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Abstract: Machine learning models have made many decision support systems to be faster, more accurate and more

efficient. However, applications of machine learning in network security face more disproportionate threat of active

adversarial attacks compared to other domains. This is because machine learning applications in network security such

as malware detection, intrusion detection, and spam filtering are by themselves adversarial in nature. In what could be

considered an arm’s race between attackers and defenders, adversaries constantly probe machine learning systems with

inputs which are explicitly designed to bypass the system and induce a wrong prediction. In this survey, we first provide a

taxonomy of machine learning techniques, tasks, and depth. We then introduce a classification of machine learning in

network security applications. Next, we examine various adversarial attacks against machine learning in network security

and introduce two classification approaches for adversarial attacks in network security. First, we classify adversarial attacks

in network security based on a taxonomy of network security applications. Secondly, we categorize adversarial attacks in

network security into a problem space vs. feature space dimensional classification model. We then analyze the various

defenses against adversarial attacks on machine learning-based network security applications. We conclude by introducing

an adversarial risk grid map and evaluate several existing adversarial attacks against machine learning in network security

using the risk grid map. We also identify where each attack classification resides within the adversarial risk grid map.

Keywords: machine learning, adversarial samples, network security

1. Introduction

There has been an ever-increasing application of machine learning and deep learning techniques in network security.

One key advantage of machine learning is that it makes optimal decisions more feasible.

It, however, introduces a new challenge since security and robustness of thesemodels is usually not a huge consideration

for machine learning algorithm designers who are more focused on designing effective and efficient models. This creates

room for various forms of attack models against machine learning-based network security applications.

Researchers [1, 2, 3, 4] have shown that the presence of adversarial samples can easily fool machine learning systems.

Adversarial samples are specially crafted inputs that cause a machine learning model to classify an input wrongly. Machine

learning systems typically take in input data in two distinct phases. The training data which is fed into the learning algorithm
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during the training phase, and the new or test data which is fed into the learned model during the prediction phase. If the

attacker can manipulate the input data in either phase, it is possible to induce a wrong prediction from the machine learning

model.

In this survey, we provide a brief introduction to machine learning using a three-dimensional classification method.

We classify the various machine learning approaches based on the learning tasks, learning techniques and learning depth.

We further organize the various applications of machine learning in network security based on a taxonomy of security

tasks. Contrary to the survey by Corona et al. [5], our work focuses on adversarial attacks that are strictly machine learning

based. Next, we classify the various adversarial attacks based on the applications in network security. We identify five

main categories of machine learning applications in network security for our classification method. Finally, we classify

adversarial attacks against machine learning based on a taxonomy of network security applications.

Our contribution is threefold. First, we introduce a new method for classifying adversarial attacks in network security

based on a taxonomy of network security applications. We also introduce the concept of problem space and feature space

dimensional classification of adversarial attacks in network security.

Secondly, we introduce the concept of adversarial risk in computer and network security. We provide a new risk

mapping for evaluating the risk of adversarial attacks in network security based on the discriminative or directive autonomy

of the machine learning tasks and techniques respectively.

Lastly, we evaluate several adversarial attacks against machine learning in network security applications as proposed

by various researchers and classify the attacks based on an adversarial threat attack taxonomy shown in Figure 7.

As we outline in Section 2, prior adversarial attacks surveys [6, 7, 8] mainly covered them in the computer vision

domain. Nevertheless, some surveys tackled adversarial attacks on cybersecurity [9, 10, 11, 12], but to the best of

our knowledge, there is currently no prior work that has reviewed adversarial attacks in network security based on a

classification of network security applications. No prior work has also reviewed the concept of problem space vs. feature

space dimensional classification of adversarial attacks in network security. Also, this is the first work to propose an

adversarial machine learning risk grid map in the field of network security based on the directive or discriminative

autonomy of the machine learning algorithms.

Our proposed taxonomy provides a structured perspective for classifying adversarial attacks based on the characteristics

of network security applications. By incorporating the analysis of problem-space and feature-space, the taxonomy enables

a deeper understanding of how adversarial attacks operate within these domains. Additionally, introducing the adversarial

risk grid map constitutes a novel contribution to the field, offering a systematic approach to assess and quantify the risks

posed by adversarial attacks in network security. This mapping enhances the understanding of vulnerabilities across various

network security contexts. Furthermore, the comprehensive evaluation of adversarial attacks and their classification using

the proposed taxonomy provide valuable insights for researchers and practitioners, illustrating how different attack methods

correspond to specific threat scenarios and offering practical knowledge for effectively mitigating these threats.

As illustrated in Figure 1, We structure the remainder of the paper as follows. In Section 2, we survey some related

work. In Section 3, we discuss some applications of machine learning in network security. In Section 4, we begin with a

brief background about adversarial machine learning followed by a description of our adversarial attack taxonomy. We

also review different adversarial attack methods and algorithms. In Section 5, we introduce a classification method for

adversarial attacks in network security based on the network security CIA goals of confidentiality, integrity and availability.

In Section 6, we discuss and evaluate adversarial risk in machine learning. In Section 7, we review various approaches for

defending against adversarial attacks. In Section 8, we provide some discussion and lessons learnt. Finally, in Section 9,

we add a conclusion for our survey with guidance for future work.
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Figure 1. Structure of the paper

2. Related work

Adversarial attacks have been widely studied in the field of computer vision [6, 7, 8] with several attack methods

and techniques developed mostly for image recognition tasks. Researchers have discussed the public safety concern

of adversarial attacks such as in self-driving cars which could be fooled into mis-classifying a stop sign resulting in a

potentially fatal outcome [13]. In network security, the consequences of adversarial attacks are equally significant [14]

especially in areas such as intrusion detection [15] and malware detection [16] where there have been rapid progress in

the adoption of machine learning for such tasks. Even though adversarial machine learning has recently been widely

researched in network security, to the best of our knowledge, there is currently no publication that has surveyed the vast

number of growing research work on adversarial machine learning in this field. Some existing survey papers we reviewed

include Akhtar et al. [17] which reviewed adversarial attacks against deep learning in computer vision. Qui et al [18]

provided a generalized survey on adversarial attacks in artificial intelligence, with a brief discussion on cloud security,

malware detection and intrusion detection. Liu et al. [19] reviewed security threats and corresponding defensive techniques

of machine learning focusing on the threats in the learning algorithms. Rosenberg et al. [9] provided a general review

on adversarial attacks on cyber security domains like; Intrusion detection systems, URL Detection systems, Biometric

Systems, CPSs (Cyber-Physical Systems), and Industrial Control Systems. Unlike their work, our review only concentrates

on network security and uses different approaches to classify adversarial attacks and defenses. Duddu et al. [10] discussed

various research work on adversarial machine learning in cyberwarfare, with some mention of adversarial attacks against

malware classifiers. Martins et al. [20] conducted a systematic review of adversarial attacks and found that the practicality
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of many of these attacks in the context of network security had not been tested in intrusion scenarios. However, unlike

our work, their focus was primarily on intrusion and malware detection scenarios rather than encompassing the broader

spectrum of network security domains. Zhang et al. [11] discussed adversarial attacks as a limitation of deep learning

in mobile and wireless networking but did not consider deep learning in the context of network security applications.

Buczak et al. [21] in their survey on machine learning-based cybersecurity intrusion detection focused on complexity and

challenges of machine learning in cybersecurity but did not review adversarial attacks in their study. Biggio and Roli

[12] provided an historical timeline of adversarial machine learning in the context of computer vision and cybersecurity

but their work did not provide a detailed review in the context of network security. Gardiner et al. [22] in their survey

on the security of machine learning in malware detection, focused on reviewing the Call and Control (C & C) detection

techniques. They also identified the weaknesses and explained the limitations of secure machine learning algorithms in

malware detection systems. Domain specific surveys on adversarial machine learning have also been published including

Hao et al. [23] in which various adversarial attacks and defenses in images, graphs and texts were reviewed. In the field

of natural language processing, zhang et al. [24] reviewed various publications in which deep adversarial attacks and

defenses were proposed. Sun et al. [25] published a survey on adversarial machine learning in graph data. Akhtar et al.

[17] computer vision, Duddu et al. [10] cyber warfare.

2.1 Research gap

With growing interest in the use of machine learning for network security applications, the significance of adversarial

attacks against such machine learning-based application have become more prevalent. With continued increase in the

amount of work in this field, there have been recent attempts to review these publications into a survey work. In the field

of network security, We identified nine survey papers which attempt to discuss adversarial machine learning from the

context of network security. None of these previous survey papers have however explored the vast amount of research

work currently ongoing on the topic of adversarial machine learning in network security in a manner that categorizes them

based on security applications, problem and feature space dimensional classification and adversarial risk grid map.

Our survey more importantly seeks to distinguish between adversarial attacks in general, and adversarial machine

learning in context. We note that an adversary may seek to compromise network security applications in various ways and

this may not be related to adversarial machine learning. For example in [5] where adversarial attacks in Intrusion detection

systems was reviewed. In our context, adversarial machine learning specifically addresses the optimization problem in

which a machine learning based network security solution is being attacked. Many network security solutions are strictly

rules based or hard programming dependent and do not implement machine learning techniques. Our survey work does not

refer to such adversarial attacks, since they do not capture the real context of adversarial machine learning in principle.

3. Applications of machine learning in network security

Today’s network as well as next generation network architectures have become quite complex, and new innovations

of network security solutions are required to protect against the growing landscape of cyber threats. Machine learning

techniques have been increasingly used to carry out a wide range of tasks in network security [26] incorporating several

layers of defenses both within the network and at the edge of the network. In this section, we review and highlight some

applications of machine learning in network security by classifying them into five categories as illustrated in Figure 2.

3.1 Machine learning for network protection

Intrusion Detection Systems (IDS) are essential solutions for monitoring events dynamically in a computer network

or system. Essentially there are two types of IDS (signature based and anomaly based) [27]. Signature based IDS detects

attacks based on the repository of attacks signatures with no false alarm [28]. However, zero-day attacks can easily bypass

signature-based IDS. Anomaly IDS [28] uses machine learning and can detect a new type of attacks and anomalies. A

typical disadvantage of anomaly IDS is the tendency to generate a significant number of false positive alarms.
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Figure 2. Machine learning applications in network security

• Hybrid Approach for Alarm Verification Sima et al. [29] designed and built Hybrid Alarm Verification System that

requires processing a significant number of real-time alarms, high accuracy in classifying false alarms, perform

historical data analysis. The proposed system consists of three components: Machine Learning, Stream processing

and Batch processing (Alarm History). Machine learning model trained offline and used for verification service that

can immediately classify true or false alarms. They used different machine learning algorithms in the experiments to

show the effectiveness of their system where the accuracy achieves more than 90% in a stream of 30K alarms per

second [29].

• Learning Intrusion Detection Laskov et al. [30] worked in developing a framework to compare the supervised

learning (classification) and unsupervised learning (clustering) techniques for detecting intrusions and malicious.

They used different methods in supervised learning to evaluate the work include k-Nearest Neighbor (kNN), decision

trees, Support Vector Machines (SVM) and Multi-Layer Perception (MLP). Also, k-means clustering was utilized,

with single linkage clustering as unsupervised algorithms. The evaluation was ran under two scenarios to evaluate

how much the IDS could generalize its knowledge to new malicious activities. The supervised algorithms showed

better classification with the known attacks. The best result among the supervised algorithm was the decision tree

algorithm whiched achieved 95% true positive and 1% false positive rate, followed by MLP, SVM and then KNN. If

there were new attacks not previously seen in the training data, the accuracy decreases significantly. However, the

unsupervised algorithms performed better for unseen attacks and did not show significant difference in accuracy for

seen and unseen attacks [30].

3.2 Machine learning for endpoint protection

Malware detection is a significant part of endpoint security including workstations, servers, cloud instances, and

mobile devices. Malware detection is used to detect and identify malicious activities caused by malware. With the increase

in the variety of malware activities, the need for automatic detection and classifier amplifies as well. The signature-based

malware detection system is commonly used for existing malware that has a signature but it not suitable for unknown

malware or zero-day malware. Machine learning can cope with this increase and discover underlying patterns in large-scale

datasets [31].

• AutomaticAnalysis of Malware Behavior Rieck et al. [32] successfully proposed a framework for analyzing malware

behavior automatically using various machine learning techniques. The framework allows clustering similar malware

behaviors into classes and assigns new malware to these discovered classes. They designed an incremental approach

for the behavior analysis that can process various malware behaviors and reduce the run-time defense against malware

development comparing to other analysis methods and provide accurate discovery of novel malware. To implement

this automatic framework, they collected a large number of malware samples and monitored their behaviors using a

sandbox environment and learn those behaviors using Clustering and Classification algorithms [32].
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• Automated Multi-level Malware Detection System In [33], authors proposed Advanced Virtual Machine Monitor-

based guest-assisted Automated Multilevel Malware Detection System (AMMDS) that affect both Virtual Machine

Introspection (VMI) and Memory ForensicAnalysis (MFA) techniques to mitigate in real time symptoms of stealthily

hidden processes on guest OS [33]. They use different machine learning techniques such as Logistic Regression,

Random Forest, Naive Bayes, Random Tree, Sequential Minimal Optimization (SMO), and J48 to evaluate the

AMMDS and the results achieve 100%.

