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Abstract: Modulating neural activity in a systematic manner holds significant potential for advancing the understanding

of brain functions and improving therapeutic strategies. To forecast the dynamics behind several brain activities, numerous

neurobiological models have been developed, targeting both individual neurons and entire neural populations. In this

context, control systems emerge as powerful tools for effectively linking inputs, such as neural stimuli, to measurable

outputs. This study introduces a control framework aimed at regulating neural-mass activity, which has promising

applications in pattern tracking, including rhythm generation and phase synchronisation. Given the strong connection of

these mechanisms to real brain computations, the presented approach offers biologically relevant insights. To demonstrate

this, the Wilson-Cowan model is used, in which stimuli are delivered via light signals to genetically engineered neurons

expressing light-sensitive actuators. This proof of concept provides a foundation for future experimental applications

in neurobiological systems control. Furthermore, building on previous results, this work integrates opsin dynamics, of

the channelrhodopsin and halorhodopsin-type, to accurately model the optogenetic activation channels, enhancing the

description of the actuation process.

Keywords: Wilson-Cowan model, robust control, closed loop, optogenetics, opsin models, bio-engineering, brain rhythm,

pattern tracking

1. Introduction

The field of closed-loop neuroscience has experienced rapid development, driven not only by technological

advancements but also by its potential to significantly enhance causal investigation of neural processes and circuits,

as well as its promise for developing effective treatments for neurological disorders and diseases. In recent years, this

progress has occurred “hand-in-hand” with advances in brain imaging technologies [1], allowing real-time monitoring

of neural activity (sensing), and optogenetic techniques [2], which enable precise physiological modulation of targeted

variables (actuation). A significant portion of existing work in this area has been conducted empirically, based on detailed

observations aimed at achieving neural modulation. For instance, deep brain stimulation (DBS) protocols often rely on

trial-and-error methods [3]. Within this context, control system theory offers a systematic framework for the analysis and

design of closed-loop modulation schemes, providing a suite of powerful tools that have proven effective in different fields,
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ranging from industrial processes to, for example, medical applications. To diversify the application of modelling and

control in bioengineering, the readers can find different applications in, for example, [4, 5].

Considering complex neurobiological systems as dynamical structures, with underlying inputs and outputs, enable a

structured way to approach various modulation and tracking goals through control strategies [6]. Many of these strategies

fall under the category of model-based control, where the dynamic behaviour of the system is predicted in real-time using

a suitable model, allowing the controller to generate an adequate control actuation, accordingly.

Abroad range of models are available within the literature [6], covering from highly detailed biological representations,

focusing on ionic current dynamics and/or synaptic connectivity, to more simplified but biologically plausible

approximations. The choice of model depends on factors such as the neural circuit under investigation, the desired

level of detail, computational constraints, and whether the model needs to run in real-time. Notably, for modelling neural

populations, simplified models can be computationally efficient while still capturing critical phenomena, making them

ideal for control applications. These models, commonly referred to as neural-mass models [7], describe the collective

dynamics of groups of neurons, often characterised by average measurements such as firing rates or voltages. This approach,

which lumps the behaviour of many individual neurons into an ensemble average, is a mean-field technique, akin to the

representation provided by local field potentials (LFPs). For a detailed discussion on dynamical models in neurophysiology,

particularly from a control perspective, the interested reader is referred to [6].

Among the most considered neural-mass models throughout the literature, the Wilson-Cowan (W-C) model is used to

design and assess a control strategy [8, 9]. These authors introduced a mean-field framework for neural activity, which

models the dynamics of spatially localised excitatory and inhibitory populations through coupled nonlinear differential

equations The assumption that cells within these populations exhibit similar properties and responses is supported by the

redundancy of processes and the dense interconnections among them, enabling a low-dimensional description. By focusing

on a space-clamped version of the W-C model, spatial gradients can be ignored, simplifying the analysis. Thus, with this

model the activity of each subpopulation decays exponentially, governed by a time constant that reflects the propagation of

postsynaptic potentials. The nonlinear input term defines the proportion of cells in each subpopulation that responds to the

given excitation level. This seminal approach was further explored and more specialised models were developed since its

introduction. For instance, the works in [10], specifically for epilepsy modeling, and [11] used in the study of cortical

projections in sensory signaling, are notable examples.

Incorporating actuation channels within neural-mass models is crucial to accurately modify the dynamics of closed-loop

neural systems. Actuation mechanisms, such as optogenetics, allow precise manipulation of neural activity, offering high

spatial and temporal resolution that enhances control over other neural modulation techniques [12, 13]. Neglecting these

actuation dynamics can lead to oversimplified representations that fail to capture the full behaviour of the system, especially

in real-time applications such as closed-loop control. In particular, optogenetics stands out as one of the most advanced

techniques in neurophysiology, as it targets distinct cells based on type and/or functionality [14]. This is achieved through

the use of opsins such as Channelrhodopsin (ChR), for excitatory drive (depolarisation), and Natronomonas pharaonis

halorhodopsin (NpHR), for inhibitory drive (hyperpolarisation), enabling bidirectional manipulation of neural circuits. In

particular, ChR (and its faster variants, such as Chronos and ChroME [15]) has been designed to optimise expression and

function in mammalian systems, allowing for prolonged stimulation with improved photocurrents, while NpHR (and further

engineered variants, e.g., eNpHR3.0 [16]) offers stable hyperpolarising currents with reduced desensitisation, crucial for

bidirectional control of neural activity [17, 18]. For further application of control methodologies in neurophysiology, the

interested reader in referred to [19, 20, 21].

