
Journal of Electronics and Electrical Engineering

https://ojs.wiserpub.com/index.php/JEEE

Research Article

Fast and Scalable Simulation Framework for Intensive PowerElectronics

Simulation through Advanced Computing Techniques

Cayden Wagner1*, Yi Li2, Shuangshuang Jin1 , Zheyu Zhang3 , Christopher Edrington2

1School of Computing, Clemson University, Clemson, SC, USA
2Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
3Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

E-mail: caydenw@g.clemson.edu

Received: 16 October 2024; Revised: 3 January 2025; Accepted: 6 February 2025

Abstract: Power electronics are widely used in power and energy systems, such as electrified transportation and renewable

energy systems. These systems are increasing related simulations’ size and complexity, resulting in longer computation

times. Advanced computing techniques offer new tools for efficient simulation while designing and simulating complex

energy systems. This paper introduces high-performance computing for intensive power electronics simulation and

demonstrates resultant simulation speedup in a quantified and scalable manner. First, a quantitative study is performed to

compare a slower-than-real-time (STRT) simulation benchmark and the proposed faster-than-real-time (FTRT) simulation

through a single power electronics building block (PEBB) case study. The impact of switching frequencies in the range of

tens to hundreds of kHz considering wide bandgap (WBG) power semiconductors is also investigated. The simulation

speed is observed to be accelerated by a factor of 43.8 when using high-performance computing techniques compared to the

sequential-based simulation benchmark. Next, a scalable simulation framework is proposed for expanding a single PEBB

to an energy system consisting of multiple PEBBs. The framework leverages the high-performance programming language

Julia with multi-threaded parallel computing capabilities to reduce the computational burden of power system simulation.

The performance gains from the case study demonstrate an average speedup of 2540 times in a 15.0 s multi-PEBB simulation

case study compared to its baseline version, with maintained simulation accuracy and ensured scalability.

Keywords: power electronics, power electronics simulation, high-performance computing, simulation speedup, faster-than-

real-time simulation

Abbreviation

Symbol/Term Description

VLL Line-line root mean square (RMS) voltage

VDC Direct current (DC) link voltage

id,iq Direct and quadrature currents in the dq domain

vd,vq Direct and quadrature AC voltages

ia,ib Phase currents in the ABC domain

Copyright ©2025 Cayden Wagner, et al.
DOI: https://doi.org/10.37256/jeee.4120255919
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Journal of Electronics and Electrical Engineering 270 | Cayden Wagner, et al.

https://ojs.wiserpub.com/index.php/JEEE
https://ojs.wiserpub.com/index.php/JEEE
https://www.wiserpub.com/
https://orcid.org/0000-0002-9145-8206
https://orcid.org/0009-0009-7525-0198
https://doi.org/10.37256/jeee.4120255919
https://creativecommons.org/licenses/by/4.0/

SAH,SAL Switching functions of the upper and lower switches in phase A

SBH,SBL Switching functions of the upper and lower switches in phase B

SCH,SCL Switching function combinations (e.g., SAB, SBC, SCA)

PMSM Permanent magnet synchronous motor

ω r Rotor angular speed

Jm Mechanical inertia of the rotor

Bm The friction coefficient of the rotor

φm Permanent magnet flux

dd,dq The duty cycle for direct and quadrature components in the control scheme

iDC DC load current

TL Load torque

A,B Coefficient matrices representing system parameters in state-space equations
→→→
X

Intrinsic variables (id, iq, vDC) as AC currents in the dq domain and DC voltage for

rectifier

→→→
u

Disturbance variables (vd, vq, iDC) as the AC input voltages in the dq domain and DC

load current for rectifier

STRT Slower-than-real-time simulation speed

FTRT Faster-than-real-time simulation speed

HPC High-performance computing

PEBB Power Electronics Building Block

WBG Wide Bandgap (semiconductors)

1. Introduction

The trend for the penetration of power electronics-enabled power and energy systems to decarbonizing society is

irreversible. It is happening in areas such as electrified transportation, power grids with abundant renewable resources, and

many others [1, 2, 3]. As a fundamental technique for designing and operating such a system, high-fidelity modeling with

high-speed simulation is essential. Today’s solutions always compromise between simulation time and accuracy, even

with a limited number of power electronics converters in the system, which could be more challenging for next-generation

power electronics intensive systems [4, 5].

