(s)|s=sk

=
adjZG(sk)

tr
(

adjZG(sk)
dZG(sk)

ds

) (88)

where Jacobi’s formula in matrix calculus [38] has been used. Like in Equation (23), the evaluation of the derivative

dZG(sk)/ds requires the computation of deFG(s)/ds. Because FG(s) is of the block-diagonal form (76),

deFG(s)

ds
= diag

{
deF1(s)

ds , deF2(s)

ds , deF3(s)

ds , deFc(s)

ds

}
(89)

where deFk(s)/ds and deFc(s)/ds can be estimated by following Section 2.5. Thus, with the formulas given by Equations
(86) to (89), a closed-form time response of the multiline system can be obtained.

Although only a five-line system is considered in this section, the augmented DTFM presented is certainly applicable

to general MCTLs.

6. Frequency response via numerical integration

The new analytical method (DTFM) for branched multiline systems is developed in the previous section. In this

section, for validation purposes, the augmented state equations and boundary conditions, as presented in Section 5.2, are

solved by the Euler’s method, a first-order numerical integration algorithm. With the numerical integration, the frequency

response of a branched multiline system is computed. The DTFM and the numerical integration method are compared in

Section 7.
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Divide the nondimensional region 0 ≤ z ≤ 1 into n subintervals by n+1 equally spaced points: zk = kh, with h = 1/n
and k = 0,1,2, ...,n. Define a sequence of state vectors by

η̂k(s) = η̂(zk,s) = η̂(kh,s), k = 0,1,2, ...,n (90)

With the Euler’s method [39], Equation (75) is approximated as

1
h
(η̂k+1(s)− η̂k(s)) = FG(s)η̂k(s) (91)

which leads to

η̂k+1(s) = (I+hFG(s)) η̂k(s) (92)

with I being an identity matrix. Recursive use of Equation (92) yields

η̂k(s) =Φk(s)η̂0(s), k = 0,1,2, ...,n (93)

where

Φk(s) = (I+hFG(s))
k

(94)

with Φ0(s) = I. With Equation (90), the boundary condition (77) can be written as

MG(s)η̂0(s)+NG(s)η̂n(s) = γ̂G(s) (95)

Substituting Equation (93) into Equation (95) gives

(MG(s)+NG(s)Φn(s)) η̂0(s) = γ̂G(s) (96)

Thus,

η̂0(s) = (MG(s)+NG(s)Φn(s))
−1γ̂G(s) (97)

It follows from Equations (93) and (97) that the s-domain response of the system is given by

η̂k(s) =Φk(s)(MG(s)+NG(s)Φn(s))
−1γ̂G(s), k = 0,1,2, ...,n (98)

Let the system be subject harmonic excitations, γG(t) = γ0e jωt , as described in Equation (84). By following Equation

(85), the steady-state response of the system is expressed by

ηss(zk, t) = ηk,ss(t) = Ĥk(ω)γ0e jωt , k = 0,1,2, ...,n (99)

where Ĥk(ω) is the frequency response of the system at point zk and it is given by
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Ĥk(ω) =Φk( jω)(MG( jω)+NG( jω)Φn( jω))−1
(100)

Comparison of Equations (83) and (100) indicates that Ĥk(ω) is the approximation of ĤG(zk, jω). The formula given by

Equation (99) is also applicable to multi-section transmission lines (Section 3) and coupled transmission lines (Section 4).

7. Numerical examples

The proposedDTFM is illustrated on two transmission lines: a single transmission line (Section 7.1), whose eigenvalues

and time response are obtained, and a three-line branched system (Section 7.2), whose frequency response at both low and

high frequencies is computed. For validation and comparison, the numerical integration given in Section 6 is also used.

7.1 A single transmission line

Consider the transmission line shown in Figure 2, where vs(t) is an applied voltage at the left end of the line; and the
source and load impedances are described by resistances: Zs = Rs and Zl = Rl . Assume zero external and initial excitations

over the domain of the line. The line is governed by Equation (1) and the boundary conditions

at x = 0 : Rsi(0, t) = vs(t)− v(0, t)
at x = l : Rl i(l, t) = v(l, t)

(101)

The following non-dimensional system parameters are selected in simulation:

L = 2, R = 0.1, C = 1, G = 0.02, l = 1, Rs = 0.1, Rl = 80

In this example, the eigenvalues and time response of the line are computed.