Within this context, optogenetics, combined with a neural-mass model, can be used as the actuation channel, providing

the capability to target specific neural populations with high accuracy. Without integrating a neural-mass model with an

adequate actuation channel, a control model could overlook key variables such as the latency, duration, and intensity of

neural responses, leading to ineffective modulation strategies.

In this study, a closed-loop control strategy is employed to induce specific brain rhythms in a synchronised manner.

The W-C model is coupled with simplified dynamic models for excitatory and inhibitory opsins, of the channelrhodopsin

and halorhodopsin -type, as proposed in [14]. A nonlinear control solution is proposed and implemented using an extended

Kalman filter (EKF) to estimate the system state [22], required by the nonlinear control algorithm. Several brain rhythms
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are induced using experimentally acquired LFPs from the mice motor cortex as reference signals [23]. Both a dual

bidirectional-opsin scenario, utilising excitatory and inhibitory opsins, and a dual depolarising-opsin scenario, where only

excitatory opsins (ChR-type) are employed, are assessed to compare their effectiveness. The tracking error is evaluated

under a wide range of variations in both amplitude and frequency of artificial reference signals to assess the robustness of

the control strategy. While other synchronisation types, such as oscillator coupling or frequency-amplitude interactions,

have been explored in previous studies [24, 25], this approach integrates a more realistic experimental setup as a preliminary

step toward real-world closed-loop neurophysiology applications. This work builds upon the findings of [26], with the key

distinction that the present study incorporates opsin dynamics handled via feedforward control, which were not accounted

for in the previous work. In addition, the results explicitly demonstrate the limitations and performance degradation when

the system is actuated using only excitatory opsins, highlighting the importance of accounting for both excitatory and

inhibitory channels in such a control framework.

The proposed control framework addresses a unique challenge in neurophysiological systems by transforming the

underlying model to facilitate the application of model-based control techniques. Unlike general control applications, the

neurophysiological model considered here lacks key properties, such as affine control structures, required for methods like

sliding mode or feedback linearisation [27, 28, 29]. Therefore, a direct comparison with conventional control methods is

not applicable. Instead, this study focuses on demonstrating the efficacy of our controller in the specific neurophysiological

context, highlighting the advantages of our approach in this domain.

To sum up, this study presents a neuromodulation approach with the following key contributions:

• Closed-Loop Control Framework: A novel robust closed-loop control approach is developed by integrating the

W-C model with optogenetic actuation dynamics, providing a structured methodology for neural activity modulation.

• State Estimation: The implementation of an EKF enables accurate state estimation from indirect measurements,

such as local field potentials (LFPs), demonstrating that these are sufficient for decoding internal neural states.

• Dual-Opsin Control Framework: By utilising both excitatory (ChR) and inhibitory (NpHR) opsins, the research

highlights a precise method for inducing specific brain rhythms tailored to real neural activity data.

• Comparative Analysis: Through illustrative examples, the performance of dual-opsin control is contrasted with

single-opsin scenarios, revealing notable differences in tracking accuracy and overall efficacy.

The remainder of this paper is outlined as follows. Section 2 presents the selected dynamical model, introduces

the considered opsin dynamics, and emphasises the key biological assumptions. In Section 3, the system architecture is

detailed, along with an explanation of the proposed control strategy. Section 4 describes and simulates a specific case study

based on experimental data and a defined control methodology. Lastly, Section 5 provides a discussion of the conclusions

drawn from this research, with an eye toward future experimental implementation.

2. Biological and modelling background

2.1 The Wilson-Cowan model

In most neural-mass models, the dynamics of the system are represented by nonlinear differential equations that

describe its state variables, which can be derived from physical interactions. Commonly selected variables include

population activities or rates, which reflect the number of active neurons per unit time within a defined volume of tissue.

The synaptic inputs to individual neurons within the network are treated as the system internal couplings. Additionally, a

nonlinear mapping captures the input-output relationship for each neural population, analogous to the frequency-current

curve (gain function) observed in single neurons [30]. The mean-field theory for neural activity is proposed by Wilson and

Cowan [8], who derived coupled nonlinear differential equations for excitatory and inhibitory sub-populations localised

in space. The model is a coarse-grained description of network dynamics aim to bridge the gap between theoretical and

practical neuroscience, inspired by computational observations. This approach is based on the premise that local neurons
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exhibit similar properties and responses due to their interconnectedness and redundancy in processing. Consequently, the

space-clamped W-C model, which does not account for spatial gradients, can be expressed as follows:

{
τE Ė = −E +(1− rpEE) fE(wEEE −wEII +P),

τI İ = −I +(1− rpII) fI(wIEE −wIII +Q).
(1)

The activity of each subpopulation exhibits exponential decay characterised by a time constant τi, where i ∈ {E, I},
which is linked to the spread of postsynaptic potentials. The input term with nonlinear weighting represents the fraction

of cells in each subpopulation that respond to the excitation level indicated in the function argument. This formulation

illustrates the functional coupling, both in feedback (within each subpopulation) and feedforward (between different

subpopulations), weighted by positive constants wi j (where i, j ∈ {E, I}), accounting for the average number of synapses
per neuron. In general, each subpopulation is influenced by inputs from the others, which drive the changes in activity

rates Ė and İ. The response function fi(·) is generally sigmoidal, indicating that cell activation increases monotonically
with adequate stimulus strength. The factors (1− rpii), where i ∈ {E, I}, reflect the proportion of cells capable of firing,
accounting for the spiking refractory period, while P and Q represent external current-like inputs. A schematic of the W-C

model is depicted in Figure 1.