• Classification of Malware System Call Sequences Kolosnjaji et al. [31] focused on the utilization of neural networks

by stacking layers according to deep learning to improve the classification of newly retrieved malware samples into

a predefined set of malware classes. They constructed Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN) layers for modeling System Call Sequences. The sequences used by the CNN layers was based on a

set of n-grams. The presence of the n-grams and their relation were counted in a behavioral trace. The RNN on the

other hand used sequential information to train the model. A dependence between the system call appearance and

the system call sequence was however maintained. If this model was trained properly, it usually provided better

accuracy on subsequent data and most often captured more training set information. This deep learning technique

for capturing the relation between the n-grams in the system call sequences was deemed to be relatively efficient as

it achieved 90% average accuracy, precision and recall for most of the malware families [31].

• A Hybrid Malicious Code Detection Method Li et al. [34] proposed a hybrid malicious code detection scheme based

on AutoEncoder and Deep Belief Networks (DBN). They used the AutoEncoder to reduce the dimensionality of data

by extracting the main features. Then they used the DBN that composed multilayer Restricted Boltzmann Machines

(RBM) and a layer of BP neural network to detect malicious code. The BP neural network has an input vector from

the last layer of RBM based on unsupervised learning and then use supervised learning in the BP neural network.

They achieved the Optimal hybrid model. The experiment results that are verified by KDDCUP’99 dataset show

higher accuracy compared to a single DBN and reduce the time complexity [34].

3.3 Machine learning for application security

Various machine learning tasks used for application security including malicious web attack detection, phishing

detection and spam detection.

• Detection of Phishing Attacks Basnet et al. [35] studied and compared the effectiveness of using different machine

learning algorithms for classification of phishing emails using many novel input features that helps in detecting

phishing attacks. The training dataset is labeled with phishing or legitimate email. They used unsupervised learning

to extract features without prior training directly and provides fast and reliable knowledge from the dataset. They

used 4000 emails in total, A total of 2000 emails used for testing. They used Support Vector Machines (SVM),

Leave One Model Out, Biased SVM, Neural Networks, Self Organizing Maps (SOMs) and K-Means on the dataset.

Consistently, Support Vector Machine achieved the best results. The Biased Support Vector Machine (BSVM) and

NN have an accuracy of 97.99% [35].

• Adaptively Detecting Malicious Queries in Web Attacks Don et al. [36] proposed a new system called AMODS

and learning strategy called SVM HYBRID for detecting web attacks. AMODS is an adaptive system that aims to

periodically update the detection model to detect the latest web attacks. The SVM HYBRID is an adaptive learning

strategy which was implemented primarily for reducing manual work. The detection model was trained using dataset

which was obtained from an academic institute’s web server logs. The proposed detection model outperformed

existing web attack detection methods with an FP rate of 0.09% and 94.79% F-value. The SVM Hybrid system

obtained a total number of malicious queries equal to 2.78 times by the popular SVM method. Also, the Web

Application Firewall (WAF) can use malicious queries to update the signature library. The significant queries were

used for updating the detection model which consisted of a meta-classifier as well as other three base classifiers [36].
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• URLNet -Learning a URL Representation with Deep Learning for Malicious URL Detection Le et al. [37] proposed

an end-to-end deep learning framework which did not require sophisticated feature. URLNet was introduced to

address several limitations which was found with the other model approaches. This framework learns from the

URL directly how to perform a nonlinear URL embedding which then enabled it to successfully detect various

Malicious URLs. Convolutional Neural Networks (CNN) were applied to both the characters and words of each

URL to discover the URL embedding method. They also proposed advanced word-embedding techniques to deal

with uncommon words, which was a limitation being experienced by other malicious URL detection systems. The

framework then learns from unknown works at testing phase [37].

3.4 Machine learning for user behavior analytic

User behavior analytics is a cybersecurity process which involves analyzing patterns in human behaviors and detecting

anomalies that give an indication of fraudulent activities or insider threats. Machine learning algorithms are used to detect

such anomalies in user actions such as unusual login tries and to infer useful knowledge from those patterns.

• Authentication with Keystroke Dynamics Revett et al. [38] proposed a system using Probabilistic Neural Network

(PNN) for keystroke dynamics that captures the typing style of a user. A system comprising of 50 user login credential

keystrokes was evaluated. The authors [38] used eight attributes to monitor the enrollment and authentication attempts.

An accuracy of 90% was obtained in classifying legitimate users from imposters. A comparison of the training time

between the PNN system and a Multi-Layer Perception Neural Network (MLPNN) showed that the PNN was four

times faster.

• Text-based CAPTCHA Strengths and Weaknesses Bursztein et al. [39] in a study showed that several well known

websites still implemented technologies that have been proven to be vulnerable to cyber attacks. In the study, an

automated Decaptcha tool was tested on numerous websites including well known names such as eBay, Google

and Wikipedia. It was observed that 13 out of 15 widely used web technologies were vulnerable to their automated

attack. They had a significant success rate for most of the websites. Only Google and Recaptacha were able to resist

to the automated attack. Their study revealed the need for more robust CAPTCHA designs in most of the widely

used schemes. Authors recommended that the schemes should not rely on segmentation alone because it did not

provide sufficient defense against automated attacks.

• Social Network Spam Detection K. Lee et al. [40] proposed social network spam detection that gathers legitimate and

spam profiles and feeds them to Support Vector Machine (SVM) model. The authors selected two social networks:

Twitter and MySpace to evaluate the proposed machine learning system. They collected data over months and

feed them to the SVM classifier. The dataset contains 388 legitimate profiles and 627 spam profiles collected from

MySpace, and 104 legitimate profiles and 168 profiles between promoters and spammers collected from Twitter.

The system achieved a low false positive rate and high precision up to 70% for MySpace and 82% for Twitter.

3.5 Machine learning for process behavior analytic

Machine learning applications usually necessitate the need to learn and have some domain knowledge about business

process behaviors in order to detect anomalous behaviors. Machine learning could be used for determining fraudulent

transactions within banking systems. Also it has been successfully used for identifying outliers, classifying types of fraud

and for clustering various business processes.

• Anomaly detection in Industrial Control Systems Kravch et al. [41] performed a successful study on SecureWater

Treatment Testeb (SWat) using Deep Convolutional Neural Networks CNN to detect most of attacks on Industrial

Control System (ICS) with a low false positive. The anomaly detection method was based on the statistical deviation

measurement of the predicted value. They performed the study using 36 different attacks from SWat. The authors in

[41] proofed that using 1D convolutional networks in anomaly detection in ICS outperformed the recurrent networks.
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• Detecting Credit Card Fraud Traditionally, the Fraud Detection System uses old transactions data to predict a new

transaction. Fraud Detection System (FDS) should encounter various potential challenges and difficulties to achieve

high accuracy and performance [42]. The traditional detection method does not solve all problems and challenges

including imbalanced data where there is a small chance of transactions are fraudulent. Wrong classification and

overlapping data and Fraud detection cost are other major challenges [42]. Chen et al. [43] proposed an approach to

solving the listed challenges and problems for Credit Card fraud. They introduced a system to prevent fraud from

the initial use of credit cards by collecting user data from online questionnaire based on consumer behavior surveys.

They used various classifiers models: decision tree (C5.0, CandRT, CHAID) and SVM ( linear and radial basis,

Kernels of polynomial, sigmoid). They use three datasets to develop questionnaire-responded transaction (QRT)

model to predict new transaction.

• Deep Learning Techniques for Side-Channel Analysis Prouff et al. [44] defined Side-Channel Analysis as a type of

attack that attempts to leak information from a system by exploiting some parameters from the physical environment

[44]. This attack was utilizing the running-time of some cryptographic computation, especially in the block ciphers.

The capability of a system to resist side-channel attacks (SCA) requires an evaluation strategy that focuses on

deducing the relationship between the device behavior and the sensitivity of the information that is common in

classical cryptography. The authors in [44] focused on proposing an extensive study of using deep learning algorithms

in the Side-Channel Analysis. Also, they focused on the hyper-parameters selection to help in designing new deep

learning classifier and models. They confirmed that the Convolutional Neural Networks (CNN) models are better in

detecting SCA. Their proposal system outperformed the other tested models on highly desynchronized traces and

had the best performance as well on small desynchronized trace [44].

4. Adversarial machine learning

4.1 Adversarial attack background

Adversarial attacks have been studied for more than a decade now [12]. However, the first notable discovery in

adversarial attacks for computer vision was by Szegedy et al. [45] who reported that a small perturbation in the form

of a carefully crafted input could confuse a deep neural network to misclassify an image object. Other researchers have

demonstrated the use of adversarial attacks beyond image classification [46, 47, 48, 49].

In adversarial machine learning, an adversary seeks to confuse a machine learning model into making a wrong decision.

The adversary achieves this by modifying the input data that is fed to the machine learning model either during the training

phase (poisoning attack) [50] or during the inference phase (evasion attack) [51].

The reason behind adversarial examples has been linked to the fact that most machine learning models remain overtly

attached to the superficial statistics of the input data [52, 53]. This attachment to the input data makes the machine learning

highly sensitive to distribution shift, resulting in a disparity between semantic changes and a decision change [1].

We consider the security model for use of machine learning in network security as a combination of four components

namely the attack surface, threat model, adversarial framework and adversarial risk. An alternative adversarial model was

proposed in [54] which modeled the adversary using a threefold approach based on knowledge, goals and capability. The

attack surface identifies the various attack vectors along a typical machine learning data processing pipeline in network

security related applications. The threat model provides a system abstraction for profiling the adversary’s capabilities and

the potential threats that are associated. The adversarial framework details our approach for classifying the various attacks

and defenses within each network security domain and lastly the adversarial risk provides an evaluation of the likelihood

and severity of adversarial attacks within a network security system.

Amajor component of an adversarial attack is the adversarial sample. As illustrated in Figure 3, an adversarial sample

consists of an input to a machine learning model which has been perturbed. For a particular dataset with features x and

label y, a corresponding adversarial sample is a specific data point x’ which causes a classifier c to predict a different

label on x’ other than y, but x’ is almost indistinguishable from x. The adversarial samples are created using one of many
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optimization methods known as adversarial attack methods. Crafting adversarial samples involves solving an optimization

problem to determine the minimum perturbation which maximizes the loss for the neural network.

Figure 3. Adversarial machine learning

Considering an input x, and a classifier f , the optimization goal for the adversary is to compute such perturbation
with a small norm, measured w.r.t some distance metric, that would modify the output of the classifier such that

f (x+δ ) 6= f (x)

where δ is the perturbation. If δ is applied to all of the input data (all of the image’s pixels, for example), it is considered a

dense adversarial attack. However, if just partial positions are perturbed, it is called a sparse adversarial attack [55].

Adversarial machine learning in network security is typically an arms race between two agents. The first agent is an

adversary whose objective is to intrude a network with a malicious payload. The other agent is one whose role is to protect

the network from the consequences of the malicious payload.

We start with a view of the different type of data that traverses a network during any given time.

4.2 Adversarial attack taxonomy

We examine the Adversarial Attack Taxonomy in Table 1 to consider the goals and capabilities of any adversary for a

machine learning system. We base our threat framework from the original model in [8, 54] and adapt it within the context

of adversarial attacks in network security domain. Within this context, adversarial attack threats in network security may

be considered based on the attacker’s knowledge, attack space, attacker’s strategy, attacker’s goal and attack target. As

mentioned in Section 1, to the best of our knowledge, this is the first review to add the idea of the space dimension in the

classification of adversarial attacks in network security.

Table 1. Adversarial attack taxonomy

Types References

Knowledge
Black box [7, 56]
White box [57, 1]
Gray box [58]

Space
Feature space [15]
Problem space [59]

Strategy
Evasion [58, 60]
Poisoning [61, 62, 63]
Oracle [64, 61]

Goal
Availability [65, 66]
Integrity [65, 67]

Confidentiality [65, 68]

Target
Physical Domain [69, 70]

MLModel [1]
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4.2.1Knowledge

The knowledge component of the adversarial threat model describes the extent to which the adversary knows about

the machine system as a whole. This could be classified asWhite-box, Gray-box or Black-box attacks.

• In white-box attacks, it is assumed that the attacker has complete knowledge of the training data, the learning

algorithm, the learned model as well as the parameters which were used while training model. A white-box attack

represents an adversary who has the exact information that is held by the owner or creator of the machine learning

system which is being under attack. In the majority of real world adversarial attack settings, this is usually not

feasible.