Power Electronics Building Blocks (PEBBs) are platform-based systems built on reliable, modular components.

PEBBs feature defined functionality, standardized hardware, and control interfaces, making them highly versatile and

widely adopted across various applications. This standardization enables high-volume production while minimizing

engineering effort [6].

The core idea of the PEBB concept is to create an integrated structure for energy conversion devices. Figure 1

illustrates an example of a PEBB circuit, where the chosen topology supports different energy conversion processes (e.g.,

rectification and inversion) by implementing control algorithms. PEBBs significantly simplify the simulation of power

electronics-intensive systems using graphical commercial tools or custom algorithmic models utilizing mathematical

equations.

Simulation is a tool that uses circuit theory to show the behaviors of an electric circuit. Researchers have adopted

commercial tools with built-in toolboxes and power electronics circuit simulation models from component to system [7]. It

includes (1) the PSIM software package at the system level to integrate the entire energy and power system with relatively

low fidelity power electronics models; MATLAB/Simulink serves as a platform for system and power electronics simulation,

utilizing its integrated graphical block diagram capabilities; (2) the PLECS software tool at the power electronics level,

providing dedicated toolboxes for power electronics and component simulation with analog and digital control schemes;

(3) Synopsys Saber with many detailed component behavior models for power electronics circuits simulation; (4) Spice,

like Saber, with better library availability for power electronics circuits simulation, including detailed component models;

Volume 4 Issue 1|2025| 271 Journal of Electronics and Electrical Engineering

(5) ANSYS and other finite element analysis (FEA) simulation tools with the physics-informed model for multi-domain

simulation. Overall, the tradeoff between simulation time and accuracy always exists for these simulation tools.

Figure 1. Example PEBB topology

To address the increasing downtime while waiting for simulations to finish, computer science/engineering design

concepts can be leveraged to increase simulation speed while maintaining accuracy. High-performance computing (HPC)

is one such advanced computing technique employed by the computer science community to improve the “speed of a

simulation.” When referring to the “speed of a simulation,” three main terms describe speed. The first and more common

type, seen in yet-to-be-optimized simulation setups, is slower-than-real-time (STRT) simulation, where each simulation step

requires more time to execute than the actual time step being simulated. These setups are not acceptable if the execution

time of the simulation is an essential factor to the researcher, such as multi-objective converter optimization with extensive

design variables, reliability assessment considering lifetime operation, or electric power and energy systems consisting

of many interface converters. Next, and quite common, are real-time simulations, which, as the name suggests, run in

parallel to the elapsed real time. These types of simulation are common in hardware-in-the-loop (HIL) simulation setups

[8]. As these setups are usually commercial products, relying on specialized hardware and licensed software, there is

generally no room for further speedup by operators. Lastly, this paper focuses on faster-than-real-time (FTRT) simulation

[8]. These simulations can run multiple simulated time steps in an equivalent span of real-time. The main advantage of

FTRT simulation is that it takes significantly less time to produce the same results as the STRT simulation. For example,

the researcher can run longer stability and reliability simulations or decrease the development time of a power electronics

system by reducing wait times for a simulation to complete.

This paper is a revision of [9] with significant additions. This paper uses a direct current (DC) based electrical system

consisting of multiple power electronics converters, as shown in Figure 2. It starts with a single power electronics device

using the PEBB concept. A quantitative simulation comparison between the sequential-based STRT benchmark and the

proposed FTRT simulation is performed, including a brief introduction of the methodology and the results. In addition,

to engage more power electronics converters, as practical implementations shown in Figure 2, more than one PEBB

simulation is essential. This paper then extends the results of a single PEBB to conduct a PEBB-based energy system. A

generic equation is derived based on the standardized PEBB as a foundation to build the STRT simulation model. Finally,

a parallel computing technique is adopted to form a scalable FTRT simulation framework. According to this methodology,

a case study is presented, demonstrating not only the simulation speedup of a single converter but also the scalability of the

simulation framework for a converter-intensive energy system.

Journal of Electronics and Electrical Engineering 272 | Cayden Wagner, et al.

Figure 2. Intensive power electronics in a DC-based energy system

This paper is organized as follows: Section 2 introduces a single PEBB simulation, Section 3 presents a multiple-

PEBB-based simulation for a DC-based energy system, and finally, a conclusion is given in Section 4.