Figure 1. Schematic of the Wilson—Cowan model.

These inputs, P and Q, can be tailored for optogenetic control, incorporating both excitatory and inhibitory opsins
(Opsins are light-activated ion channels [12] that can be engineered into the neuronal membrane).

Furthermore, the dynamics articulated in this framework are closely related to LFPs, which can be interpreted as a

scaled representation of population spike rates (neural population activity). This connection highlights how the collective

activity of neuron populations, modulated by, for example, optogenetic inputs combined with spontaneous natural activity,

translates into measurable electrical signals, offering insights into neural synchronisation and rhythmic patterns in the

brain. Specifically, the output of the W-C model can be modelled as an LFP signal, expressed as a linear combination

of the excitatory (E) and inhibitory (I) states, thereby capturing the interplay between these dynamics in the context of
network activity.

It is essential to acknowledge that the W-C model has been widely validated as a reliable representation of population-

level neural dynamics. Its ability to capture the interactions between excitatory and inhibitory subpopulations is consistent

with the behaviour observed in cortical circuits [8, 31].

The W-C model demonstrates complex nonlinear dynamics, including phenomena such as multistability, hysteresis,

and limit cycles. This rich repertoire of operating modes resembles observed responses in neural tissue, establishing a

trade-off between the level of detail and the reduced degrees of freedom of the system. In this regard, is highly appreciated,

specially for control purposes, that the model is able to forecast essential features of the dynamic behaviour while retaining

low dimensionality. The system response is highly sensitive to the selection of parameters and input conditions. Figure 2

illustrates the open-loop response of the W-C system in the I-E phase space for varying levels of the excitatory input P. As
the input increases, the system undergoes a notable qualitative transition in behaviour, shifting from damped oscillations,

as shown in Figure 2a, to sustained oscillations in Figure 2c. Specifically, the response of the system to different values of

P is depicted in panels (a–c), in Figure 2, corresponding to P = 0, P = 0.4, and P = 0.8, respectively. In Figure 2a, for
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P = 0, the W-C system exhibits an isolated equilibrium point (with stable node structure) at the origin. With an increase to

P = 0.4 in Figure 2b, the equilibrium shifts to a stable focus structure. Finally, in Figure 2c, for P = 0.8, the equilibrium
has an unstable focus structure, leading to the emergence of oscillatory dynamics characterised by a limit cycle, outlined as

the closed, isolated, and stable attractor in the phase space. An exhaustive study of the bifurcations can be found in [32].
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Figure 2. Open loop response of the W-C system for varying levels of excitatory current stimulus P, and eigenvalues of its jacobian matrices.

2.2 Optogenetic actuation via light-sensitive ion channels

The light-to-current mappings, considered as actuation channels to be attached to the W-C model, can be expressed as

OP : LP −→ P

OQ : LQ −→ Q.

(2)

The mappings in Equation (2) can be defined either as algebraic relationships that link the applied light intensities LP

and LQ with the resulting transmembrane currents P and Q, or as differential equations that capture the dynamic behaviour

of opsins [33]. Specifically, for opsins such as ChR, as considered in the application case Section 4, the light-induced

conductance has been shown to follow a first-order system approximation based on empirical studies [18]. The use of

chirp signals to probe response of ChR in [18] shows a clear single cutoff frequency in the response spectrum, consistent

with a first-order system, characterised by a time constant governing activation and deactivation kinetics. This first-order

approximation can also be extended to NpHR, an inhibitory opsin known for its chloride ion transport mechanism. Like

ChR, NpHR exhibits light-induced conformational changes that can be well-approximated by a single time constant for

activation and deactivation [14].

The light-induced conductance dynamics of the ChR, NpHR-type pairs, driven by excitatory LP and inhibitory LQ

light inputs, can be captured by the first-order differential equation:

τ
d
dt

[
P
Q

]
+

[
P
Q

]
=

[
LP

LQ

]
, (3)

where τ represents the time constant associated with the activation and deactivation of the opsin. This provides a convenient

description of the opsin behaviour, where the output currents P and Q evolve in proportion to the input light stimuli and the
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current state of the system. In particular, the cutoff frequency reported in [18] is fc ≈ 100 Hz, which corresponds to a

time constant of τ ≈ 1
100 s in Equation (3). This constitutes a unified approach for modelling both excitatory (ChR) and

inhibitory (NpHR) opsins.

Previous studies [18] have demonstrated that the dynamics of opsins, such as ChR and NpHR, can be accurately

approximated by first-order systems, providing a physiologically sound approach to modelling light-induced neural

modulation. This unified framework, which integrates the kinetics of opsins and their interactions with neural circuits,

ensures both mathematical coherence and biological relevance. Additionally, the flexibility of the model in including

various optogenetic tools, while maintaining fidelity to observed dynamic properties, underscores its applicability across

different experimental conditions, thus reinforcing its utility for simulating real-world neural control mechanisms.

Within this framework, the opsin dynamics can be incorporated into the system, providing a more detailed

representation. However, when the opsin time constants are significantly faster than the main dynamics system, these

relationships can be simplified or neglected without loss of generality [26].