• AGray-box attacks assumes a more realistic approach, and considers that there could be varying degrees information

accessible to the adversary [58]. For example, an adversary may have partial information about the model queries,

or limited access to the training data. For a gray-box attack, the adversary does not have the exact knowledge which

the creator of the model possesses, but has sufficient information to attack the machine learning system to cause the

machine learning system to fail.

• A black-box attack assumes that the adversary is totally unaware of the machine learning system. in this type

of attack, the adversary has no knowledge about either the learning algorithm or the learned model. It may be

argued that a truly black-box attack is impossible. this is because it is assumed that the adversary must at least have

some specific information, for example the location of the model before it can attack the model. The severity of

blackbox attacks poses a greater threat in practice. The model for real-world systems may be more restrictive than

a theoretical black-box model where the adversary can understand the full output of the neural network on inputs

that have been chosen arbitrarily. In [71], an analysis of three threat models were proposed. These models, defined

as, the query-limited setting, the partial information setting, and the label-only setting, provide a more accurate

characterization of real-world classifiers. As such, a representation of black box adversarial attacks was proposed,

such that, it would be possible to fool classifiers under these more restrictive threat models, whereas, it might have

been impractical or ineffective.

4.2.2Space

In the field of adversarial machine learning, the input space can be defined as a dimensional representation of all the

possible configurations of the objects in determination context. We categorize this as Feature Space and Problem Space.

• Feature space modeling of an adversarial sample is a method in which an optimization algorithm is used to find the

ideal value out of a finite number of arbitrary changes made to the features. In a feature space adversarial attack, the

attacker’s objective is to remain benign without generating a new instance. Conversely, a feature space is defined as

the n dimensional space in which all variables in the input dataset are represented. We take as an example an intrusion

detection dataset with 70 variables, this represents a 70-dimensional feature space. A feature space adversarial attack

in the context above will seek to alter the feature space by making changes within the 70-dimensional feature space.

A feature space attack modifies the features in the instance directly. Using an example of malware adversarial attacks,

a feature space adversarial malware attack will only modify the feature vectors but no new malware is created.

• The problem space refers to an input space in which the objects e.g., image, file, etc. resides. A problem space

adversarial malware attack will modify the actual instance from the source to produce a new instance of the malware.

Typically, a problem space adversarial attack tends to generate new objects in domains such as malware detection

whereby there is no clear inverse mapping to the feature space [59]. A typical difference between a problem space

adversarial attack, and a feature space adversarial attack is that a feature space attack does not generate a new sample

but only creates a new feature vector. A problem space adversarial attack modifies the actual instance itself to create

an entirely new object.
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4.2.3Strategy

Attacker’s strategy implies the phases of operation in which the adversary launches the attack. Three main strategies

which an adversary may use in adversarial attacks are Evasion, Poisoning and Oracle.

• Evasion attacks, also known as exploratory attack or attack at decision time, during the testing or inference phase.

The attacker aims to confuse the decision of the machine learning model after it has been learned as shown in Figure

4. Evasion attacks typically involve an arithmetic computation of an optimization problem. The objective of the

optimization problem is to compute a tiny perturbation sigma which would cause an increase in the loss function.

The change in loss function would then be significant enough to result in a wrong prediction by the machine learning

model. Evasion attacks are classified as gradient-based attacks or gradient-free attacks.

Gradient-based attacks are further classified based on the frequency with which the adversarial samples are updated

or optimized. These are iterative or One-shot attacks. Iterative attacks provide tighter control of the perturbation in

order to generate more convincing adversarial samples [61]. This however results in higher computational costs.

Alternative to iterative attacks are one-shot attacks which adopt a single-step approach without iterations. One-shot

or one-time attacks are attacks in which the adversarial samples are optimized just once. Iterative attacks, however,

involve updating the adversarial samples multiple times. By updating the adversarial samples multiple times, the

samples are better optimized and perform better compared to one-shot attacks. However, iterative attacks cost more

computational time to generate.

Adversarial attacks against certain machine learning techniques which are computationally intensive such as

reinforcement learning usually demand one-shot attacks as the only feasible approach [60].

Gradient-free attacks [58], unlike gradient-based attacks do not require knowledge of the model. Gradient-free

attacks can generate potent attacks against a machine learning model with knowledge of only the confidence values

of the model.

Figure 4. Evasion attack

• Poisoning attacks, also known as causative attack, involves adversarial corruption of the training data or model

logic during the training phase to induce a wrong prediction from the machine learning mode as shown in Figure 5.

Poisoning attacks may be carried out by data injection, data manipulation or logic corruption [61]. Data injection

occurs when the adversary inserts adversarial inputs to alter the data distribution while preserving the original input

features and data labels. Data manipulation refers to a situation in which either the input features or data labels of

the original training data are modified by the adversary. Logic corruption is an attempt by the adversary to model

structure.
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Figure 5. Poisoning attack

• Oracle attacks occur when an adversary leverages the access to the Application Programming Interface of a model,

to create a substitute model with malicious intent. The substitute model typically preserves a significant part of the

functionality of the original model [64]. As a result, the substitute model can then be used for other types of attacks

such as evasion attacks [61]. Oracle attacks can be further subdivided into Extraction, Inversion and Inference

attacks. The objective of an extraction attack is to deduce model architectural details such as parameters and weights

from an observation of the model’s output predictions and class probabilities [72]. Inversion attacks occurs when

adversary attempts to reconstruct the training data. An inference attacks allows the adversary to identify specific

data points with the distribution of the training dataset [73].

4.2.4Goal

Traditionally in the field of computer vision, adversarial attacks are regarded in terms of targeted or reliability

attacks [17]. In targeted attacks, the attacker has a specific goal with regard to the model decision. Most commonly, the

attacker would aim to induce a definite prediction from the machine learning model. On the other hand, a reliability attack

occurs when the attacker only seeks to maximize the prediction error of the machine learning model without necessarily

inducing a specific outcome. Yevgeny et al. [14] have noted that the distinction between reliability and targeted attacks

becomes blurred in attacks on binary classification tasks such as malware binary classification. As such, these conventional

paradigms of attacker goal classification is not optimal for consideration in network security. We choose to adopt the CIA

triad in this context and find that it is more suitable for adversarial classification of the adversary goals in network security

domain.

• Confidentiality attack refers to the goal of the attacker to intercept communication between two parties A and B, to
gain access to private information being exchanged. This happens within the context of adversarial machine learning,

whereby machine learning techniques are being used to carry out network security tasks.

• Integrity attack seeks to cause a misclassification, different from the actual output class which the machine learning

model was trained to predict. Integrity attack could result in a targeted misclassification or a reliability attack. A

targeted misclassification attempts to make the machine learning model to produce a specific wrong prediction. A

reliability attack results in either a confidence reduction or a misclassification to any arbritrary class apart from the

correct class.

• Availability Attack results in a denial of service situation for the machine learning model. as a result, the machine

earning model becomes either totally unavailable to the user, or the quality is significantly degraded to the extent

that the machine learning system becomes unusable to the end users.

4.2.5Target

In our surveyed work, adversarial attacks are targeted against a specific machine learning technique. Several successful

attempts have been made towards the transferability of adversarial attacks [74, 75]. However, attacks that have been

targeted towards a specific machine learning technique for example unsupervised learning, have not been successfully

transfered towards a another technique for example supervised learning. Regarding the physical domain, it includes input

sensors, cameras and output actions.
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4.3 Adversarial attack methods and algorithms

We recall that adversarial attacks could be deployed either during decision time (evasion attacks) or during training

time (poisoning attacks). In each case, the training algorithm (for poisoning attacks) or the learned model (for evasion

attacks) is being manipulated with some form of carefully crafted input known as the adversarial samples. A common

trend among the attack methods below reveals that the robustness of a machine learning model to a large extent depends on

the ability of an attacker to find an adversarial sample that is as close as possible to the original input. In this section, we

evaluate the primary methods for generating adversarial samples. It should be noted that recent research has shown the

limitations of some earlier methods that are still listed here for reference even though more effective methods have been

introduced.

In the previous Section 4.2, we described our threat model for adversarial attacks in network security. In this section,

we introduce a classification method for the various adversarial attack algorithms. As seen in Figure 6 our classification

method is based on the adversary strategy described in Section 4.2.3.

Adversarial Attack Algorithms

Poisoning Evasion Oracle

Mi-Face[73]

Copycat CNN[76]

Attribute inference[73]

KnockOff Nets[77]

FEE[72]

SVM Poisoning[78]

Backdoor Attack[79]

Feature Collision[62]

PGD[6] L-BFGS[45] FGSM[1]

Feature Adversaries[80] BIM[81] JSM[4]

Decision Tree Attack[74] DeepFool[3] NewtonFool[82]

EAD[83] Carlini and Wagner[84] AutoAttack[85]

UAP[86] ShadowAttack[87] Adversarial Patch[88]

Square Attack[89] ZOO[83] DbBA[87]

Threshold Attack[88] Hop Skip Jump[83] SimBA[83]

DPatch[83] TUAP[83] Wasserstein[83]

Spatial Transformation[83] Elastic Net[83] IFS[83]

Figure 6. Adversarial attack algorithms
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4.3.1Evasion attacks

Evasion attacks attempt to mislead the machine learning system during the testing or inference phase. Below we

highlight adversarial attack methods that fall within this category of evasion attacks. The attacks are further divided into

Gradient-based and Gradient-free attacks.

• Gradient-based attacks: Szegedy et al. [45] studied how adversarial samples could be generated against neural

networks for image classification. The L-BFGS (Limited Broyden-Fletcher- Goldfarb-Shanno) method was then

introduced, which used an expensive linear search method to find the optimal values of the adversarial samples. In a

different approach proposed by Goodfellow et al. [1] called the Fast Gradient Sign Method (FGSM), adversarial

samples are created by finding the maximal direction of positive change in the loss. This is a faster method than the

L-BFGS method since only a one-step gradient update is performed along the direction of the sign gradient at each

level. Amajor limitation of the Fast Gradient Sign Method and similar attack methods is that they work based on the

assumption that the adversarial samples can be fed directly into the machine learning model. This is far from being

practical since most attackers would seek to access the machine learning models through devices such as sensors

[90]. The Basic Iterative Method (BIM) proposed in [81] overcomes this limitation by running the gradient update

in multiple iterations.

The Jacobian-based Saliency Map Attack (JSMA) was introduced by Papernot et al. [4]. For the attack, the Jacobian

matrix of a given sample is computed to find the input features of that sample which most significantly impacts the

output. Subsequently, a small perturbation is created based on that input feature for generating the adversarial attack.

DeepFool was proposed by Moosavi et al. [3] as a method for creating adversarial samples by finding out the closest

distance between original input and the decision boundary for adversarial samples. They were able to determine that

by using a related classifier, the closest distance which would correspond to the minimal perturbation for creating an

adversarial sample will be the distance to the hyperplane of the related classifier.

Jang et al. [82] presented the NewtonFool attack, an algorithm that is based on gradient-descent to find adversarial

samples. This attack is similar to Deepfool [3] but more effective in producing good adversarial samples and reduces

the confidence probability of the correct class. They exploit the softmax layer and control the step size and how small

the perturbation could be. Carlini et al. [84] developed Carlini and Wagner Attack, a targeted attack specifically

for existing adversarial defense methods. It was discovered that defenses such as defensive distillation [91] were

ineffective towards the Carlini and Wagner attack. Madry et al. [6] proposed the Projected Gradient Descent (PGD)

adversarial attacks that is more robust than FGSM. This form of attack utilizes a multi-step approach with a negative

loss function. It overcomes the network overfit problem, and shortly comes of FGSM adversarial samples. It is more

robust than FGSM, which utilizes the first-order network information, and it works well in large-scale constraints.

In `∞-ball, PGD iterate to explore the maximum loss.

Croce et al. [85] proposed Auto Attack, an attack that overcomes and remedy the weaknesses of Projected Gradient

Descent (PGD) [6] that lead to model robustness false outcomes. First PGD attack use fixed step size with cross-

entropy as a loss function that causes the failure as identity by [92]. In [85], they use a new gradient-based scheme

without step size selection with different loss function. With these two changes, two versions of PGD produced

with free parameters in the number of iteration. They also integrate the new PGD versions with FAB-attack [93]

and Square attack [89] to produce a parameter-free attack called AutoAttack. The authors also integrated two Auto

Attack and were tested on a large scale on 40 classifiers.

Sabour et al. [80] proposed a new adversarial image attack that not only focus on the class label but in the internal

representations. The attack, known as Feature Adversaries enables the possibility to deceive a trained DNN to

mystify any source image with other target image by finding a small perturbation from the source image that create

similar internal representation to the target image and not related to the source image. The authors however take

into consideration that such adversaries are not outliers. Universal Perturbation [86] was proposed by Moosavi et

al. as an algorithm to calculate a universal small image perturbation to misclassify a state-of-the-art deep neural

network classifier. The main focus of this algorithm was to find the perturbation vector that deceives classifier on all
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data point samples. This fix perturbation is existed to lead changes in image label gradually to build the universal

perturbation.