2. Single PEBB simulation

2.1 Methodology

Taking a three-phase, two-level voltage source converter as an example illustrated in Figure 3a, a single PEBB

modeling and simulation can be implemented in the following means: (1) graphical user interface STRT simulation tools,

which are widely used for simulating power electronics system (e.g., MATLAB/Simulink), (2) numerical or analytical

models are derived from circuit analysis equations and solved using either an ordinary differential equation (ODE) solver

or algebraic calculations, and (3) code based model using HPC techniques for FTRT simulation leveraged by the numerical

and analytical equations without structural change. Accordingly, a quantitative comparison study is performed based on

this same PEBB under a given operating condition.

Figure 3. PEBB-based energy system: (a) single PEBB configuration and (b) high-level illustration of the simulation framework using parallel computing,
considering communication

Volume 4 Issue 1|2025| 273 Journal of Electronics and Electrical Engineering

The methodology for conducting a quantitative comparison study is illustrated in Figure 4. It begins with a benchmark

STRT model implemented in MATLAB/Simulink, followed by the development of numerical and analytical models.

Notably, the numerical and analytical models were initially implemented using MATLAB .m code and subsequently in

Julia. Julia is a scientific computing language that happens to be a compiled language, contributing to its competitive

efficiency [10].

Figure 4. Single PEBB quantitative comparison study methodology

2.1.1Benchmark model using MATLAB/Simulink

Following the example PEBB configuration in Figure 3a, the sequential-based model using MATLAB/Simulink is

designated as the benchmark with the circuit-based functional block provided in the MATLAB/Simulink toolbox.

2.1.2Numerical & analytical model using MATLAB .m code

In the numerical model, following a generic equation in Figure 4 and a specific expression of this case study in

Equation (1), at the given simulation step, the combination of switching functions associated with individual power devices

in the PEBB configuration determines a specific linear circuit consisting of source, load, and passive components. Then,

based on the circuit analysis, the coefficient matrices A and B in the space state equations can be fixed, allowing the

equations to be solved numerically using an ODE solver. Going one step further, the analytical model can be formulated

explicitly based on the derived equations, as shown in Figure 4, which provide the same level of accuracy and a more

computationally efficient mean than the numerical model.

2.1.3Measurement of execution times

An explanation of how execution times were measured for both single and multi-PEBB systems can be found in

Section 3.1 under Setup and Measurement of Execution Times.

[
ia
ib

]
=

[
−Ra

La
0

0 −Rb
Lb

][
ia
ib

]
+

[
SLL
La

SLL
Lb

]
vDC (1)

2.2 Case study

Based on the outlined methodology, a case study is conducted using the parameters listed in Table 1, evaluating three

tiers of switching frequencies: (30, 100, 300) kHz. The simulation runs for a duration of ten milliseconds (ms).

Mathematical modeling employs numerical and analytical approaches, which rely on the switching functions of

individual power devices and circuit analysis. The switching functions of upper and lower switches in the three phases

determine the SLL(Sab, Sbc, Sca) in Equation (1), resulting in eight possible combinations (i.e., eight cases in total). After

formulating the equation for each case, the ODE solver is used to solve the corresponding state-space equations.

Journal of Electronics and Electrical Engineering 274 | Cayden Wagner, et al.

Table 1. Parameters for the PEBB simulation

Line-line rms voltage Power rating Dc voltage Fundamental frequency Load

230 V 10 kW 750 V 60 Hz LR load with 0.9 power factor

Table 2 lists all eight cases and the corresponding switching functions SAH, SAL, SBH, SBL, SCH, SCL, as well as the

derived SAB, SBC, SCA (i.e., SLL in Equation (1)) where SAH represents the switching function of the upper switch in A phase,

SAL represents that of the lower switch in A phase, and so on.

Table 2. Combination of switching functions in PEBB case study

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

SAH On On Off Off On On Off Off
SAL Off Off On On Off Off On On
SBH On Off Off Off On Off On On
SBL Off On On On Off On Off Off
SCH On On On Off Off Off On Off
SCL Off Off Off On On On Off On
SAB 0 1 0 0 0 1 −1 −1
SBC 0 −1 −1 0 1 0 0 1
SCA 0 0 1 0 −1 −1 1 0

A circuit analysis process is then conducted. Once the switching functions (i.e., on/off) at the given simulation step

are determined, the PEBB forms a specific linear circuit consisting of source, load, and passive components, which could

be derived as differential equations and state space representations. In detail, the equations for each case are summarized

in Table 3, following the generic format in Equation (1) with the specific SLL values derived in Table 2.