3. Main results: Control

3.1 Controller and estimator design

Based on Equation (1), the W-C model can be rewritten in the following form:

[
Ė(t)
İ(t)

]
=

[
1

τE
0

0 1
τI

]−

[
E(t)
I(t)

]
+

[
fE(γxE +P)
fI(γxI +Q)

]
︸ ︷︷ ︸

uLTI(t)

 , (4)

with

uLTI(t) =

[
ũ1(t)
ũ2(t)

]
=

[
fE(γxe +P)
fI(γxi +Q)

]
4
=

[
fE(up)

fI(uq)

]
, (5)

where the sigmoid activation function, as introduced in Equation (1), is defined as:

fi(x) =
1

1+ e−ai(x−θi)
− ki, ki =

1
1+ e−aiθi

, (6)

with the constant ki ensuring the range of fi(x) lies between −ki and 1− ki. The chosen shape for this activation function

is derived based on the unimodal distribution of neuronal firing thresholds. The corresponding inverse of this sigmoid

function, required for the subsequent controller derivation, is given by:

x =− 1
ai

ln
(

1
fi + ki

−1
)
+θi, (7)

where i ∈ {E, I}, and ai and θi represent the gain and threshold, respectively, as illustrated in Figure 3.

To simplify the analysis, refractory period terms in Equation (1) are omitted (i.e., rpE = rpI = 0), since they have a
negligible influence on the system dynamics [9].
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The system state consists of excitatory E(t) and inhibitory I(t) activities. The system output, the LFP, is modelled as

a linear combination of these activities. This output can be expressed as:

y(t) =
[
c1 c2

][E(t)
I(t)

]
, (8)

where c1 and c2 are constants determining the relative contributions of excitatory and inhibitory activities.

The terms γxi(t) in Equations (4) and (5), are compactly defined as:

γxE(t) = wEE Ê(t)−wEI Î(t),

γxI(t) = wIE Ê(t)−wII Î(t),

(9)

where Ê(t) and Î(t) are estimates of the excitatory and inhibitory activities, respectively, which can be obtained using
nonlinear estimation techniques, such as Kalman-based strategies [22]. While these activities could, in theory, be measured

directly (e.g., through fluorescence techniques), this analysis assumes that only noisy voltage measurements (LFP), as

given by the system output in Equation (8), are available. Briefly, the estimation process calculates the internal states

of the system, given the system inputs and measurements. This is done iteratively, alternating between propagation and

correction steps, to optimally combine the prediction produced by the mathematical model with the ‘real-world’ (available)

output of the system. In this study, the estimated states, Ê(t) and Î(t), are computed using a standard implementation of
the EKF[22], as illustrated in Figure 4. This observer is an adaptation of the classical Kalman filter designed to handle

nonlinear models, with update steps relying on regular Jacobian linearisation around the current operating point.
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Figure 3. The sigmoid activation function and its inverse. The threshold θi is defined as the input value at which the slope of the curve reaches its
maximum, ai/4, where i ∈ {E, I}.

The manipulated inputs P and Q are given by:[
uE

uI

]
=

[
up − γxE

uq − γxI

]
(10)

=

− 1
aE

ln
(

1
u1+kE

−1
)
+θE − γxE

− 1
aI

ln
(

1
u2+kI

−1
)
+θI − γxI

 ,
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where the terms u1 and u2 represent the components of the saturated control signal usat (refer to Figure 4), discussed in the

following. The parameters γxE and γxI denote the feedback contributions from the excitatory and inhibitory activities of the

system, respectively, and are calculated as described in Equation (9). The variables up and uq are derived using the inverse

sigmoid function outlined in Equation (7).

Targeted
brain region

Neurons

ChR

NpHR

Opsins

Measurement

Actuation

Controller

Figure 4. Nonlinear closed-loop control scheme based on the Wilson-Cowan equations. The block diagram illustrates the proposed algorithm connected
to the opsin actuators and WC model. In the lower schematic, the experimental scenario for a potential implementation is detailed.

The stabilising controller KLTI in Figure 4 is used to compute the control signal uLTI based on the the error signal e(t).
This controller operates within the framework of the linear time-invariant (LTI) model, defined by Equations (4) and (8),

and can be represented by a transfer matrix G(s) in the Laplace domain. Thus, based on the model G(s), the controller K(s)
can be designed as a standard LTI reference tracking controller. A key focus of this design is tracking oscillatory references,

which are relevant to evoke biologically significant rhythms. Given the inherent uncertainty in complex biological systems,

it is crucial to ensure that both robustness and performance are addressed to handle dynamic uncertainties [34, 35]. This

concept will be further discussed in Section 3.2.

The controller output, uLTI, is expressed as a vector in Equation (5). The manipulated input signals uE and uI are then

obtained using state estimation and Equation (10). Particularly, usat is related with up and uq through the inverse sigmoid

function in Equation (7). Similarly, the components of uLTI in Equation (5), ũ j, must remain within the range [−ki,1− ki].

Therefore, the saturated control signal, usat(t), is defined as follows:

usat(t) =


1− ki if ũ j ≥ 1− ki, ( j = 1,2)
−ki if ũ j ≤−ki, ( j = 1,2)

uLTI(t) otherwise

Figure 5 shows how the LTI control signals are saturated within the interval [−ki,1− ki], resulting in the saturated

control signals usat . From the definition of this saturation, the gain of the nonlinear operator is always less than one.

Consequently, the small-gain theorem can be employed to demonstrate the closed-loop stability of the nonlinear system

[34, 35].
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-
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Figure 5. Linear time-invariant signals, [ũ1, ũ2]
T , versus saturated control signals, [u1, u2]

T .