• Gradient-free Attacks: Decision Tree Attack was proposed by Papernot et al. [74] this type of black-box attacks use

transferability of adversarial samples between andwithin different classifiers, includingDeep neural network. Logistic

regression, decision trees, support vector machines (SVM), ensembles, and nearest neighbors. They demonstrated

that black box attacks are feasible to a machine learning algorithm that not using deep neural networks and adversarial

samples works well between and across models using the same and different machine learning techniques. Chen et

al. [83] proposed an adversarial attack algorithm to attack DNN based on elastic-net regularization in feature L1

and L2 called elastic-net attacks to DNNs (EAD). EAD considers state-of-the-are L2 and L∞ Authors demonstrated

that EAD could break undefended and defensively distilled DNNs. They also improve the transferability of attacks

and adversarial training. ShadowAttack was proposed by Ghiasi et al. [87] which is a new method for attacking

systems that rely on certificates and fool certified robust networks to assign the wrong label to an image and produce

a spoofed secure robustness certificate for the adversarial example. Adversarial Patch, proposed by Brown et al. [88]

present universal, robust, and targeted adversarial patches for the real world that do not require any knowledge about

what image they are attacking. Those adversarial samples can be used to attack any classifier, and they work with

many transformations that exist defense methods may not be robust to such a massive transformation. The adversarial

patch leads the classifier to switch class labels to any target class. Chen et al. [94] develop HopSkipJumpAttack

based on a decision-based attack that is a type pf black-box attack. This algorithm generates iterative targeted and

untargeted adversarial samples with minimum distance. This attack demonstrates superior efficiency over various

state-of-the-art decision-based attacks. The iteration in the algorithm is based on gradient direction, step size, and

boundary search.

4.3.2Poisoning attacks

A poisoning attack also known as causative attack, uses direct or indirect means to alter the data or the model.

Poisoning attacks occurs either by injecting false data, manipulating the original data, or corrupting the model logic.

• Data Injection: Biggio et al. [78] proposed a gradient ascent based attack based on SVM that attacks the input data

that lead to maximize the non-convex surface error and increase classifier classification at the test time. Gu et al.

[79] proposed BadNets, which perform adversarial attacks by discovering the backdoored neural network or BadNet.

The attack is based on a full or partial outsourced training process where attacker provides the user with a trained

model with a backdoor that causes a targeted misclassification and degrade in the accuracy in some cases called

backdoor trigger. For example, in autonomous driving, an attacker provides the user with a street sign detector that

is backdoored, which classify stop sign well in most cases except when the stop signs have a particular sticker in

classifying it as speed limit signs. This type of attack occurs under two scenarios user outsource trained model or

download a pre-trained model.

• Data Manipulation: Feature Collision Attack proposed by Shafahi et al. [62] presents a watermarking poisoning

attack based on optimization-based to craft a clean label attack to target the behavior of a neural network classifier

on a specific instance. This attack uses enhanced preservation techniques to make it difficult to be detected.

4.3.3Oracle attacks

In an oracle type adversarial attack, an adversary who has been given a oracle prediction access to a model, steals

a copy of a remotely deployed machine learning model. This enables the adversary to duplicate the functionality of the

model, i.e., “steal the model” [64]. This attack has become increasingly common due to the increase in Machine Learning

as a Service “MLaaS” offerings where several companies that offer cloud-based Machine Learning services e.g., Google,

Amazon, and BigML, provide easy-to-use web APIs to manage client interaction.
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• Inversion Attacks: Fredrikson et al. [73] exposed the privacy issues with providing access to machine learning API.

Their study demonstrated how an adversary could utilize the confidence information of a model to result in model

inversion attacks. The attack, which is implemented as a function called MI-Face attack, enables an adversary to

extract pictures of subjects from a trained machine learning model.

• Inference Attacks: Fredrikson et al. [73] proposed the attribute inference attack which could be launched either as a

white-box or black-box attack.

• Extraction Attacks: Correia-Silva et al. [76] demonstrated how an adversary could create a substitute model from a

black-box convolutional neural network (CNN) model by querying the black-box model with random non-labeled

data. A more intriguing aspect of this oracle type of extraction attack is the fact that dataset used to persuade

the model was not related to original problem domain. Orekondy et al. [77] proposed Knockoff Nets which are

capable of stealing the functionality of a fully trained model using a two-step approach. The adversary first obtains

predictions from the model by querying a set of input data, then the data-prediction pairs are used to create a substitute

model known as a “knock-off” model. Their approach uses a reinforcement learning approach with demonstrated

query efficiency and performance gains, compared to other oracle type attacks. Jagielski et al. [72] proposed the

Functionally Equivalent Extraction (FEE) attacks which explore accuracy and fidelity objectives within the space of

model extraction by improving the query efficiency of learning attacks. Their method is demonstrated to be practical

for high parameter models in the range of millions. In their attack method, an adversarial model is produced whose

architecture and weights are identical to the oracle.

4.4 Adversarial attack complexity

The complexity of adversarial attacks depends on multiple factors, including the attack’s implementation, type, the

attacker’s knowledge and objectives, and the characteristics of the targeted model, application, or domain. These factors

result in substantial differences in time and space complexities across various adversarial attack methods.

For time complexity, evasion attacks generally measure the time required to generate adversarial perturbations, which

can vary significantly based on the attack approach. For example, gradient-based attacks, such as FGSM [1], PGD [6], and

BIM [81], typically have a time complexity that scales with the number of model parameters and the steps involved in

gradient calculation. Iterative methods, like PGD and BIM, add computational cost with each iteration, while non-iterative

methods, like FGSM, usually demonstrate lower time complexities. Query-based black-box attacks, which operate without

gradient access, can be particularly time-intensive as they rely on repeated input modifications and model queries to infer

adversarial directions, making time complexity highly dependent on the number of allowable queries. Poisoning attacks,

in turn, can be computationally intensive due to stages like data selection, modification, and model retraining, with time

complexity influenced by factors such as dataset size and the number of poisoning iterations.

Similar variations are observed in space complexity, where different types of adversarial attacks exhibit significant

differences. For instance, gradient-based evasion attacks often require the storage of gradient information for each model

layer, while black-box attacks sometimes necessitate creating surrogate models, which require additional storage. In

summary, the complexity of adversarial attacks depends on numerous factors; however, adversarial attacks are generally

complex tasks. That said, time and space complexities are not the sole determinants of the practicality of adversarial attacks

in network security. Other contributing factors will be discussed in Section 8.6.

5. Adversarial attack classification

Multiple studies [95, 96] have sought to differentiate the different domains of network security into multiple fragmented

domains. A common approach for example make attempts at differentiating malware and spam detection from intrusion

detection [9]. We find that this attempt of fine grained classification results in redundancy, since the task of malware or

phishing detection in a network could be considered an intrusion detection task. As such, in this survey, we consider cyber

attacks against a network as an attempt by an adversary to intrude the network with a malicious payload. We identify
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malicious payload in a network to consist of three broad types: malicious files (malware), malicious text (spam) and

malicious url links (phishing). We note that attackers may use a combination of all three payloads in most cyber attacks.

For example, a spam email may also contain a link to a malicious url or contain a malicious file attachment. This payload

approach becomes even more crucial in our study on adversarial attacks within the network security domain. We realise

from our study that this distinction plays an important role in providing an accurate classification of adversarial attacks

within the network security domain, as compared to other domains such as computer vision.

In this section, we introduce a classification method for adversarial attacks in network security based on network

security task. Our classification approach considers the data object which is being manipulated by the adversary. The

feature scope of the adversarial attack corresponds to the data object as shown in Figure 7.

Figure 7. Adversarial attack classification

For the scope of this study, we consider adversarial attacks based on the actual payload which is being attacked

in context. When a message is being transmitted from a sender to a receiver, the payload represents the portion of the

transmitted data that is actually the intended message. For example, when an email is sent, the payload consist of the

message body, attachments, and URL links. Headers and metadata which help to facilitate the delivery of the payload are

not considered as part of the payload, within the context of our study. Hence, the protocol overhead is not considered as

part of the actual data.

Our approach for classifying adversarial attacks in network security is based off this approach, as shown in Figure 7.

This is known as feature scope based classification, which refers to what features are being manipulated or perturbed by the

adversary in other to generate an adversarial sample. Adversarial attacks against malware detection, phishing detection and

spam detection applications try to perturb the payload features such as a binary file, a URL, or an email message. These

attacks are categorized as adversarial attacks against endpoint protection systems. Conversely, we also have adversarial

attacks against network anomaly detection applications and these type of attacks will seek to perturb protocol features such

as the network metadata or protocol headers. We categorize these attacks as adversarial attacks against network protection

systems.

Network security domain that utilize machine learning techniques fall into four broad categories namely malware

detection, phishing detection, spam detection and network anomaly detection. We illustrate this categorization in Figure 7.

The first three categories of network security tasks are considered as endpoint based protection. Machine learning

applications within this endpoint based protection category are typically initiated with payload features. Network protection

primarily constitutes network anomaly detection and machine learning applications within this category are typically

initiated with protocol features. Our study only considers active attacks against a network, and passive attacks such as
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eavesdropping are not within the scope of this study. Adversarial attacks hence seek to generate adversarial samples using

specific data objects.

In contrast to adversarial attacks in the field of image processing or computer vision, network security’s adversarial

learning is more challenging. This occurs because even very slight modifications to URLs, spam, packets, or malware bytes

of the binary files can significantly alter the functionality of the data. In computer vision, the addition of tiny perturbations

to an image sample does not alter the human perception of the image and same as in speech processing. Text processing

and network security filtering techniques are similar in this regard since a very slight change in the input such as a word or

a byte will alter the meaning of the text or the data functionality. Hence, approaches for generating adversarial samples in

the domain of machine learning-based network security filtering systems need to occur in such a way that the malicious

functionality is not distorted. Several approaches for achieving these adversarial attacks have been researched and are

discussed in the sections below.

5.1 Adversarial attacks against malware detection

Amajor component of endpoint protection in network security is malware detection. Yet, malware detection remains

a challenging problem in network security. Between 2009 and 2019, the number of new malware digital signatures has

increased by over 2000 percent [97]. Therefore, traditional malware detection systems that rely solely on digital signatures

have become less effective. Significant effort has been made in the use of machine learning to protect against malware

attacks. Several researches have shown the vulnerability of these machine learning models to adversarial attacks. The most

common approach is the addition of selected sequence of bytes to the binary file. Several approaches have been considered

for synthesizing this sequence of bytes as discussed below.

Malware detection may be based on static analysis, in which the malware is detected without executing the code.

Alternatively, dynamic analysis for malware detection typically executes a suspicious malware sample in a sandbox in an

attempt to discover dynamic behavioural patterns such as API call sequences.

5.1.1 Iagodroid

One of the earliest attacks against machine learning based malware detection systems was the Iagodroid attack [98].

Iagodroid uses a method to induce mislabelling of malware families during the triaging process of malware samples. Their

evasion rate reached 97 percent.

5.1.2Stingray

Suciu et al [99] proposed an adversarial attack against malware using the ‘FAIL’ model. Their study focuses on

constraints of obscurity and transferability in order to realize a targeted poisoning attack. StingRay succeeded in half of the

test cases.

5.1.3Texture perturbation attacks

Researchers have deployed visualization techniques similar to computer vision and adapted it for malware classification

[100]. This involves conversion of malware binary code into image data. The Adversarial Texture Malware Perturbation

Attack (ATMPA) achieved a 100 percent effectiveness in defeating visualization based machine learning malware detection

system and also resulted in 88.7 percent transfer-ability rate [16]. The attack model for ATMPAworks by allowing the

attacker to distort the malware image data during the visualization process.

5.1.4Android malware attack in problem space

[59] et al. formalized an approach for problem space adversarial evasion attacks against machine learning based

android malware detection systems. Their study identified four main contraints which are characteristic of any problem

space attack. Their study adopted a technique which automates the generation thousands of realistic and inconspicuous
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adversarial malware samples, further buttressing the notion of adversarial malware as a service as a real threat in network

security. Their attack led to a misclassification rate of 100.0 percent on the successfully generated samples.

5.1.5EvadeDroid

Bostani et al. [101] presented EvadeDroid, another problem space Android evasion attack. EvadeDroid is a query-

efficient black-box attack, that can fool ML-based Android malware detectors without altering the functionality of the

original malware samples. It uses an n-gram-based similarity method to select candidate donors for gadget extraction to

change malware samples into benign ones through an iterative and incremental manipulation technique. Their experimental

results demonstrated that EvadeDroid’s evasion rates are 81, 73, 75, and 79 percent for DREBIN, Sec-SVM, MaMaDroid,

and ADE-MA, respectively.