Table 3. Equations for eight cases of the example PEBB configuration

Case Equation

Case 1/Case 4

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
0
0

]
vDC

Case 2

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
1

3La

− 2
3Lb

]
vDC

Case 3

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
− 1

3La

− 1
3Lb

]
vDC

Case 5

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
1

3La
1

3Lb

]
vDC

Case 6

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
2

3La

− 1
3Lb

]
vDC

Case 7

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
− 2

3La
1

3Lb

]
vDC

Case 8

[dia
dt
dib
dt

]
=

[
− Ra

La
0

0 − Rb
Lb

][
ia
ib

]
+

[
− 1

3La
2

3Lb

]
vDC

2.3 Results

The first comparison is conducted among three models: MATLAB/Simulink (used as the benchmark), MATLAB .m

code with a numerical model and DOE solver, and MATLAB .m code with an analytical model, all evaluated at a switching

frequency of 30 kHz.

Volume 4 Issue 1|2025| 275 Journal of Electronics and Electrical Engineering

As summarized in Table 4, the numerical solution executes the simulation in half the time the benchmark model

requires. Furthermore, the analytical solution achieves an impressive execution speed, running 50 times faster than the

benchmark.

Table 4. MATLAB/Simulink benchmark vs. MATLAB .m code

Version Execution time

MATLAB/Simulink (Benchmark) 3624 ms (1.00x)
MATLAB .m code Numerical solution 1303 ms (2.78x)
MATLAB .m code Analytical solution 80 ms (45.30x)

The benefits of creating a power electronics simulator using advanced computing techniques implemented using

the Julia language are further explored. Additionally, simulations at two higher switching frequencies (100 and 300

kHz) are conducted to assess the impact of high-frequency power conversion systems enabled by emerging WBG power

semiconductors.

Table 5 summarizes the results, which are also illustrated in Figure 5. The findings show that Julia’s parallel solution

significantly reduces the execution time for numerical simulations. At a switching frequency of 100 kHz, Julia achieves an

execution time that is 18.43 times faster than the MATLAB-based solution using .m code. At 300 kHz, this improvement

increases to 43.84 times faster than MATLAB.

Even when analyzing the analytical solution, Julia demonstrates a substantial performance advantage over MATLAB,

simulating at least 18 times faster for both 100 kHz and 300 kHz switching frequencies.

Table 5. MATLAB .m code vs. HPC Julia language

Version
Execution time

MATLAB .m code Julia Julia parallel

Numerical solution
30 kHz

1303 ms
(1.0x)

147 ms (8.8x) 68 ms (19.2x)

100 kHz
7691 ms
(1.0x)

503 ms (15.3x)
417 ms
(18.4x)

300 kHz
63,922 ms
(1.0x)

1511 ms (42.3x) 1458 ms (43.8x)

Analytical solution
30 kHz

80 ms
(1.0x)

3 ms (30.7x) N/A

100 kHz
150 ms
(1.0x)

8 ms (18.3x) N/A

300 kHz
584 ms
(1.0x)

25 ms (23.7x) N/A

Figure 5. Comparison between MATLAB and Julia

Journal of Electronics and Electrical Engineering 276 | Cayden Wagner, et al.

Some key findings that emerge from the results require more illumination: (1) Execution time decreases significantly

when transitioning from MATLAB to Julia without significant modification of the existing code architecture. This

improvement stems from Julia being a compiled language, inherently faster than MATLAB, an interpreted language.

Additionally, Julia offers superior memory management compared to MATLAB. When a program uses more memory,

the limited capacity of fast memory (e.g., cache) is exhausted, forcing the program to rely on slower (main) memory,

which reduces performance. This difference in memory management is another reason for Julia’s faster execution. (2)

The computational advantages of Julia’s parallel implementation decrease as switching frequency increases, primarily

due to slow memory bottlenecks. At higher switching frequencies, the simulation generates more data than can fit into

fast memory, resulting in a reliance on slower “main” memory, which negates the parallel speedup observed at lower

frequencies, such as 30 kHz. This behavior also explains the observed performance improvement exceeding the theoretical

2× speedup between sequential and parallel Julia implementations. Within a computer’s fast memory, there are three cache

levels (L1–L3). Splitting a system of differential equations across multiple CPU cores effectively doubles the program’s

access to the L1 (primary) cache, the fastest memory level, leading to more significant speedups. One possible solution to

this issue would be to concurrently extract old data to the main memory or filesystem, freeing up cache space.