Following the schematic representation in Figure 4, the resulting control signal mapping, based on the expression in

Equation (3), can be obtained as follows:[
uE

uI

]
FFC

(2nd order filter)−→

[
LP

LQ

] Opsin Dynamics
ChR/NpHR−→

[
P
Q

]
. (11)

Initially, the signal vector
[
uE uI

]ᵀ
, in Equation (10), is processed through the filter FFC, which is a second-order LTI

system. This block is designed via a feedforward strategy resembling a lead and lag compensator [36], and is implemented

to proactively modify the response of the actuator. Particularly, it cancels the opsin model single pole while adding two

faster poles, and thus attenuating the actuator lag. The implementation of this feedforward scheme assumes that the opsin

model is linear and time-invariant (LTI), therefore the feedforward block parameters remain fixed, as the dynamics of

the system do not require adaptive tuning or weight updates. This approach ensures a more agile system response while

maintaining stability, as illustrated in Figure 8. By incorporating this lead and lag structure, the FFC filter enhances the

ability of the system to handle high-frequency dynamics (typically around 100 Hz) observed in the local field potential

spectral content, while maintaining stability and robustness in the overall control strategy. The output of this stage yields

the signals
[
LP LQ

]ᵀ
. Subsequently, these signals are directed to the opsin filter, which comprises the ChR and NpHR

channels. The relationship between the signals
[
LP LQ

]ᵀ
and the final output signals

[
P Q

]ᵀ
is governed by the

first-order differential equation in (3). This structured mapping delineates the flow of signals from the initial inputs

through the filtering processes, culminating in the biologically relevant output signals. It highlights the importance of

each transformation in the overall signal processing framework. It is important to emphasise that both signals P and Q can

produce either excitatory or inhibitory effects, depending on their sign (positive or negative magnitude). Specifically, when

P and Q are positive, they exhibit excitatory effects, while negative values result in inhibitory behaviour. Due to the strong

synaptic coupling between the E and I subpopulations in the W-C model, as shown in Figure 1, a positive value in signal P
can indirectly induce inhibitory behaviour in the I subpopulation. Similarly, this relationship applies to signal Q and the

E subpopulation. This scenario is indicated in Figure 4 with the superscripts P and Q in the blocks ChR/NpHR. Thus,

in Figure 4, the excitatory and inhibitory behaviours are schematically depicted using red and green blocks. To provide

a broader perspective on advanced control strategies, particularly those utilising disturbance rejection and feedforward

approaches, readers interested in FFC methodologies may refer to studies like [37], which explore multilayer neurocontrol

for high-order uncertain nonlinear systems with active disturbance rejection. However, a significant gap remains in their

application to neurophysiological systems, which underscores the novelty of our proposed methodology.
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3.2 Stability and robustness analysis

The previously discussed LTI model, G(s) : uLTI → y, represents a diagonal multiple-input, multiple-output (MIMO)

system. Although uLTI is nonlinear with respect to (P,Q), robust control techniques can generally be applied to handle

MIMO nonlinear uncertain systems. Therefore, the closed-loop system depicted in Figure 4 can be reformulated as an

LTI model coupled with a bounded “uncertainty” block ∆ = diag{∆E , ∆I}, replacing the nonlinearity of the system with

this LTI representation and a bounded uncertainty block (In this study, the dynamical uncertainty replaces the original

nonlinearity with an LTI model and a bounded ∆ block. However, this approach can also model systems with uncertain

nonlinear dynamics.).

The ∆ operator is defined as follows:

∆i
4
=

 uδ j = ũ j > 1− ki → yδ j =−ũ j +1− ki,( j = 1,2)
uδ j = ũ j ∈ [−ki,1− ki] → yδ j = 0,( j = 1,2)
uδ j = ũ j <−ki → yδ j =−ũ j − ki,( j = 1,2).

(12)

Thus, Equation (12) characterises the difference between uLTI and usat , as illustrated by the dashed line in Figure 5.

By definition, the gain of the ∆ : uδ → yδ operator satisfies ‖∆‖ ≤ 1.
Considering the complementary sensitivity function, which is the LTI closed-loop transfer matrix:

T (s) = KLTI(s)G(s) [I +KLTI(s)G(s)]−1 , (13)

shown schematically in Figure 6, the internal stability of the overall system can be established, as discussed in the following.

-

Figure 6. Block structure used for analysing the closed-loop stability of the nonlinear system.

The same approach can be extended to include dynamic uncertainty, represented by a filter Wδ (s) in series with ∆, as

shown in Figure 6. According to standard robust control theory results [34, 35], derived from the small-gain theorem, the

necessary and sufficient condition for stability is:

‖Wδ (s)T (s)‖∞ < 1. (14)

The expression in Equation (14) ensures nominal closed-loop stability for the nonlinear saturation when Wδ = 1 and

provides robust stability in the presence of dynamic uncertainty, whereWδ (s) accounts for model uncertainty. This analysis
assumes a small estimation error, which affects the control signal usat . Based on the definitions in Equation (9), the error

δu = usat − ûsat can be bounded as follows:

δu = f (δx) =

[
fE (WEEδE(t)−WEIδ I(t))
fI (WIEδE(t)−WIIδ I(t))

]
,
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where δE = E − Ê and δ I = I− Î represent the estimation errors. The worst-case scenario occurs at the maximum slope of

the sigmoid function f (x), specifically when xwc = θ , meaning f (xwc) = 0.5−k. Therefore, the error under the worst-case
condition is:

(δu)wc = (0.5− k)

[
WEE −WEI

WIE −WII

][
δE
δ I

]
. (15)

Consequently, a simplified implementation should ensure that this value does not significantly affect the control signal

usat , specifically verifying that
‖(δu)wc‖
‖usat‖ < ξe, where ξe is a predefined small threshold.