5.1.6EvnAttack

EvnAttack is an evasion attack model that was proposed in [48] which manipulates an optimal portion of the features

of a malware executable file in a bi-directional way such that the malware is able to evade detection from a machine

learning model based on the observation that the API calls differently contribute to the classification of malware and benign

files. The detection model’s false negative ratio almost reached 1 (100 percent), which means almost all malware samples

are misclassified.

5.1.7AdvAttack

AdvAttack was proposed in [46] as a novel attack method to evade detection with the adversarial cost as low as

possible. This is achieved by manipulating the API calls by injecting more of those features which are most relevant to

benign files and removing those features with higher relevance scores to malware. AdvAttack increased the classifier’s

false negative ratio to 71 percent while degrade the accuracy of the classifier to 58.5 percent.

5.1.8MalGAN

To combat the limitations of traditional gradient-based adversarial sample generation, the use of a generative adversarial

network (GAN) based algorithm for generating adversarial samples has been proposed. Generative models have been

mostly used for input reconstruction by encoding an original image into a lower-dimensional latent representation [2]. The

latent representation of the original input can be used to distort the initial input to create an adversarial sample. MalGAN

proposed by [102] leverages on generative modeling techniques to evade black-box malware detection systems with a

detection rate close to zero.

5.1.9GAPGAN

Yuan et al. [103] introduced GAPGAN, an adversarial attack framework that generates adversarial examples against

binaries-based malware detection through GANs. Adversarial perturbations are appended to the original malware binaries

to maintain its malicious functionality. They tested GAPGAN on deep learning and MalConv detectors. GAPGAN’s

success rate reached 100 percent attack with appending payloads of 2.5 percent of the total length of the original data.

5.1.10Black-box attacks against RNN based malware detection algorithms

Hu et al. [56] implemented a generative recurrent neural network (RNN) which generates sequential adversarial

samples. In their study, the Gumbel-Softmax approach is used to approximate generated discrete API’s. Before their attack,

the victim’s RNN malware detection rates ranged from 90.74 to 93.87 percent. After their adversarial attack, the detection

rates on adversarial examples ranged from 0.44 to 3.03 percent.
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5.1.11Adversarial deep learning for robust detection of binary encoded malware

Al-Dujaili et al. [104] proposed a method of generating adversarial malware samples with a focus on preserving the

malicious functionality of the binary encoded files. They also introduce a mitigation framework known as SLEIPNIR

which employs the saddle-point optimization technique to learn malware detection models.

5.1.12Deceiving end-to-end deep learning malware detectors using adversarial examples

The authors Kreuk et al. [105] introduced a novel approach for creating adversarial malware samples by injecting a

small sequence of bytes to the binary file. The approach was also found to be transferable across different malware files

and families. In their study, they evaluated the effectiveness of adversarial malware samples based on five metrics namely

(1) File transferability, (2) Spatial Invariance (3) payload size, (4) entropy (5) Functionality preservation. Their study was

based on only white box attacks and was not evaluated as white box scenarios. Their injection procedure resulted in an

evasion rate of 99.21 and 98.83 percent.

5.1.13Adversarial examples on discrete sequences for beating whole-binary malware detection

The authors [106] focus on adversarial attacks against Convolutional Neural Network (CNN) based end to end

malware detectors. End to end malware detectors such as Malconv [107] function quite different from most deep learning

based malware detectors in the sense that they take the whole malware binary file as an input. To achieve their aim, a loss

function was which functions as a surrogate loss function proposed which enforces the modifications in the embedding

space. Thus, the authors were able to modify the embedding vector in order to reconstruct the modified binary, which

becomes the adversarial malware sample. To preserve the functionality of the malware binary, a unique section of payload

bytes is perturbed and appended to the original malware binary file instead of perturbing the original binary file. Thus by

adding perturbations in the embedding vector space and reconstructing new binary files from the adversarial example. This

attack’s evasion rate reached 100 percent.

5.1.14Adversarial-example attacks toward android malware detection system

MalGAN [102] proposed a black-box adversarial-example attacks toward Android malware detection, in which

adversarial examples are generated using a generative adversarial network (GAN) without requiring the knowledge about

the target. Unfortunately, the effectiveness of Malgan is affected, if a firewall is incorporated into the malware detection

system. Adversarial attacks were also studied against cloud-based Android malware detection systems. Li et al. proposed a

bi-objective GAN type adversarial attack against android malware detection systems. Their technique has the novelty of

implementing a GAN with two discriminators in which one discriminator contends against the firewall while the other

discriminator contends against the malware detector. This study was the first study to target a firewall-equipped Android

malware detection system.

5.1.15Adversarial malware sample generation method based on the prototype of deep learning detector

Qiaoa et al.[108] presented a method for generating adversarial malware to fool the deep learning-based malware

detection systems. The post-hoc interpretability of deep learning is used by the authors to direct the malware file’s updates.

Based on their experiments, the time to generate their adversarial malware is less than other attacks. The fooling rate of

this attack reached 92 percent.

5.1.16Slack attacks

Abyte-based convolutional neural network (MalConv) was introduced by Raff et al. [109]. Unlike image perturbation

attacks [45], where the fidelity of the image is of little concern, attacks that alter the binaries of malware files must maintain

the semantic fidelity of the original file because altering the bytes of the malware arbitrarily could affect the malicious

effect of the malware. This problem could be solved by appending adversarial noise to the end of the binary [49]. This

prevents the added noise from affecting the malware functionality. The Random Append attack and Gradient Append
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attacks are two types of append attacks which work by appending byte values from a uniform distribution sample and

gradually modifying the appended byte values using the input gradient value. Two additional variations of append attacks;

the benign append and the FGMAppend were introduced by Suciu et al. [110] which improves the long convergence time

experienced in previous attacks. When malware binaries have exceeded the model’s maximum size, it is impossible to

append additional bytes to them. Hence a slack attack proposed by Suciu et al. [110] exploits the existing bytes of the

malware binaries. The most common form of the slack attack is the Slack FGMAttack which defines a set of slack bytes

that can be freely modified without breaking the malware functionality.

5.1.17Attack and defense of dynamic analysis-based, adversarial neural malware detection models

Stokes et al. [111] proposed adversarial attacks against dynamic analysis-based malware detection systems. Their

work focuses on different strategies of crafting adversarial samples for deep learning based dynamic analysis of malware

samples. Their study is motivated in the fact that static analysis based deep learning malware classifiers only classify

the content of the unknown file without execution, and become less effective when faced with packed or encrypted

malware files. In addition, they propose a defense mechanism known as the weight defense mechanism. The compare their

defence technique to existing defenses such as distillation and ensemble defenses. They however did not compare their

study to the more popular approach of adversarial training, which is a proven method for reducing the vulnerability deep

learning classifiers to adversarial samples. Their study also indicates that adding more hidden layers to the neural network

significantly improves the robustness of the deep learning based malware classifier to adversarial samples.

5.2 Adversarial attacks on spam detection

Spam detection is a significant endpoint protection component, used to protect users from unsolicited digital

communications. Machine learning techniques are widely used for current spam filtering applications, most of which

utilize supervised learning methods [112]. Multiple adversarial attacks on machine learning-based spam detection systems

are discussed below.

5.2.1Adversarial classification

Dalvi et al [113] were the first to introduce a formal framework with corresponding algorithms to describe the

problem of adversarial attacks against machine learning based spam detectors. In their study, they seek the minimum cost

camouflage (MCC) of a data sample x to generate an adversarial sample MCC(x) with the minimum cost, for which the

classifier outputs a negative sample. Similar studies [114] had considered adversarial attacks against spam detectors albeit

not machine learning based.

5.2.2Attacks on statistical spam filters

Several spam filters such as SpamAssasin, SpamBayes, Bogofilter are based on the popular Naive Bayes Machine

learning algorithm which was first applied to filtering junk email in 1998 [115]. A variety of good word attacks introduced

by Lowd [114] were successfully evading the machine learning models from detecting spam or junk emails. Using these

attacks, an attacker can get 50 percent of currently blocked spam past a typical spam filter.

5.2.3Exploiting machine learning to subvert your spam filter

Nelson et al. [116] showed in 2008 that an attacker could effectively disable the SpamBayes spam filter with

small information and little control over training data. Their introduced Usenet dictionary poisoning attack caused

misclassification of 36 percent of ham messages with only 1 percent control over the training data. They have also

presented a new class of focused attacks that stop victims from receiving specific email messages. With knowledge of only

30 percent of the target’s tokens, their focused attack altered the classification of the target email 60 percent of the time.
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5.2.4Attacks against crowd-turfing detection systems

Machine learning techniques are used to identify misbehavior includes fake users in social networks and detect users

who pays for sites to have fake accounts. Malicious crowdsourcing or crowd-turfing systems are used to connect users

who are willing to pay, with workers who carry out malicious activities such as generation and distribution of fake news, or

malicious political campaigns. Machine learning models have been used to detect crowdturfing activity with up to 95

percent accuracy particularly in detecting the accounts of crowdturfing workers [117]. However, malicious crowdsourcing

detection systems are highly vulnerable to adversarial evasion and poisoning attacks.

5.2.5Attacks against ML for keystroke dynamics

Negi et al. [118] created adversarial keystroke samples that misled an otherwise accurate classifier into accepting

the artificially generated keystroke samples as belonging to an authentic user. Almost 50 percent of the tested users were

compromised after their attack.

5.2.6Attacks against ML for credit card fraud detection

Zeager et al. [119] examined how a logistic regression classifier used as a fraud detection mechanism, could be

adversarially attacked to cause a number of fraudulent transactions to go undetected. Previous studies have similar models

which are based on game theory to investigate adversarial attacks against credit card fraud detection and email spam

detectors. However, the authors introduced a new framework which successfully produced an improved AUC score on

multiple iterations of the validation sets compared to the performance of the models which credit card companies had

previously used.

5.2.7Crafting adversarial email content against machine learning based spam email detection

Wang et al. [120] proposed two methods to create adversarial email content to bypass spam detectors. The first

approach approximates the Term Frequency—Inverse Document Frequency) TF-IDF values in the resultant adversarial

examples and the second method recognizes and adds a group of significant words to fool the detectors. They tested their

work on multiple machine language models like; KNN, SVM, decision tree, and logistic regression, in both white-box and

black-box attack scenarios. Their attacks’ success rates ranged from 2.2 to 98.9 percent, which is inconclusive. However,

they concluded that the second method is more effective.

5.2.8Marginal attacks of generating adversarial examples for spam filtering

Zhaiquan et al. [121] created the marginal attack, which generates adversarial samples that can deceive naive bayesian

spam filters by selecting sensitive words from a sentence and then add them at the end of the sentence. Their experiments

showed that adding just one word to the message could reduce the model’s accuracy from 93.6 to 55.8 percent. They also

tested the transferability of the generated adversarial samples against standard machine learning filters like logic regression,

decision tree, and linear support vector. In some cases, the accuracy of these filters could drop from 100 to 1.5 percent.

5.2.9Universal adversarial perturbations and image spam classifiers

Phung et al. [122] evaluated numerous adversarial attack methods against deep learning-based image spam classifiers,

and they found that the universal perturbation method is the most harmful. So they used this approach to create a novel

transformation-based adversarial attack that was capable of creating tailored “natural perturbations” in image spam. In

some cases, their suggested attack can lower the model’s accuracy to reach 23.7 percent.

5.3 Adversarial attacks against phishing detection

Phishing detection is a critical endpoint protection element aimed to save the users from serious fraudulent actions

like; money stealing and accessing private information. There are multiple techniques for phishing detection like [123];
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List-base approach, Visual similarity-base approach, and Heuristics and machine learning-based approach, which is the

most popular method now. Several adversarial attacks on machine learning-based phishing detection systems are discussed

below.

5.3.1FIGA

Gressel et al. [124] proposed the Feature Importance Guided Attack (FIGA) to fool phishing detection models by

perturbing the most effective features of the input in the direction of the target class. It is a model-agnostic gray-box

attack that needs knowledge of the feature representation of the victim model. FIGAwas tested on eight different phishing

detection models, and it reduced the F1-score of the models from 0.96 to 0.41 on average.

5.3.2Bypassing detection of URL-based phishing attacks using generative adversarial deep neural networks

AlEroud et al. [125] presented an evasion technique that attacks URL phishing detection systems via Generative

Adversarial Networks (GAN). Their generated samples can deceive Blackbox phishing detectors even when those detectors

are created using refined methods like those relying on intra-URL similarities. Their experiments revealed that some

classifiers were unable to identify any of the adversarial examples leading to zero true positive rates. At the same time, the

false positive rates are increased, which indicates the percentage of benign examples classified as phishing.