3. Multiple-PEBB-Based system simulation

3.1 Methodology

This section focuses on the performance and scalability of the multiple-PEBBs-based DC energy system, as illustrated

in Figure 3b, with the following methodology.

3.1.1Model generalization

The PEBB concept, with its fixed topology, simplifies modeling for various energy conversion scenarios by

standardizing intrinsic, control, and disturbance variables. This allows for the creation of a universal model using

state-space equations. PEBBs enable standardized power electronics hardware and their simulation through generalized

models. As a result, a foundational PEBB can be designed and implemented for universal parallel computational simulation.

This approach benefits designers by reducing design complexity, facilitating time-efficient modeling, and enabling scalable

power electronics-intensive energy systems simulation.

Power electronics circuits can be defined using differential equations derived from average modeling techniques and

abc/dq coordinate transformation. The equations can be rearranged into a standardized format represented by Equation (2)

for specific energy conversion scenarios, such as rectification and inversion. In this format, the parameters
→→→
X represent

intrinsic variables (e.g., (id, iq, vDC as AC currents in the dq domain and DC voltage for a rectifier),
→→→
u denotes disturbance

variables (e.g., (vd, vq, iDC as AC input voltages in the dq domain and DC load current for the rectifier). The matrices A

and B contain coefficients related to power stage parameters (e.g., inductance L and capacitance C) and control variables

(e.g., duty cycles dd and dq).

→̇→→
X= A•

→→→
X+B•→

→→
u (2)

3.1.2Model implementation

PEBBs, by nature, can be easily separated computationally with a partial coupling of converters through an information-

sharing channel, as seen in Figure 3b. This approach is highly scalable in both design complexity and parallel computational

viability. In this case, design complexity and computational viability refer to how easily a new PEBB adds to the simulation

and how much slowdown will occur because of this latest addition.

As mentioned, the PEBB concept is promising for creating a scalable power electronics-based architecture that lends

itself to parallel code execution. The approach for designing such a framework and scalable system for simulation is

Volume 4 Issue 1|2025| 277 Journal of Electronics and Electrical Engineering

analogous to the design of a power electronics system. The PEBBs are considered CPU threads/cores, and the wiring or

connections between PEBBs are represented as communication channels. These virtual communication channels allow the

PEBBs to affect each other much in the same way as a physical connection. This analogy can be visualized by observing

Figure 6a as the physical model and Figure 6b as the abstracted simulation model of Figure 3b. Virtual communication

channels also allow for parallel execution, as the PEBBs no longer need to be on the same CPU thread to share information.

Consequently, as long as more CPU threads are available to add more PEBBs, the simulation will not slow down appreciably

compared to a sequential single-threaded simulation.

Figure 6. Power electronics building block configuration: (Left: a) electrical diagram (Right: b) modeling diagram with parallel computing

3.1.3Scalability design

An essential aspect of this PEBB simulation study is testing a simulation platform’s scalability. Scalability in this

context is the ability of a simulation to add more PEBBs without a noticeable increase in execution time. If a two-PEBB

simulation is conducted, this setup can give a sense of how scalable a simulation will be in real-world applications.

3.1.4Setup and measurement of execution times

To test the performance improvement when using Julia and the parallel PEBB simulation, two simulation periods,

a half-second (0.5 s) and 15-second (15.0 s) simulation span, are evaluated on all relevant models. Each model has

been run 15 times to create a representative mean execution time. Each PEBB is tested individually (labeled “Isolated”

below), tested while communicating data and running sequentially (labeled “Combine Sequential” below), and tested while

communicating data and running in parallel (labeled “Combine Parallel” below). The data are gathered for MATLAB and

Julia on every test configuration mentioned above. All other simulation and program parameters are kept constant for

the version of the simulation tested. The hardware and operating system are also kept constant. The operating system is

Windows 10 Pro, and the CPU is a 12th Gen Intel i7-12700KF. For the software, Julia version 1.6.5 and MATLAB R2021b.

One crucial constraint is imposed due to time and difficulty: no parallel implementations are created in MATLAB due

to the difficulty of creating parallel code in MATLAB compared with Julia.