For a more advanced solution, one could introduce an additional uncertainty block ∆̂, which would act on usat as shown

in Figure 6, with the Kalman filter error δx = δy = (y− ŷ) serving as its input. In this case, the robust stability condition
would rely on the structured singular value µ∆∆∆, with the structure ∆∆∆ = diag(∆, ∆̂), instead of the previous condition based

on the H∞ norm described in Equation (14). However, a detailed exploration of this approach is beyond the scope of the

current work.

In this discussion, it is important to note that the stability and robustness analysis described can still be applied even

when the model is combined with the actuation scheme considered in this study, which includes the ChR/NpHR and FFC

blocks. In addition to the theoretical framework presented, the stability of the combined system, incorporating the dynamics

of the ChR/NpHR actuation system and the FFC filter, is further examined in this study through exhaustive simulation.

This approach provides a practical means of validating the theoretical predictions and ensuring that the system behaves as

expected under a variety of operational conditions. Exhaustive simulations allow for exploring the response of the system

across a wide range of parameters, including variations in input signals, feedback gains, and environmental disturbances.

By systematically varying these parameters, potential stability issues can be identified, that may not be evident through

analytical methods alone. The simulations can help assess the performance of the system in the presence of nonlinearities,

time delays, and uncertainties inherent in biological systems. To conduct these simulations, the model is implemented

using numerical methods, where the dynamics of each component, specifically the LTI system, the FFC filter, and the

ChR/NpHR actuation, are accurately represented.

3.3 General limitations

One important limitation of the proposed framework is its reliance on the opsin dynamics obtained from a previously

published study [18]. These dynamics, while providing a solid foundation, may not exactly match the true biological

behaviour under varying experimental conditions. Consequently, the inverse model included in the controller may only

partially represent these dynamics, potentially affecting control accuracy. This issue, and similar aspects, has been addressed

in a related review study by the authors [6]. Additionally, the following broader limitations inherent to the LTI-based

control method when applied to theW-C model can be mentioned. Firstly, the framework may not fully capture unmodelled

dynamics or external disturbances, as LTI-based approaches are sensitive to model inaccuracies. This limitation could

lead to degraded performance in scenarios where the system is exposed to unknown perturbations or parameter variations.

Secondly, the W-C model, while computationally efficient and biologically inspired, abstracts complex neural dynamics

into a low-dimensional framework. This abstraction might overlook critical higher-dimensional dynamics present in real

neural circuits, which could influence the overall system behaviour and control performance. Lastly, the proposed control

approach does not include adaptive mechanisms or strategies to handle unexpected changes in neural dynamics, limiting

its resilience under non-ideal conditions.

4. Illustrative example: Reference tracking control using real brain signals

This section presents an example of reference tracking control tackled by the W-C model coupled with actuation

channels. In this example, the controlled closed-loop system should track experimentally acquired signals from real brain

activity. These reference signals, denoted as s1(t), s2(t), and s3(t), are LFPs from mice motor cortex, as discussed in [23].
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These signals, offer key insights into neural dynamics and present a realistic challenge for the control framework due to

their distinct temporal and spectral characteristics. Particularly, the main features of the reference signals are found in their

spectral content. Specifically, s1(t) has two prominent peaks in the frequency domain, located at approximately 10 Hz and
20 Hz; s2(t) exhibits two primary components around 1 Hz and 7 Hz; and s3(t) features a significant spectral peak at 3 Hz.
Figure 7a1–3 illustrates the traces of s1(t), s2(t), and s3(t), capturing the temporal variations of the brain signals, where
the time-domain signals are represented as xV, indicating a scaled magnitude of the acquired signal in volts.

x
x

x
V

V
V

1

2

3

S (f)1 S (f)2 S (f)3

Figure 7. Reference signals considered for tracking. (a1–3) Time domain traces of s1(t), s2(t), and s3(t), respectively. (b) Normalised Fourier transforms
of s1(t), s2(t), and s3(t), showing key frequency components.

Figure 7b shows the corresponding normalised Fourier transforms of these signals (unitary magnitude), clearly

identifying their key frequency components. The normalisation to one in Figure 7b allows for easier comparison across the

different signals and highlights the prominent spectral peaks that play a crucial role in designing the control strategy.

4.1 Controller design

4.1.1Opsin dynamics and feedforward control

To implement the controller based on these reference signals, the dynamics of optogenetic actuators are considered.

These opsins are light-sensitive proteins used to modulate neuronal activity by either exciting or inhibiting specific neuronal

populations in response to light stimuli.

The frequency response of the opsin channels, taken from [18], which captures the dynamics of how they react to

light inputs, is approximated and shown in Figure 8. For simplicity, only the frequency response of ChR is depicted, as

the response of NpHR is similar and omitted for clarity. The feedforward compensator (FFC) is applied to precondition
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the input signal to ensure better control performance. As explained in Section 3, considering the opsin first order transfer

function

O(s) =
2π ×100

(s+2π ×100)
, (16)

and choosing FFC block as

FFC(s) =
2.0480×108O−1(s)

(s+7000)2 , (17)

effectively cancels the opsin pole, while adding faster poles to modify the overall frequency response, allowing the control

system to track the reference signals more accurately. Figure 8 shows the Bode plots of both the opsin dynamics and the

FFC, along with the coupled opsin plus precompensation frequency response, highlighting the adjustments made to the

frequency response to improve tracking across the frequency ranges of interest.
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Figure 8. Frequency response of the opsin dynamics and precompensation using the feedforward compensator (FFC). The frequency response for ChR is
shown, with NpHR assumed to exhibit similar behaviour.