5.3.3Generating optimal attack paths in generative adversarial phishing

Al-Qurashi et al. [126] proposed a method that creates adversarial phishing attacks by discovering optimal subsets

of features that lead to a higher evasion rate. To achieve this, multiple feature engineering techniques are used, such as

Recursive Feature Elimination, Lasso, and Cancel Out. Their experiments revealed that their attack has better evasion

capability than Generative Adversarial Deep Neural Network (GAN) which randomly perturbs features.

5.3.4Advanced evasion attacks and mitigations on practical ML‐based phishing website classifiers

Song et al. [127] introduced multiple mutation-based techniques, differing in the knowledge of the target classifier

(white, gray, and black boxes). They also proposed a sample‐based collision attack to acquire the knowledge of the target

model, in the cases of white- and gray-box scenarios. Their evasion attacks fooled the classifiers without changing the

functionalities and appearance of the samples. Their attack’s success rate varied depending on the knowledge and the

attacked model. Attacks on Google’s phishing page filter achieved a 100 percent attack success rate. Their transferability

attack on BitDe-fender’s industrial phishing page classifier, TrafficLight, achieved 81.25 and 50 percent transferability

attack rates in the black‐ and gray‐box scenarios.

5.4 Adversarial attacks against network anomaly detection

Network anomaly detection devices learn network activity patterns and detect irregularities. They must continuously

scan the network, analyze encrypted data, and spot anomalies in real-time. Machine learning ticks all these boxes, that’s

why it is used extensively in modern Network anomaly detection tools, however, researches have found some ways to

attack them. Multiple of these adversarial attacks are discussed below.

5.4.1 IDSGAN

IDSGAN was proposed by Lin et al. [128] for generating adversarial attacks targeted towards intrusion detection

systems. IDSGAN is based on the Wasserstein GAN [129] which uses a generator, discriminator and a black-box. The

discriminator is used to imitate the black-box intrusion detection system and at the same time provide the malicious traffic

samples. IDSGAN can lower the detection rates of some IDS models to approximately zero percent.
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5.4.2TCP obfuscation techniques

Another method for evading machine learning based intrusion detection systems is the use of obfuscation techniques.

Homolial et al. [130] proposed the modification of various properties of network connections to obfuscate a TCP

communication which successfully evades a wide variety of intrusion detection classifiers.

5.4.3Deep adversarial learning in intrusion detection: A data augmentation enhanced framework

Zhang et al. [131] proposed a framework which incorporates deep adversarial learning with statistical learning in a

manner which exploits learning-based data-augmentation. In the study, the Poisson-Gamma joint probabilistic generative

model is used to synthesize adversarial samples.

5.4.4Generative adversarial networks for launching and thwarting adversarial attacks on network intrusion detection

systems

AGenerative adversarial network (GAN)—based adversarial attack was proposed by Usama et al. [67]. Their method

was the first attempt to utilize GAN-based adversarial attacks against a black box Intrusion detection system (IDS) while

still preserving the functional behavior of the network traffic. In some cases, their attack dropped the accuracy of the

detection model from 84.3 to 43.4 percent.

5.4.5Adversarial deep learning for robust detection of binary encoded malware

Al et al. [104], developed four adversarial attack methods to generate an adversarial example of a binary malware

file that preserves its functionality (rFGSM, dFGSM, BCA, and BGA). They developed a framework for training robust

malware detection models by utilizing the saddle-point formulation that consists of the inner maximization and outer

maximization problems. The inner maximization approach is used to generate powerful adversarial examples that maximize

the loss, and then they inject them in the training time. In some conditions, their attack’s evasion rate exceeded 99 percent.

5.4.6 Investigating adversarial attacks against network intrusion detection systems in SDNs

With the increasing deployment of ML-based NIDSs which leverage the global network visibility offered by SDNs,

the threat of vulnerability of the ML algorithms to adversarial attacks is also considered. Their study considered a use-case

example of a SYN Flood DDoS attack, in which they demonstrated the ability to reduce the NIDS detection accuracy from

100% to 0% on multiple classifiers using evasion attacks. This was one of the most successful attempts of adversarial

attacks against Network Intrusion Detections Systems, proposed by Aiken et al. [132]. Their experimental platform was

based on ML based NIDS for Software defined networks called Neptune. In their study, they demonstrated that with the

perturbation of a few features, the detection accuracy of a specific SYN flood Distributed Denial of Service (DDoS) attack

by Neptune decreases from 100% to 0% across a number of classifiers. Furthermore, they proposed an adversarial test

suite named Hydra to evaluate the impact of adversarial evasion classifiers against an anomaly-based NIDS—Neptune.

Their study considered several classifiers and machine learning algorithms, proving that clustering algorithms were more

robust to adversarial samples compared to other ML types. Specifically, KNN proved to be the most robust classifier

against the adversarial attacks performed within their research, with only one combination of feature perturbations halving

the detection accuracy from 100% to 50%. In contrast, Random forest, LR, and Support vector machines were generally

vulnerable to the same perturbations resulting in similar detection accuracy reductions. The concept of attack generalization

was also studied in this publication, using their Neptune NIDS framework as the adversarial target and which was capable

of implementing multiple classifiers.

5.4.7 IoT network security from the perspective of adversarial deep learning

The effect of adversarial attacks on wireless sensor networks was studied by Sagduyu et al. [133]. The study

experimented with adversarial attacks within the context of three types of over-the-air (OTA) wireless attacks, namely
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within the jamming, spectrum poisoning, and priority violation attack. Their study demonstrated how adversarial attacks

can lead to significant loss in throughput, by fooling an IoT transmitter into making a wrong transmit decision in the

test phase. This was also an evasion attack against the machine learning model. In their study, they considered an IoT

network where an IoT transmitter predicts if a channel status is idle or busy, by using deep learning algorithms. Their

study showed that deep learning was effective in performing this task. Then, adversarial machine learning as applied in

three contexts—jamming, spectrum poisoning and priority violation attakcs. A defense system based on stackelberg game

showed to be an effective mitigation against adversarial machine learning against ioT networks. This defense technique is

however considered not transferable as it was not proven to be generalizable across multiple adversarial attack scenarios.

Several uses of deep learning for anomaly detection in wireless communication systems have been commonly

implemented including channel decoding [134], wireless resource allocation [135, 136] and radio signal (modulation)

classification [137]. Uses of Machine Learning in IoT include anomaly detection [138], device identification [139, 140],

and signal authentication [141].

5.4.8Adversarial attacks on deep-learning based radio signal classification

The robustness of deep learning based algorithms for the wireless physical layer was also studied within the context

of radio radio signal (modulation) classification tasks. Sadeghi [142] investigated the use of convolutional neural networks

in which they developed both white-box and blackbox adversarial attacks for a DL based modulation classification. In their

study, a VT-CNN was used as the classifier. The outcome of their research showed that Significantly less transmit power is

required by the attacker in order to cause misclassification in the case of adversarial machine learning, as compared to the

case of conventional jamming (where the attacker transmits only random noise). Hence, adversarial machine learning is an

alternative to signal jamming with random noise, with less resource required in terms of transmit power. Their research

also created a a computational efficient algorithm for crafting universal adversarial perturbations (UAP), which can cause

a misclasification of the deep learning model irrespective of the input provided to the model. Furthermore, their study

revealed an interesting property known as the Shift invariant Property of their attack method, which makes the attack

generalizable across various deep learning models, without having any knowledge of the nature of the model, thus implying

a black-box attack. Their tests showed that after applying these attacks, the targeted model accuracy could drop from 75 to

0 percent in the cases of a high perturbation-to-noise ratio (ratio of the perturbation power to the noise power).

5.4.9Addressing adversarial attacks against security systems based on machine learning

Apruzzese et al. [143] proposed an attack and defense method against several types machine learning algorithms

in for network intrusion detection systems. In their study, they evaluated both poisoning and evasive adversarial attacks

against three supervised machine learning algorithms. The three algorithms namely Random forest, K-nearest neighbour

and Artificial Neural Network (multi-layer perceptron) MLP were used to develop a network intrusion detection system.

Their poisoning and evasion attack severity averaged 70.1 and 66.4 percent, respectively. They also demonstrated that

adversarial training was effective in improving the robustness of deep learning based network intrusion detection systems.

5.4.10Adversarial deep learning for cognitive radio security: Jamming attack and defense strategies

Shi et al. [144] proposed an adversarial machine learning approach to launch jamming attacks on wireless

communications and introduces a defense strategy. The study bases on the premise that in a cognitive radio network, a

typical transmitter workflow includes the task of sensing available channels, identifying spectrum opportunities, and then

transmitting data to the receiver in idle channels. As machine learning techniques have been progressively applied in this

context, such as implementing a deep learning classifier for the classification of channels as either idle or busy, attackers

seek to compromise the machine learning classifier. Even though the attacker has no knowledge of the deep learning

classifier, i.e this is a black box attack. Their experiments showed that their adversarial deep learning attack reduced the

transmission success rate from 73.79 to 2.91 percent. The authors also propose a defense technique for the deep learning

classifier that works by allowing the transmitter to deliberately takes wrong actions in predetermined time slots in order to

mislead the adversary.
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5.4.11Performance evaluation of physical attacks against E2E autoencoder over rayleigh fading channel

Albaseer et al. [69] investigated the vulnerabilities of autoencoder E2E with Rayleigh channel mode. Their study

demonstrated the vulnerability of auntoencoder deep learning models to adversarial samples when used in end-to-end

wireless communication systems. Both white-box and black box attacks were launched against and e2e model that was

based on a realistic channel model. Their results showed that adversarial attacks had more significant impacts compared to

jamming attack.

5.4.12Physical adversarial attacks against end-to-end autoencoder communication systems

Sadeghi et al. [70] also showed that end to end learning of wireless communication systems are vulnerable to physical

adversarial attacks. Similar to the work of Albaseer et al. [69], their study demonstrates that adversarial attacks are more

destructive than jamming attacks.

5.4.13Targeted adversarial examples against RF deep classifiers

Kokalj-Filipovic et al. [145] studied the effect of adversarial samples on machine learning based classifiers for

radio frequency signals. The goal of their research was to verify if adversarial samples against machine learning based

classification in of radio frequency signals was as effects in the physical world (i.e., when launched over the air—OTA) as

it was in theoretical settings.

5.4.14Deep learning-based intrusion detection with adversaries

Wang et al. [15] evaluated the vulnerabilities of deep learning-based IDS among state-of-the-art adversarial attack

algorithms, including FGSM, JSMA, Deepfool, and CW using NSL-KDD dataset. They recognize feature patterns for the

attack algorithms, and they demonstrated that modifying a limited number of features is better for most of the adversaries,

such as JSMA attacks. JSMA attacks distinguish adversaries in terms of applicability. They noticed how feature selection

to be perturbed by an adversary varies depending on the degree of significance.

5.4.15Evaluating deep learning-based network intrusion detection system in adversarial environment

Peng et al. [146] evaluated the developed scalable ENIDS framework robustness in the adversarial environment against

various attacks (MI-FGSM, L-BFGS, PGD, and SPSA) using NSD-KDD dataset. They compare different well-known

models, including SVM, RF, and LR, with the proposed framework under adversarial attacks. They use different metrics

to compare the model robustness, including accuracy (ACC), Precision Rate (PR), Recall Rate (RR), F-Sorce (FS), and

Success Rate (SR).

5.4.16Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks

Ibitoye et al. [147] studied the adversarial samples effectiveness against deep learning-based Intrusion Detection

System (IDS) within the context of an IoT network. The authors provide a comprehensive comparison between two

different deep learning model, a Self-normalizing Neural Network (SNN) and a Feed-forward Neural Network (FNN).

They utilize and study input features normalization in a deep learning-based IDS in an adversarial environment. It increases

the robustness of the deep learning model against various adversarial attacks (FGSM, BIM, and PGD).

5.4.17Online anomaly detection under adversarial impact

Kloft et al. [148] studied the effect of a poisoning attack of training data on online centroid anomaly detection (IDS)

with a finite sliding window. They study the poising attack with limited and full control of the training dataset using real

HTTP traffic from a web server of Fraunhofer FIRST institute. This study shows if the attacker has full control of the data,

is it easy to attack while when applying additional constraints to have limited control of the training data by assuming

that attacker can inject a small fraction of the training dataset, the attack fails. Therefore, adding those constraints adds
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protection approaches against poising attacks. Their results show that they cannot consider their method secure if the

attacker has full control of the dataset.

5.4.18Security evaluation of pattern classifiers under attack

Biggio et al. [149] proposed a framework for empirical security evaluation that can be applied in different three

real-life applications, including Intrusion detection system, spam filtering, Biometric Authentication. They proposed an

algorithm to sample training and testing sets. They evaluate their framework performance under causative adversarial

attack using SVM and LR algorithm. For IDS, they used a public data set of a web-server with 205 malicious samples

collected in five days in 2006. Authors recommend the designer of classifiers to follow to use their framework to evaluate

the security of the classifier.