Lastly, the software used to measure the execution times of all simulation models differs between MATLAB and Julia

but remains equivalent in function. For MATLAB, the built-in tic and toc functions were used within the code to measure

and record the execution time. In Julia, a macro called @btime from the software package called BenchmarkTools was

used.

3.2 Case study

This section starts with an architecture with two PEBB devices, as shown in Figure 7. One PEBB is for AC/DC

rectification conversion to form a DC link as a rectifier. The other PEBB is a conversion unit for DC/AC inversion, linking

Journal of Electronics and Electrical Engineering 278 | Cayden Wagner, et al.

a permanent magnet synchronous motor (PMSM) as the AC load. Both PEBBs are designed based on the topology in

Figure 3a. In this case study, an average PEBB model is adopted.

Figure 7. Architecture of the simulation setup used for testing

Considering the PEBB topology in this case study, Equations (3) and (4) show the state space equations of the rectifier

and inverter plus PMSM, respectively. These equations are derived based on the average model of PEBB, considering the

abc/dq coordination transformation following the format expressed in Equation (2). The intrinsic variables
→→→
X include AC

currents in the dq domain, id and iq. In addition, for rectification-based PEBB, DC link voltage vDC is another intrinsic

variable, while for inversion-based PEBBs with a PMSM, one more intrinsic variable is included: the angular speed of the

rotor ω r. Regarding the disturbance variables
→→→
u , the rectifier in Equation (3) includes AC input voltages vd, vq and DC

load (i.e., the inverter in this case study) current iDC. Also, the inverter and PMSM in Equation (4), DC link voltage vDC

regulated by the rectifier and torque TL are considered.

did
dt

diqq
dt

dvDC
dt

=

 0 2π f − dd
3L

−2π f 0 − dq
3L

dd
C

dq
C 0

 id

iq
vDC

+

 1
3L 0 0
0 1

3L 0
0 0 −1

 vd

vq

iDC

 (3)

did
dt
diq
dt

dωr
dt

=

−Rs
Ls

2π f 0
−2π f −Rs

Ls

−ϕm
Ls

0 3p2ϕm
2Jm

−Bm
Jm

 id

iq
ωr

+

dd
Ls

0
dq
Ls

0
0 −p

Jm

[
vDC

TL

]
(4)

Terms associated with matrices A and B in Equation (2) in this case study include DC link capacitance C and AC

inductor L for rectifier; stator resistance Rs, stator inductance Ls, number of pole p, mechanical inertia Jm, friction coefficient

Bm, and permanent magnet flux φ m for the inverter with PMSM; and control parameters dd and dq. One important note

is that the information channel includes DC link voltage data vDC being passed to the inverter from the rectifier and DC

load current data iDC passed to the rectifier from the inverter. iDC is determined by Equation (5) as a function of inverter

variables in the model Equation (4).

iDC = ddid + dqiq (5)

The advanced computing platform and the programming language on which these simulations are set up also play an

essential role in performance. The role of these languages is as important as the implementation of the actual simulation.

There are many languages used to simulate power electronics-based systems. This paper selects MATLAB, a widely adopted

tool used in power electronics, as the benchmark. Julia, a lesser-known but arguably more optimized high-performance

programming language for simulation, is adopted for high-speed simulation implementation [11]. Julia has many merits

over MATLAB, but the most relevant is that Julia is a compiled language. Unlike interpreted languages like MATLAB,

compiled languages enjoy significant performance improvements “out of the box” because of underlying functional

differences. Compiled languages have a larger picture of the program, whereas interpreted languages can only make

optimization decisions line by line [12]. Furthermore, Julia is designed from the ground up for easy implementation

and optimization of HPC schemes [13]. Creating fast and optimized simulations with comparatively minimal effort is

Volume 4 Issue 1|2025| 279 Journal of Electronics and Electrical Engineering

objectively more straightforward. Thus, this work chooses Julia as the prime candidate for designing highly optimized

FTRT simulations.

Comparing Julia to MATLAB, Julia does have some inconveniences surrounding initial development difficulty.

MATLAB has a built-in graphical user interface for designing circuit components like Simulink. Julia is lacking in this

area, as all circuits must be initially modeled as mathematical equations before being added to a simulation. However,

once these modeled circuits have been added, nothing stops a researcher from creating scalable and copied versions of said

circuit. This added inconvenience is more than made up in time saved when running the simulation. Advanced computing

techniques of this nature have been used in other areas, such as power systems, to increase simulation speed but not to this

degree of performance and not within the domain of power electronics.