4.1.2WC dynamics and feedback control

The values of τE and τI are physiologically constrained to be positive, ensuring that the LTI system G(s) is inherently
stable and has minimum phase characteristics. Furthermore, since the interaction between subpopulations is captured

within the sigmoid functions (represented by the input term uLTI), the formulation in (4) effectively decouples the state
variables E and I. As a result, this system structure is suitable for control synthesis approaches tailored to open-loop stable

systems, allowing for the independent design of single-input, single-output (SISO) controllers KI and KE for each state

variable. These controllers modulate the inputs uE and uI , and subsequently the inputs P and Q, which in turn shift the
activity levels of the corresponding sub-populations to achieve the desired output behaviour as expressed in (8).

The proposed controller design is built upon the internal model control (IMC) framework for stable systems [38]. The

controller structure employs q-parameterisation, represented as:

KLTI(s) = q(s) [I −q(s)G(s)]−1 , (18)

where q(s) is given by:

q(s) = F(s)G(s)−1. (19)

Here, F(s) is the design parameter, chosen as a low-pass filter to ensure stability and render q(s) realisable. The resulting
closed-loop transfer function, also known as the complementary sensitivity function, is:

T (s) = q(s)G(s) = F(s). (20)
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To track specific reference signals within a desired frequency bandwidth, F(s) is selected to achieve unity gain in that
range. For example, F(s) = 500

s+500 ensures T ( j2π × 10Hz) ≈ 0dB. Applying this F(s) in the above framework yields
stabilising controllers in the following form:

KLTI(s)
4
=

[
KE(s) 0

0 KI(s)

]
=

[
5(s+1)

s 0
0 10(s+0.5)

s

]
. (21)

The chosen F(s) reflects the assumption that the system requires precise reference tracking in a specific bandwidth while

maintaining stability. This ensures robustness to potential modelling inaccuracies.

These controllers, designed as discussed earlier, are integrated with the inverse sigmoid function and the state

estimation process to form a nonlinear controller. These outputs of the controller,
[
uE uI

]ᵀ
, can then be applied optically,

through the FFC structure, as shown in Figure 4.

4.2 Simulations

In this section, the closed-loop pattern synchronisation problem, to illustrate the effectiveness of the proposed control

framework, is studied. The patterns analysed correspond to brain rhythms categorised by their oscillation frequencies.

This example specifically highlights cross-frequency coupling [39], showcasing a top-down interaction among different

frequency bands: low-frequency delta oscillations (between 1 Hz and 3 Hz), represented by s3(t); theta oscillations (ranging
from 4 Hz to 12 Hz), denoted as s2(t); and high-frequency gamma oscillations (up to approximately 100 Hz), indicated by
s1(t). The theta rhythm is known to modulate the gamma power of intracortical LFP [40], acting as a transient coordination

mechanism across different brain regions [41], which is crucial for cognitive communication. Notably, deficits in this

coupling have been associated with conditions such as Alzheimer’s disease [42], highlighting the potential of the presented

strategy as a therapeutic avenue.

4.2.1Closed-loop performance analysis: Dual vs. single opsin control scenarios

In this illustrative example, the closed-loop performance is studied under two distinct scenarios. In the first scenario,

both excitatory and inhibitory opsins (ChR and NpHR) are utilised in the control loop, allowing the system to modulate

neural activity by either exciting or inhibiting neuronal populations as required by the reference signals. In the second

scenario, only the excitatory type opsin (ChR) is considered, with the action of the inhibitory opsins (NpHR) being

cancelled. This comparative assessment methodology provides a clear understanding of the performance and its limitations

when control is exerted through a single-type opsin. By contrasting these two scenarios, the analysis explores the full

potential of using both excitatory and inhibitory channels for richer control and the trade-offs associated with relying on

only excitatory drive in the feedback loop.

The results are firstly presented when considering both excitatory and inhibitory opsins, as shown in Figure 9. The

outcomes in Figure 9a illustrate the closed-loop response of the system when forcing s1(t), the one in Figure 9b corresponds
to signal s2(t), and the one in Figure 9c represents the response using s3(t). The reference signal for each subpopulation
rE , rI is designed based on the assumption that the output LFP is modelled as the weighted summation of both activities,

that is y(t) = E − I. Therefore the rE (rI) is used to conform the positive (negative) part of the desired signal to be forced

in the system. Consequently, in Figure 9, the resulting reference signal, defined as the difference rE − rI , is depicted with

a dashed black line, while the closed-loop output y(t) = E − I is shown with a grey solid line. When both opsins are

considered, the system demonstrates a remarkable level of performance, effectively replicating the primary oscillatory

components present in the reference signals. Furthermore, the high-frequency components, potentially regarded as noisy

exogenous factors, are effectively filtered out from the system output, showcasing the robustness of the implemented

control methodology despite noise interference.

In contrast, the performance of the system when only excitatory opsins are utilised, as presented in Figure 10, is

assessed.
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Figure 9. Results considering both opsins for the three reference signals s1(t), s2(t), and s3(t).

Figure 10. Results considering only excitatory opsins for the three reference signals s1(t), s2(t), and s3(t).