5.4.19Evading machine learning botnet detection models via deep reinforcement learning

Wu et al. [150] introduced a generic black-box attack against botnet detection machine learning models. The authors

of this paper use deep reinforcement learning (DRL) to generate adversarial traffic flows to deceive the detection models.

A reinforcement learning agent updates the adversarial samples to change the temporal and spatial features of the traffic

flows without altering the original functionality and executability. Their attack’s evasion rate ranged from 69.3 to 80.4

percent.

5.4.20Attack-GAN

Cheng et al. [151] proposed Attack-GAN to generate malicious adversarial raw packets that can mislead current

machine learning network intrusion detection systems in the internet of things. Each byte in a packet is represented with

word embedding. Feedback from the victim NIDS is needed by this black box attack to update the parameters of the

generator. The attack success rate depends on multiple factors like the machine model and the modes of byte embedding,

but it reached 98.42 percent in the best case.

5.4.21Fooling intrusion detection systems using adversarially autoencoder

Chen et al. [152] introduced AIDAE (Anti-Intrusion Detection AutoEncoder) framework against IDSs. AIDAE can

produce features matching normal feature distribution, it also keeps the correlation between the generated continuous and

discrete features. They used Evasion Increase Rate (EIR) to evaluate their attack. The EIR reflects the evasion power by

comparing the adversarial detection rate with the original, i.e., 1-(adversarial detection rate/original detection rate). EIR

was higher than 0.9 in all their experiments.

5.4.22TANTRA

Sharon et al. [153] presented TANTRA (Timing-Based Adversarial Network Traffic Reshaping) which deceives

NIDSs by reshaping attack network traffic using the timestamp attribute. Based on the authors’ evaluation, TANTRA had

an extremely high success rate (99.99 percent). However, when TANTRAwas tested after training the NIDSs with both

benign and reshaped traffic, its success rate decreased.

6. Evaluating adversarial risk

In discussing adversarial risk, we introduce the concept of discriminative and directive autonomy of machine learning

models. The two-fold goal of an adversarial risk grid mapping is to evaluate the likelihood of success of an adversarial

attack against a machine learning model, and the consequence of that attack if successful. Adversarial risk often seek to

measure the performance of a machine learning model based on worst case inputs [154]. We present in this paper, an

adversarial risk grid map shown in Figure 8 based on the level of autonomy of the machine learning model with respect to
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the learning technique and task. The concept of discriminative autonomy and directive autonomy of the machine learning

models represents a novel approach for evaluating the relative adversarial risk of a machine learning model.

Figure 8. Adversarial risk grid map

6.1 Security by obscurity in adversarial risk

The notion of security by obscurity in adversarial context, in which defenses are proposed based on obscurity to an

adversary does not truly reflect the nature of adversarial risk in machine learning-based network security applications.

The prevalence of black box adversarial attacks which fool classifiers without having direct access to the model further

demonstrate the weakness in the obscurity approach to adversarial risk.

As adversarial attacks continue to emerge into real world production systems, the ability to computationally evaluate

and even optimize adversarial risk becomes invaluable. While both adversarial risk and obscurity have been impossible to

compute directly [154], frameworks for adversarial risk based on the concept of obscurity have been proposed [155].

6.2 Adversarial risk grid map

Amodified notion of adversarial risk was proposed in [156] which suggested that certain classifiers inherently have

low adversarial risk. Other works [157, 158] have suggested a trade-off between standard risks and adversarial risk. This

indicates that with increase in standard accuracy of the classifier, the adversarial risk of the classifier increases. Based on

our review, a grid map based on the autonomy of the machine learning model is proposed. We term this as model autonomy

adversarial risk approach since it is based on the directive and discriminative autonomy of the machine learning models.

The map is shown in Figure 8.

• Discriminative Autonomy: The discriminative autonomy is directly related to the type of task being performed by

the machine learning model. Machine learning tasks such as classification are highly dependent on the input data.

As such, they have lower discriminative or conditional autonomy compared to tasks such as generative modeling

which depend less on the input data when predicting an outcome.

• Directive autonomy: The directive autonomy of a machine learning model is a function of the machine learning

technique. In supervised machine learning, there is less directive autonomy since the model needs to be first learned

with some form of labeled data. Machine learning techniques such as reinforcement learning depend less on a model

being learned with any form of training data and posses much higher directive autonomy.

6.3 Cross model vs cross dataset attack

In discussing adversarial risk, the notion of transferability becomes pertinent. Transferability refers to the fact in

which an adversarial example which is crafted for a specific deep learning model, is found to be effective in causing a
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misclassification in a different model. This is known as cross-model adversarial samples. in a similar situation, when

the adversarial sample that was generated by altering a particular dataset. If that sample is used to attack a deep learning

system that was trained using a different dataset, that is called a Cross-dataset adversarial sample.

7. Defending against adversarial attacks

Numerous researchers have aimed to review and classify defenses against adversarial attacks. Barreno et al. [8] first

proposed three broad approaches for defending machine learning algorithms against adversarial attacks. Regularization,

Randomization, and Information hiding. Yuan et al. [90] classified the defenses into two broad strategies. Proactive

strategies and reactive strategies. Rosenberg et al. [9] organized the defenses based on the cyber security sub-domains

(malware detection, spam detection, biometric systems, etc.), in our work, we classify the defenses based on generalized

ML approaches.

Since adversarial examples represent a worst-case scenario of a distribution shift, the task of generating an adversarial

sample is a non-convex optimization problem that can only be approximately solved. Adversarial attack methods are

mostly optimization algorithms in search for a lower boundary perturbation that corresponds to an adversarial sample [159].

These optimization algorithms often result in high frequency outputs [160]. This however makes the defense methods

against this adversarial samples vulnerable to adversarial samples that are generated within a low-frequency subspace.

In this section, we provide the most common defense methods in use today and classify them based on the strategy

and approach. The reviewed defense methods are shown in Figure 9.

7.1 Gradient masking

Since most method of adversarial attacks are based on the using of gradient, the gradient masking method modifies

a machine learning model in an attempt to obscure its gradient from an attacker. Nayebi et al. [161] demonstrated the

effect of gradient masking by saturating the sigmoid network which results in a vanishing gradient effect in gradient-based

attacks. Authors force the neural networks to works in nonlinear saturating system. By using Jacobian regularization for

each network layer including the output layer, the model becomes non sensitive of perturbations that are generated using

fast gradient sign method (FGSM) and iterative adversarial attacks [161]. However, [162] indicate that gradient masking

react as over-fitting in their experiments.
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Figure 9. Adversarial defense methods

7.2 Defensive distillation

Distillation technique was originally proposed by Hinton et al. [163] for transferring knowledge from large neural

networks to smaller ones. To implement the distillation approach, Hinton et al. authors built 10 DNN models with same

architecture and training method and use soft targets to avoid overfitting that occur when using hard targets. They proved

in their experiments that ensemble model is able to transfer knowledge to the distilled model better than individual models.

However, ensemble requires large computation models that have large networks and large datasets. Therefore, they use

learning specialist models that each use a subset of dataset classes to reduce the amount of computation [163]. Also, it was

adapted by Papernot et al. [91] to defend against adversarial crafting by using the output of the original neural network
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to train a smaller network rather than using the distillation as originally proposed by Hinton. Defensive distillation was

initially tested against adversarial attacks in computer vision, but further research is required to determine its effectiveness

in other applications such as malware detection.

7.3 Adversarial training

Adversarial training [6] is a method that aims to increase the robustness of a machine learning model to adversarial

samples by minimizing the loss L on data/label pairs {Xi,yi} while maximizing the corresponding loss function. Szegedy
et al. [45] originally proposed a three-step method known as adversarial training for defending against adversarial attacks.

1, Train the classifier on the original dataset 2, Generate adversarial samples 3, Iterate additional training epochs using the

adversarial samples. Generally, adversarial training is based on min-max formulation that solves two problems: attacks as

an inner maximization problem and defenses as an outer minimization problem to achieve optimization [6]. The inner

maximization intents to generate adversarial samples version that results to maximize the model loss. Where the outer

minimization intents to minimize the loss by finding model parameters that build a more robust model with less adversarial

loss [6]. Numerous researchers tested and evaluated the effect of adversarial training in the network security domain

[169, 170]. They concluded that it improves the classification performance of the machine learning model and makes it

more resilient to adversarial crafting.

However, adversarial training has certain limitations particularly in the context of adversarial machine learning

in network security. First, the adversary may implement a different attack method other than the one which was used

in training the network. Secondly, the adversary may design adversarial perturbations for a deep learning model that

already has been trained with adversarial training, and craft new adversarial perturbations which would make the previous

adversarial training ineffective. It has also been shown that adversarial training can reduce the performance of the deep

learning models on clean inputs as discussed in [70].

7.4 Gradient regularization

Gradient regularization is a technique that penalizes large changes in the output of some neural network layer, to adjust

machine learning models, minimize the loss function, increase model robustness and prevent overfitting or underfitting.

Many researchers tested this approach as a defense against adversarial attacks, like Ros et al. [164] who found that training

DNNs with gradient regularization improves the robustness to adversarial perturbations as much or more than adversarial

training. They have also found that combining both approaches (gradient regularization and adversarial training) achieves

greater robustness. The main drawback of Gradient regularization is that it doubles the training time per batch.

7.5 Detecting adversarial samples

Several approaches are used to detect the presence of adversarial samples in the training phase of a machine-learning

model. One of such approaches proposed by [141] works on the premise that adversarial samples have a higher uncertainty

than clean data and uses a Bayesian neural network that is in dropout layers of neural networks to estimate the extent of

uncertainty in the input data to detect the adversarial samples. Other approaches include the use of probability divergence

proposed by [171] as well as the use of an auxiliary network of the original network introduced by Metzen et al. in [172].

Ren et al. [173] also proposed adversarial attack detection and adversarial sample recognition methods by using the causal

inference technique to establish a causal model to describe the generation and performance of adversarial samples that

attack DNNs.

7.6 Feature reduction

Other potential defenses for adversarial attacks have been proposed. Simple feature reduction was evaluated by

Grosse et al. [165] but was found inadequate in defending against adversarial attacks. A more advanced approach was

explored by elShehaby et al. [174], who assessed the “Perturb-ability” of features and assigned a score to each, reflecting
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its susceptibility to perturbation in the problem-space of network intrusion detection systems. During the feature selection

phase, they removed the susceptible features and reported promising results.

7.7 Input/output randomization

Some researchers have attempted randomization techniques on model inputs as a defense against adversarial attacks

on machine learning. For instance, Xie et al. [166] explored random resizing and adding random padding to inputs, and

their experiments demonstrated the effectiveness of this approach. Similarly, Zhang et al. [57] proposed injecting random

Gaussian noise, offering advantages like simplicity, low computational complexity, and no requirement for additional

training.

The primary limitation of input randomization in the network security domain’s problem-space (e.g., executables,

packets) is that it may alter input functionality. However, applying such randomization in the feature space could prove

effective. We believe this method deserves further evaluation in the network security domain.

Meanwhile, other defenses have investigated output/confidence score randomization. In many black-box attacks,

only the confidence values (outputs given by the model for a specific input) are known, while the model structure remains

hidden. Kwon et al. [167] proposed a method called AdvGuard, which aims to prevent the creation of adversarial examples

by adding noise to the softmax layer, where confidence values are generated. By providing random confidence values,

AdvGuard aims to make black-box attacks that rely on confidence scores infeasible.

7.8 Ensemble defenses

Similar to the idea of ensemble learning which combines one or more machine learning techniques, researchers have

also proposed the use of multiple defense strategies as a defense technique against adversarial samples. PixelDefend was

proposed by [168] to combine adversarial detecting techniques with one or more other methods for creating a more robust

defense against adversarial attacks. Another example of combining multiple defense techniques is Adaptive Continuous

Adversarial Training (ACAT) [175, 176]. This defense merges adversarial training and detection by incorporating detected

adversarial examples into continuous adversarial training sessions.

8. Discussion and lessons learnt

This section discusses several key lessons learnt through our survey on adversarial attacks against ML in network

security.

8.1 Increased adversarial risk

We observed an increased risk of adversarial vulnerability of machine learning models in network security with

reduced discriminative autonomy and directive autonomy. Similarly, we observed a reduced risk of adversarial vulnerability

with increased discriminative autonomy and directive autonomy. As illustrated in the adversarial risk grid map shown

in Figure 8, the discriminative autonomy directly relates to the machine learning tasks while the directive autonomy

relates to the machine learning technique. The reason for the adversarial sensitivity of the machine learning models to the

discriminative and directive autonomy based risk grid map is still an area of open research.