The simulation of two PEBBs is implemented for a set amount of time during each run. The first PEBB is a rectifier

isolated on a single CPU thread. Alongside the rectifier, but tested separately on a single CPU thread, is the inverter with

PMSM. During the simulation, the two PEBBs send the necessary information to each other through a communication

channel at every timestep. This process is self-clocking, meaning that each PEBB will wait to receive information from the

others before continuing to ensure the accuracy of the generated data.

3.3 Results

As shown in Figure 8, Julia has a considerable performance increase due to its greater flexibility compared toMATLAB

when applying advanced computing concepts. Looking at the specific values of the 15.0 s Isolated Inverter Simulation

Span as an example, when no parallel or combined computation occurs, Julia provides up to a 20,992 (110,880.7 ms/5.3

ms in Figure 9) times speed increase. Focusing on the 15.0 s Combined Sequential simulation results, further performance

improvements of 1161 times speedup (417,470 ms/258 ms in Figure 10) are seen in the simulation created in Julia, making

it FTRT with a significant reduction in total execution time. The speedup in Julia simulation, when transitioning from

sequential to parallel, is between 1.45x to 1.57x, which leads to an average of 2540 times speedup ((417,470 ms/164 ms in

Figure 10) Combine Parallel) as compared to its baseline MATLAB/Simulink Sequential simulation. This differential in

speedup is expected to increase as more PEBBs are added to the simulation, and the sequential simulation begins to slow

down as the computational workload increases.

Figure 8. Experimental data produced by MATLAB Simulink and Julia (Isolated: single-PEBB-based converter–Combine: two-PEBB-based energy
system)

It is also worth noting that accuracy is tested between all simulation versions, and the mean error did not reach more

than 0.068 for any output variable observed. This is expected as the PEBB equations are algebraic and should not vary.

There is some variance due to design choices by MATLAB and Julia on how much precision to use when storing a variable

[14, 15].

Journal of Electronics and Electrical Engineering 280 | Cayden Wagner, et al.

Figure 9. Graphical representation of Figure 7: Single PEBB

Figure 10. Graphical representation of Figure 7: Combined PEBBs

Figure 11. Scalability when increasing PEBB counts

The results in this section show a conclusive narrative that MATLAB has increasingly long wait times for intensive

power electronic system simulation. At the same time, our scalable advanced computing framework can maintain an

Volume 4 Issue 1|2025| 281 Journal of Electronics and Electrical Engineering

FTRT simulation speed, as shown in Figure 11, with up to four PEBBs in an energy system. This fundamental difference

in capability comes from the design and setup of a scalable simulation while fully utilizing Julia’s advanced computing

features. Although the initial time needed to create a scalable simulation in Julia is more than the simple graphical interface

of MATLAB, it can be argued that with a large enough simulation, both in scope and duration, a researcher can reclaim

that lost time spent in development. It is also shown that the sequential execution of a simulation becomes slower and less

viable for rapid prototyping as it does not scale well in large systems. Parallel simulation solves this problem with ensured

scalability, in both design and computational complexity, of the simulation.

4. Conclusions

This paper has developed a fast and scalable simulation framework leveraging advanced computing techniques to

facilitate single PEBB and multi-PEBB-based energy system simulations. First, the performance of multiple simulation

models and frameworks is presented. We observed a significant reduction in execution time when switching from the

MATLAB benchmark model to the Julia model using advanced computing techniques. This improvement was evident in

scenarios usingWBG semiconductors with switching frequencies below 100 kHz. Additionally, the parallel implementation

of the Julia model further improves the execution time in high-switching frequency applications. Second, a fast and

scalable simulation framework is proposed, and its effectiveness is evaluated through a multi-threaded parallel PEBBs

implementation in Julia. The result shows accelerated computational performance in simulation with maintained accuracy

and ensured scalability. It can be concluded from the simulation results that HPC can help achieve FTRT simulation (2540x)

with a mean error of 0.068 as compared to the MATLAB benchmark. Also, the proposed multi-threaded parallel framework

can potentially increase the number of converters in a system with a limited simulation time increase, as evidenced by the

case study with an energy system consisting of four PEBBs.