The structure of Figure 10 is similar to the case of Figure 9, with the top (a), middle (b), and bottom (c) plots

corresponding to reference signals s1(t), s2(t), and s3(t), respectively. Although the system can successfully replicate

the fundamental oscillatory behaviour (reference) with excitatory opsins, limitations arise in accurately reproducing

Journal of Electronics and Electrical Engineering 74 | Sebastián Martínez, et al.



the complete oscillatory profile, particularly showing saturation effects during some half-cycles of the response. It is

hypothesised that this limitation is due to the inability of driving the voltage to hyperpolarised values relying on the

excitatory coupling alone. It is especially pronounced for reference signals s2 and s3, while for s1(t) this effect can be
virtually neglected.

In addition, to assess the tracking performance of the proposed control strategy, simulations are conducted using

sinusoidal reference signals with varying amplitudes and frequencies. The input reference signals were defined with

amplitudes ranging from 0.1 to 1 V and frequencies between 1 Hz and 100 Hz. Each simulation is executed for a duration

of 1 s with a sampling time of Tm = 10−4 s.

The tracking error is defined as e(t) = y(t)− r(t), with y(t) and r(t) the closed-loop output and the desired reference
signal, respectively. The mean squared error (MSE) [43], computed for each simulation as:

MSE=
1
N

N

∑
i=1

e(i)2, (22)

where N is the total number of data points, and e(i) represents the error at each time step i, quantifies the cumulative
tracking error. Thus, the MSE metric is used as the primary performance metric to evaluate the control system’s tracking

ability. If the control strategy could achieve perfect tracking, the system output would be identically equal to the input,

achieving zero error accordingly. However, in practice, discrepancies arise during both transient and stationary regimes of

the system, making the MSE metric particularly useful to capture performance issues over time.

Figure 11 shows the MSE as a function of both frequency and amplitude, providing a comprehensive view of the

system’s performance across the specified range of operating conditions.
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Figure 11. MSE of the tracking performance as a function of frequency (1 Hz to 100 Hz) and amplitude (0.1 V to 1 V), presented in its original linear
scale. The red curve highlights the system’s response for a fixed amplitude of 0.7 V.
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In particular, the red curve highlights the tracking performance of the system for a fixed amplitude of 0.7 V, allowing

for comparison across different frequencies while holding the amplitude constant.

To enhance the visualisation of the MSE, the error metric was also expressed in decibels (dB), as shown in Figure 12.
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Figure 12. MSE of the tracking performance as a function of frequency (1 Hz to 100 Hz) and amplitude (0.1 V to 1 V), presented in decibels (dB). The
red curve highlights the response of the system for a fixed amplitude of 0.7 V.

The transformation to a logarithmic scale is commonly used in signal processing to compress large dynamic ranges

and provide more intuitive insights into relative error levels. Presenting the MSE in dB compresses the error range, making

small variations easier to detect and highlighting performance trends, particularly at low amplitudes, which are harder to

see on a linear scale. The MSE in dB provides clearer insight into these variations, particularly at lower frequencies where

the tracking error is minimal but still significant.

It can be seen in Figures 11 and 12, that the system maintains good tracking performance across a wide range of

frequencies and amplitudes. However, as the frequency increases, the MSE generally rises, indicating that the control

system struggles to maintain precise tracking at higher frequencies. This behaviour is consistent across all amplitudes,

although the magnitude of the error varies depending on the input signal amplitude.

5. Conclusions

This study presents a neuromodulation approach including the following contributions. First, a novel robust approach

to closed-loop control is proposed by integrating the W-C model with optogenetic actuation dynamics. Second, the

implementation of an extended Kalman filter for state estimation, enables a nuanced understanding of the dynamics

involved in neural modulation, and suggests that epiphenomenal measurements such as local field potentials (LFPs) are

enough to decode internal states. Third, by leveraging both excitatory (ChR) and inhibitory (NpHR) opsins within a control
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framework, the research demonstrates the potential for inducing specific brain rhythms with high precision, based on real

neural activity data. Fourth, the illustrative example effectively contrasts the performance of dual vs. single opsin-type

control scenarios, revealing significant differences in tracking capability and overall efficacy.

The findings underscore the limitations of using only one opsin type, such as ChR, in the feedback loop, which may

compromise the ability of the system to respond appropriately to varying reference signals. The comparative analysis

emphasises the advantages of a dual opsin approach, paving the way for more sophisticated modulation strategies that can

better mimic natural neural behaviours.

This methodology not only addresses the complexities of neural interactions but also highlights the necessity of

incorporating both excitatory and inhibitory channels to achieve increased performance in closed-loop systems. Furthermore,

the addition of an estimation framework for the system states reduces the gap between this preliminary study and a practical

implementation of the control methodology, demonstrating that direct state measurements are not necessary.

To further support the robustness of the proposed control strategy, the tracking performance is evaluated across

varying frequencies and amplitudes. The results demonstrate that the system maintains good performance across a wide

range of conditions, although higher frequencies lead to increased MSE, indicating challenges in precise tracking at these

frequencies as a limitation. These findings underscore the versatility and effectiveness of the control strategy across

dynamic scenarios.

It is important to note that, the proposed ad-hoc nonlinear methodology combines dynamic inversion and robust

control, tailored for neurophysiological systems. While broader comparisons, such as with unfalsified control [44], are

beyond this study’s scope, stability and robustness analyses confirm the effectiveness in this specific context of the presented

approach.

Ultimately, the incorporation of realistic experimental setups into the control design marks a critical advancement

in the field of closed-loop neuroscience. Future work will focus on refining the control strategies, expanding the range

of applications for this framework, and exploring the translation of these findings into clinical settings. By integrating

control system theory with neurophysiology, this study lays the groundwork for further innovations in the treatment of

neurological disorders, enhancing our understanding of brain function through precise modulation techniques.
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