The characteristic equation of the line is Equation (12), with eF(s)x given in Equation (6) and

Mb(s) =

[
1 Rs

0 0

]
, Nb(s) =

[
0 0
−1 Rl

]
(102)

The nonzero R, G, Rs and Rl mean that this is a lossy transmission line. Consequently, the eigenvalues of the line are

complex with negative real parts. In this work, the eigenvalues of the line are determined by a root locus method described

in the Appendix. Table 1 lists the first 10 eigenvalues of the line, where i =
√
−1. The third column in the table gives the

errors in the root-finding, where ∆(s) is the characteristic function given in Equation (12).

Table 1. First 10 eigenvalues of the transmission line

k sksksk |∆(sk)||∆(sk)||∆(sk)|
1 −9.7614e-02 + 1.1101e+00i 2.4524e-12
2 −9.7588e-02 + 3.3320e+00i 5.9712e-13
3 −9.7586e-02 + 5.5535e+00i 9.2038e-13
4 −9.7585e-02 + 7.7750e+00i 3.2117e-13
5 −9.7585e-02 + 9.9964e+00i 4.2461e-13
6 −9.7585e-02 + 1.2218e+01i 5.7843e-13
7 −9.7585e-02 + 1.4439e+01i 6.8134e-13
8 −9.7585e-02 + 1.6661e+01i 5.7204e-13
9 −9.7585e-02 + 1.8882e+01i 6.2402e-13
10 −9.7585e-02 + 2.1104e+01i 9.5048e-13
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Let the applied voltage be of the form vs(t) = E0 (1− e−σt), with E0 > 0 and σ > 0. According to Equation (21), the
time response of the line is given by

(
v(x, t)
i(x, t)

)
=

t∫
0

H(x, t − τ)vs(τ)dτ

(
1
0

)
= 2E0

∞

∑
k=1

Re
{

eF(sk)xRekqk(t)
}( 1

0

)
(103)

where Rek are the transfer function residues at sk, which are computed by Equation (22), and

qk(t) =
t∫

0

esk(t−τ)
(
1− e−στ

)
dτ =

1
sk +σ

(
e−σt − eskt)− 1

sk

(
1− eskt) (104)

Because the eigenvalues of the line all have negative real parts (see Table 1) and because lim
t→∞

vs(t) = E0, by the final value

theorem in Laplace transform [35, 36], the steady-state response of the line as t goes to infinity is obtained as follows

(
Vss(x)
Iss(x)

)
≡ lim

t→∞

(
v(x, t)
i(x, t)

)
= lim

s→0
sĤ(x,s)v̄s(s)

(
1
0

)

= E0eF(0)xZ−1
b (0)

(
1
0

) (105)

where the transfer function formulation (13) has been used; and Vss(x) and Iss(x) are the spatial distributions of the
steady-state voltage and current along the length of the transmission line.

Let the excitation parameters be E0 = 10 and σ = 2. The first 200 terms in the series (103) are taken to compute the
time response. In Figure 4, the voltage and current of the transmission line at the midpoint (x = l/2 = 0.5) are plotted for
0 ≤ t ≤ 40. In the figure, the dashed lines indicate the steady-state values (final values) of v(0.5, t) and i(0.5, t), which
by Equation (105) are estimated as Vss(0.5) = 9.9540 and Iss(0.5) = 0.2238. The transient voltage and current of the line
eventually settle at their steady-state values. It is also seen that the voltage and current at x = 0.5 are zero during 0 ≤ t ≤ 0.7.
This is due to the wave propagation on the line: the wave speed can be roughly estimated as cw ≈ 1/

√
LC = 0.71 and it

takes the time t = x/cw = 0.7 for the waves to travel from the left end of the line to the midpoint.

Figure 4. The voltage and current of the single line at the midpoint, for 0 ≤ t ≤ 40s
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7.2 Frequency response of a branched multiline system

A branched system of three transmission lines is shown in Figure 5, where at Node 1, a resistor Rs (source impedance)

is attached and a voltage vs(t) is applied; at Node 2, the three lines are interconnected; and at Node 3, an LR series circuit

is installed as the load. In this example, the frequency response of the branched system at both low and high frequencies

are computed.