Acknowledgments

This work was supported by the Simulation-Based Reliability and Safety (SimBRS) Program for modeling and

simulation of military ground vehicle systems, under technical services contract W56HZV-17-C-0095 with the US Army

DEVCOM Ground Vehicle Systems Center (GVSC). Distribution A. Approved for public release; distribution unlimited

(OPSEC 7236).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

[1] D. Qin, Q. Sun, R. Wang, D. Ma, and M. Liu, “Adaptive bidirectional droop control for electric vehicles parking with

vehicle-to-grid service in microgrid,” CSEE J. Power Energy Syst., vol. 6, no. 4, pp. 793–805, 2020.

[2] Z. Zhang, H. Tu, X. She, T. Sadilek, R. Ramabhadran, H. Hu, et al., “High-efficiency silicon carbide-based buck-boost

converter in an energy storage system: Minimizing complexity and maximizing efficiency,” IEEE Ind. Appl. Mag.,

vol. 27, no. 3, pp. 51–62, 2021.

[3] C. Zhao, B. Trento, L. Jiang, E. A. Jones, B. Liu, Z. Zhang, et al., “Design and implementation of a GaN-based,

100-kHz, 102-W/in3 single-phase inverter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 824–840,

2016.

[4] B. Liu, Z. Zhang, E. Jones, and F. F. Wang, “Application of GaN in hard-switching converters: Challenges and

potential solutions,” Electron. Tech., 2017.

Journal of Electronics and Electrical Engineering 282 | Cayden Wagner, et al.

[5] F. F. Wang and Z. Zhang, “Overview of silicon carbide technology: Device, converter, system, and application,”

CPSS Trans. Power Electron. Appl., vol. 1, no. 1, pp. 13–32, 2016.

[6] T. Ericsen, N. Hingorani, and Y. Khersonsky, “PEBB-power electronics building blocks from concept to reality,” in

2006 Rec. Conf. Papers-IEEE Ind. Appl. Soc. 53rd Annu. Pet. Chem. Ind. Conf., Philadelphia, PA, USA, Sept. 11–15,

2006, pp. 1–7.

[7] O. Apeldoorn, “Simulation in power electronics,” in Proc. IEEE Int. Symp. Ind. Electron., Warsaw, Poland, Jun. 17,

1996, vol. 2, pp. 590–595.

[8] X. Liu, J. Ospina, I. Zografopoulos, A. Russel, and C. Konstantinou, “Faster than real-time simulation: Methods,

tools, and applications,” in Proc. 9th Works. Model. Simul. Cyber-Phys. Energy Syst., Virtual Event, May 19–21,

2021, pp. 1–7.

[9] Y. Li, C.Wagner, C. Edrington, S. Jin, and Z. Zhang, “Quantitative analysis of accelerated power electronics simulation

using advanced computing technology,” in Proc. 2022 IEEE Appl. Power Electron. Conf. Expo. (APEC), Houston,

TX, USA, Mar. 20–24, 2022, pp. 274–278.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM

Rev., vol. 59, no. 1, pp. 65–98, 2017.

[11] M. Stanitzki and J. Strube, “Performance of Julia for high energy physics analyses,” Comput. Softw. Big Sci., vol. 5,

pp. 1–11, 2021.

[12] L. Xiao, G. Mei, N. Xi, and F. Piccialli, “Julia language in computational mechanics: A new competitor,” Arch.

Comput. Methods Eng., vol. 29, no. 3, pp. 1713–1726, 2022.

[13] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast dynamic language for technical computing,”

arXiv, 2012, arXiv:1209.5145.

[14] J. Docs, “Integers and floating-point numbers,” 2024. Accessed: Sep. 22, 2024. [Online]. Available:

https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/.

[15] MathWorks, “Integers and floating-point numbers,” 2024. Accessed: Sep. 22, 2024. [Online]. Available:

https://www.mathworks.com/help/symbolic/digits.html.

Volume 4 Issue 1|2025| 283 Journal of Electronics and Electrical Engineering

	Introduction
	Single PEBB simulation
	Methodology
	Benchmark model using MATLAB/Simulink
	Numerical & analytical model using MATLAB .m code
	Measurement of execution times

	Case study
	Results

	Multiple-PEBB-Based system simulation
	Methodology
	Model generalization
	Model implementation
	Scalability design
	Setup and measurement of execution times

	Case study
	Results

	Conclusions