Previous approaches on making machine learning in network security more secure have advocated the development

of machine learning models that are resilient to adversarial attacks. In this survey, we introduced the concept of an element

of reduced risk of adversarial attacks based on an adversarial risk grid map. Our findings suggest that the adversarial risk

grid map provides a promising future for the security of artificial intelligence and machine learning in network security.

Machine learning based network security applications that are more resilient to adversarial attacks can be designed by

leveraging on the adversarial risk grid map. We observed that the misclassification achieved by an adversarial attack is

dependent significantly on the design of the adversarial attack algorithm with the context of each specific attack. White-box,

Evasion attacks against endpoint protection systems (malware detection) are the most common attacks. While there is
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limited research in adversarial attacks against process behavior and user behavior analysis, use cases of machine learning

in network security, endpoint protection, network protection and application security have been well researched.

8.2 Transferability with regards to machine learning technique

Transferability of adversarial samples [74, 177] has been shown to be more effective with targeted adversarial

samples [75]. This implies that non-targeted adversarial samples (reliability attacks) which are solely aimed at causing a

misclassification, are more likely to transfer from one model to the other. In furtherance to this phenomenon, we observe

that adversarial attacks in network security are less likely to transfer from one machine learning technique to another.

Transferability of adversarial defences in network security in also impacted by to the heterogenous nature of the perturbed

features. While this is has a positive side with regards to preventing transferable defenses, it also makes it more difficult

in real world situations. From our observation, adversarial attacks in problem space are more difficult to generate, more

difficult to defend against and less chances of being transferable.

In our research, we observed that a significant amount of features are perturbed in the process of generating the

adversarial sample. This is a sub optimal approach. There is currently no publication which has explored the challenge

of finding a way to identify the ideal features that need to be perturbed for creating adversarial samples. In the field of

computer vision, Guo et al. [160] restricted the search for adversarial samples to the low frequency domain, thereby

reducing query complexity.

We reviewed defenses against adversarial attacks on machine learning applications in network security. We note that

there are two major limitations in the existing research on adversarial defenses. Firstly, most defenses are designed to

protect against attacks on machine learning applications in computer vision. Secondly, the defenses studied are usually

designed for a specific attack or a part of the attack. A generalized defense model against adversarial attacks is at best

still theoretical as research on generalized defense models is in early stages [178]. Furthermore, our findings indicate that

defenses against adversarial attacks are specific to a particular type of attack and are not necessarily transferable. Recent

research [74] have studied the transferability in malware machine learning models in machine learning applications such

as malware detection.

8.3 Malware detection approaches

In the majority of cases, Android malware detection is posed as a binary classification problem in which a classifier

is used to determine whether an app is malicious or not. Malware detection take three general approaches which are

dynamic, static, or hybrid. Significant overhead is usually required in order to extract dynamic features because it requires

monitoring the behavior of apps at run time. Several of the studies we examined have focused on instances in which static

features were extracted, including required permissions, actions, and application programming interface (API) calls. In

our literature review, we did not come across any work in which adversarial attacks were successfully carried out against

machine learning based malware detection systems in which dynamic features were extracted.

8.4 Quantitative evaluation of adversarial attacks

In network security, majority of the adversarial attacks reported target the integrity aspect of the CIA triad, with the

intent of causing a misclassification. A quantitative analysis of the attacks’ efficiency for the four reviewed categories

(malware detection, phishing detection, spam detection, and network anomaly detection) was observed. After calculating

the average attack success rate per class, we have found that the most significant adversarial effect was in the malware

detection and the network anomaly detection domains, in which the adversarial attacks’ success rates averaged more than

90 percent. It is worth mentioning that we think that a number of these attacks are theoretical and need more investigation

to deploy them in practical settings, thus the quantitative effect of some of the reviewed attacks could be exaggerated.

However, we find these results as a good indication of the malicious potential of adversarial attacks on network security

domains.

The challenge of quantifying the efficiency of adversarial example generation, is an emerging field and several

approaches have been proposed in recent literature. In [179] a new performance metric was proposed, called effective
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generation rate (EGR) which is the ratio between n and n, i.e., n /n. Where n represents the number of adversarial examples

generated by an attacker and n denotes the number of adversarial examples that successfully evades both malware and

adversarial example detection.

8.5 Difference between adversarial attacks in network security and computer vision

• In image recognition, the primary feature used in adversarial perturbation is the pixels of the image. However, in

network security, there is a great variation in the types of features which may be used, and as such, the perturbation

scope for adversarial attacks becomes largely increased.

• Adversarial attacks in network security differs from computer vision since data objects are considered rather than

images. As a result, the perturbed features are more diverse and heterogeneous. The consequence is that defending

against adversarial attacks in network security becomes more challenging due to the heterogeneity of the features,

which in turn affects transferability and the effectiveness of universal defenses. Notably, significant progress has

been made in computer vision in developing universal defenses; however, this remains an emerging research area

in network security. Additionally, features can vary significantly depending on the network security application.

In most cases, the features used for machine learning classification are the same ones perturbed when generating

adversarial samples.

8.6 Practicality of adversarial attacks against network security

Recent studies have highlighted several challenges in launching practical adversarial attacks against certain network

security systems. These challenges include:

• Attackers’ limited access to the precise feature vectors used by some network security systems, such as NIDS, along

with the impractical assumption that attackers possess detailed knowledge of model architecture, feature extraction

techniques, or the ability to directly and freely query the ML models [180, 181]. Grosse et al. [182] highlighted that

researchers often make overly generous assumptions about attackers’ power and access to information, which may

not reflect real-world conditions.

• Perturbations introduced in the problem space may alter the intended malicious behavior or interfere with the normal

functioning of network traffic, posing a significant barrier to creating practical adversarial examples [180].

• The dynamic and complex nature of modern ML systems, with their shifting features and decision boundaries,

presents substantial obstacles for adversarial attacks [180].

• The challenge of translating perturbations from feature space to meaningful modifications in the problem space (e.g.,

network packets)-known as the Inverse Feature-Mapping Problem [59]. This issue often limits the direct application

of gradient-based feature-space attacks for generating effective problem-space adversarial examples. Additionally,

there is no guarantee that a solution optimized in the problem space will closely approximate the intended adversarial

feature vector [183].

• Minimal problem-space modifications can significantly alter numerous feature-space characteristics. These

manipulations often introduce unintended side effects [59], known as collateral damage [174]. This collateral

damage does not follow the gradient direction, adding unpredictability [180]. Consequently, these unintentional

feature perturbations may negatively impact attack success, undermining the adversary’s objectives [174].

• The predominant focus in current evaluations on the evasiveness of adversarial attacks rather than their real-world

maliciousness and impact [183].

• Treating adversarial attacks on network security systems similarly to those in computer vision, where small,

imperceptible perturbations are introduced. However, for network data, such minor modifications often have
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minimal importance, unlike in computer vision, where perceptual similarity is crucial. In network security, the

similarity constraint from computer vision is instead applied to the semantics of the attack, aiming to preserve

network functionality and the malicious nature of the flow [174].

• Some problem-space perturbations can even be counterproductive, such as introducing delays between packets to

evade intrusion detection systems, which may ultimately undermine the attack’s effectiveness [174].

That said, the practicality of adversarial attacks against ML-based network security systems is not dismissed by any

means. Factors such as the attacker’s objective and their access to the target model’s output can influence feasibility. For

instance, attacks on domains like spam filters, where the attacker can query the model and modify input text without altering

network functionality, may be more practical than attacks on intrusion detection systems with stricter constraints [175]. In

summary, while adversarial attacks on ML-based network security systems remain an active research area, studies highlight

some practical challenges that may limit their straightforward application in real-world network security scenarios. Careful

consideration of the attack context and target domain is necessary to assess the true practicality of these techniques.

8.7 Adversarial attacks against federated learning

Federated Learning (FL) [184], distinct from distributed computation, allows each client to perform machine learning

computations locally without transmitting data to the cloud. This approach enhances privacy and confidentiality compared

to centralized learning, as the cloud provider lacks a complete view of the machine learning model. FL shows great promise

in strengthening cybersecurity by enabling collaborative learning across decentralized devices [185]. By sharing timely

insights into emerging threats like spoofing, intrusions, anomalies, and DDoS attacks, FL facilitates the development and

refinement of robust defense models and mechanisms, strengthening cybersecurity at both device and network levels.

However, despite its inherent support for privacy and security, FL remains susceptible to adversarial attacks [186]. Byzantine

attacks disrupt model convergence by sending random messages or conspiring to create faulty models [187], with even a

single compromised client significantly degrading accuracy. Sybil attacks involve creating fake or compromised clients

to poison or manipulate the shared global model [188], particularly in open systems where devices can join and leave

freely. Based on adversarial intent, attacks can be classified as semi-honest, where attackers passively observe data to

extract private information, or malicious, involving active protocol deviations that result in data manipulation or playback.

Furthermore, attacks may occur during the training phase, where adversaries use data or model poisoning to compromise

learning, or during the inference phase, where attackers aim to deceive models into making incorrect predictions. The

decentralized nature of FL, especially model broadcasting, amplifies vulnerabilities, particularly in evasion attacks at both

server and client levels.

9. Conclusions and future work

We present a first of its kind survey on adversarial attacks on machine learning in network security. The previous

survey [17] that we reviewed had only discussed adversarial attacks against deep learning in computer vision. We introduced

a new classification for adversarial attacks based on applications of machine learning in network security and developed

a matrix to correlate the various types of adversarial attacks with a taxonomy-based classification to determine their

effectiveness in causing a misclassification. We also presented a novel idea of the concept of an adversarial risk grid map

for machine learning in network security.

In our review on defenses against adversarial attacks, although there were numerous proposed defenses against

specific adversarial attacks, research on generalized defenses against adversarial attacks is still not well established [178].

In our future work, we would study generalized defenses against adversarial attacks to understand if a generalized approach

towards adversarial defenses will be effectively attainable. In addition, we would examine the interpretability of the

adversarial risk to further understand why the reduced adversarial vulnerability occurs, and its implications for other

applications of machine learning such as computer vision and natural language processing.
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Future Work: Based on our research, most adversarial attacks to date have been conducted on data at rest, with

relatively few successful attempts targeting data in transit, or streaming data, as seen in studies such as [189, 190]. However,

in the domain of network security, particularly in areas like intrusion detection, adversarial attacks are more likely to occur

on data in transit. This makes it critical to investigate how adversarial perturbations can affect streaming data in real-time,

as these attacks may have significantly different characteristics and impacts compared to those on static datasets. Given

the dynamic nature of network traffic and the low-latency requirements of real-time systems, defending against adversarial

attacks on data in transit presents unique challenges that are not fully addressed in current literature. Consequently, further

research is needed to explore the specific risks posed by adversarial attacks on data in transit, including the development of

effective detection and defense techniques that can mitigate these threats without compromising system performance.

Certified Robustness is a defense approach against adversarial attacks. It is an essential consideration for deploying

models in critical applications in domains like network security. Certified Robustness offers guaranteed security for neural

networks operating in adversarial environments [191]. The primary goal of neural network robustness certification is to

assess whether a neural network alters its predictions when changes are introduced to its inputs [192].

Defending against adversarial attacks in network security remains a complex challenge due to the heterogeneity of

features across different applications, which impacts both the transferability of attacks and the effectiveness of universal

defenses. While significant strides have been made in developing universal defenses for adversarial attacks in computer

vision, this remains an emerging and relatively under-explored area within network security. Additionally, the features used

for machine learning classification in network security systems can vary significantly depending on the specific application,

further complicating defense strategies. In most cases, the features that are essential for classification are also the ones

targeted and perturbed during the generation of adversarial samples. This creates a unique set of obstacles that need to be

addressed, highlighting the need for more tailored defense mechanisms that account for the diverse and dynamic nature of

network security features.

Adversarial attacks were demonstrated to affect only classifier and clustering tasks in network security. From the

reviewed literature of over fifty attacks against machine learning in network security, there has been no attempt to implement

adversarial attacks against any other task in network security except classification and clustering tasks. This is consistent

with our adversarial risk grid map illustrated in Figure 8 in which we posit that adversarial risk increases based on the type

of network security task which is being performed. Our study notes that there are diverse adversaries in network security

compared to computer vision. as such, there is even more relevant arms race situation in network security than in computer

vision

Several authors have shown that deep learning can be performed on data that is encrypted [193, 194, 195]. But in

our study, we observe that encrypted data has not been adversarial defeated. Even though, most data in network security

is encrypted, adversarial attacks or the ability to generate adversarial samples against encrypted data is an area of open

research. As such, it is a promising idea, subject to future research, to stipulate that performing encryption before applying

machine learning to the data, is a trusted and proven defense against adversarial machine learning in network security.

The use of deep learning as a technique for encryption is quite restrictive [196]. This is mostly due to the computational

costs of deep learning. Research is also required to understand the effects of adversarial attacks against deep learning for

encryption.
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