Figure 5. A branched system of three transmission lines

The branched multiline system is described by the global state Equation (75), with

η̂(z,s) =

 η̂1(z,s)
η̂2(z,s)
η̂3(z,s)

 , z ∈ [0,1]

FG(s) = diag
1≤k≤3

{Fk(s)} , q̂G(z,s) = 0

(106)

where z is a nondimensional local coordinate, and Fk(s) is given in Equation (71). The s-domain boundary conditions, in
terms of z, are given by

at Node 1 : Rs ī1(0,s) = v̄s(s)− v̄1(0,s)
at Node 3 : (Lbs+Rb)ī2(1,s) = v̄2(1,s)
at Node 4 : v̄3(1,s) = 0

(107)

The matching conditions at Node 2 are obtained as follows

v̄1(1,s) = v̄2(0,s) = v̄3(0,s)
ī1(1,s) = ī2(0,s)+ ī3(0,s)

(108)

Assembly of the boundary and matching conditions gives the boundary condition (77), with

MG(s) =



1 Rs 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 −1


, NG(s) =



0 0 0 0 0 0
0 0 −1 Lbs+Rb 0 0
0 0 0 0 1 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0


γ̂G(s) =

(
v̄s(s) 0 0 0 0 0

)T

(109)
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Consider a harmonic excitation vs(t) = E0e jωt , j =
√
−1. The sinusoidal steady-state response of the branched system

is obtained by Equation (85) as follows:

ηss(z, t) = E0ĤG(z, jω)e1e jωt , 0 ≤ z ≤ 1 (110)

where e1 =
(

1 0 0 0 0 0
)T

, and

Ĥ(z,s) = eFG(s)z
(
MG(s)+NG(s)eFG(s)

)−1
(111)

From Equation (110), the sinusoidal steady-state response of each line can be determined. For instance, the steady-state

voltage of Line 2 is

v2(z, t) = E0V2(z,ω)e jωt , 0 ≤ z ≤ 1 (112)

where V2(z,ω) is a frequency response function of the line given by

V2(z,ω)≡ v2(z, t)
E0e jωt = eT

3 ĤG(z, jω)e1 (113)

with e3 =
(

0 0 1 0 0 0
)T

. By definition, the values of V2(z,ω) are nondimensional.

For numerical simulation, assign the system parameters as follows

Line 1 : L1 = 2×10−7H, R1 = 6Ω, C1 = 2×10−7F, G1 = 0, l1 = 0.048m
Line 2 : L2 = 1×10−7H, R2 = 10Ω, C2 = 3×10−7F, G2 = 0, l2 = 0.04m
Line 3 : L3 = 2×10−7H, R3 = 15Ω, C3 = 4×10−7F, G3 = 0, l3 = 0.08m
Boundaries : Rs = 100Ω, Lb = 0.1 Rb = 500Ω

(114)

With Equation (113), the magnitudes of the steady-state voltage of the system at Nodes 2 and 3 are determined by the

frequency response function of Line 2 as follows

M2(ω)≡ |V2(0,ω)|
M3(ω)≡ |V2(1,ω)|

(115)

In Figure 6, M2(ω) and M3(ω) are plotted against ω for 0 ≤ ω ≤ 90 MHz. To validate the accuracy of the DTFM-based

prediction, the Euler’s method of numerical integration, as given by Equation (99), is applied to estimate the frequency

response of the voltage at Node 3. The predication by the numerical integration is denoted by M̃n
3(ω), where n is the

number of subintervals. The M3(ω) and M̃n
3(ω) with n = 100, 200 and 400 are plotted in Figure 7, which indicates that the

results by the Euler’s method, as n increases, converge to that by the DTFM. It is also seen from the figure that the error of

the numerical integration grows significantly at higher frequencies.
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Figure 6. The magnitudes of the steady-state voltage at Nodes 2 and 3, from 0 to 90 MHz

Figure 7. Comparison of the frequency response curves of the voltage at Node 3

As shown in Figure 7, the numerical integration with n = 400 may not be accurate enough at higher frequencies. To

see this, define a relative error of the Euler’s method by

εn = max
ωL≤ω≤ωH

{∣∣M̃n
3(ω)−M3(ω)

∣∣
M3(ω)

}
×100% (116)

where n is the number of subintervals as mentioned previously, and ωL and ωH are the lower and upper bounds of a

frequency region of interest. In the current example, ωL = 0 and ωH = 90 MHz. Table 2 lists the relative error for different

values of n. As can be seen, 400 subintervals lead to an error of 5.6%, which may not be acceptable. To have an error of

1.5% or less, at least 1500 subintervals are required in the numerical integration.
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Table 2. Relative error of the Euler’s method for 0 ≤ ω ≤ 90 MHz (n = number of subintervals)

n 100 200 400 600 900 1500 2250

εn (%) 25.8 11.5 5.6 3.8 2.5 1.5 1.0

To show the utility of the DTFM in high-frequency applications, consider a frequency region from 5.0 GHz to 5.4

GHz. In Figure 8, the magnitudes of the steady-state voltage at Nodes 2 and 3 (M2 and M3) are plotted by Equation (113),

which yields the exact solutions at the high frequencies. In this high-frequency simulation, the numerical integration

by Equation (99) with a very large number of subintervals may not produce accurate results. This is shown in Table 3,

where the relative error εn is defined by Equation (116), with ωL = 5.0 GHz and ωL = 5.4 GHz. As seen from the table,

200,000 subintervals lead to an error of 49.6%, and even with 1,000,000 subintervals, the use of Equation (99) still results

in a relative error of 8.4%. It is also found from the simulation that for n ≤ 8000, the matrices involved in the numerical
integration become ill-conditioned and as such, a relative error could not be obtained. To have an error of 2% or less, at

least 3,000,000 subintervals are required.

Figure 8. The magnitudes of the steady-state voltage at Nodes 2 and 3, from 5.0 to 5.4 GHz

Table 3. Relative error of the Euler’s method for 5.0 GHz ≤ ω ≤ 5.4 GHz (n = number of subintervals)

n ≤ 8000≤ 8000≤ 8000 200,000 1,000,000 2,000,000 3,000,000

εn (%) N/A 49.6 8.4 4.1 2.0

As indicated by Table 3, to produce a high-frequency response of a multiline system by numerical methods, many

unknowns need be determined, which requires significant computational effort. On the other hand, in the DTFM-based

simulation, the same analytical formulas, such as Equation (110), can deliver exact solutions at both low and higher

frequencies, with the same and least computational effort.

8. Conclusions

Anew analytical method, namely the Distributed Transfer FunctionMethod (DTFM), has been developed for modeling,

synthesis and analysis of general multiconductor transmission lines (MCTLs). The main results from this investigation are

summarized as follows.
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(1) With an s-domain state-space formulation, the DTFM is applicable to MCTLs with cascaded, coupled, and

branched configurations, and combinations. In the DTFM-based modeling and analysis, no approximation or discretization

is required.

(2) The DTFM delivers analytical solutions for MCTLs in both the frequency domain and the time domain. As one

highlight of this work, the proposed method gives exact closed-form solutions for branched transmission lines for the first

time.

(3) The DTFM is highly efficient in computation. In particular, the proposed method can produce the high-frequency

response of a branched MCTL, with ease and accuracy, as shown in the numerical example in Section 7.2. Because the

same analytical formulas are usable at both low and high frequencies, the computational effort with the DTFM is essentially

the same in any frequency region of interest. This unique feature renders the proposed method promising in high-speed

and high-frequency applications.
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Appendix: A Root Locus Method for Root-Finding

For the lossy transmission line in Section 7.1, consider a lossless line with R = 0,G = 0, and RS = RL = 0, which
shall be called a reference line. This reference line is governed by the wave equation

LC
∂ 2v(x, t)

∂ t2 =
∂ 2v(x, t)

∂x2 , 0 < x < l (A1)

subject to the boundary conditions v(0, t) = v(l, t) = 0. It is easy to show that the eigenvalues of the reference line are

given by

s◦±k =± j
kπ

l
√

LC
, j =

√
−1, k = 1,2, .... (A2)

In the characteristic Equation (12), replace the resistance and conductance parameters by variable parameters as

follows:

R → µR, G → µG, RS → µRS, RL → µRL (A3)

where µ is a nondimensional parameter varying from 0 to 1. If µ = 0, solution of Equation (12) yields the eigenvalues of
the reference line as given by Equation (A2). If µ = 1, solution of Equation (12) gives the eigenvalues of the original lossy
line. Now vary µ in N steps:

µ = µn = n∆µ, ∆µ = 1/N, n = 1,2, ...,N (A4)

where N is an integer that is large than one. (For the TL in Section 7.1, taking N = 5 is sufficient). Note that µN = 1.
Denote the roots of Equation (12) at µ = µn by s(n)±k . The solutions s(n)±k at all the steps make the trajectories or loci of the

eigenvalues.

Based on the above root locus concept, an iterative solution process is devised as follows.

Step 1. For µ = µ1 and the initial values s◦±k, solve the characteristic Equation (12) by a nonlinear solver (say, the

MATLAB function fsolve). This yields the solutions s(1)±k .
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Step 2. For n = 2,3, ...,N, solve Equation (12) with µ = µn and the initial values s(n−1)
±k . This yields the solutions s(n)±k .

The results obtained in the last step, s(N)
±k , are the eigenvalues of the original lossy transmission line, as shown in Table 1.

The above-described root locus method can be extended to general multiconductor transmission lines.
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