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Abstract: This paper surveys target classification techniques in radar systems, focusing on the transformative role

of artificial intelligence in enhancing detection and classification capabilities. It reviews the evolution of radar architectures,

emphasizing their design, functionality, and key parameters that drive performance. The study spans a range of approaches,

from traditional machine learning to advanced deep learning methods, including CNNs, RNNs, self-attention mechanisms,

vision transformers, and 2D-SPS. These innovations enable breakthroughs in micromotion detection, background noise

reduction, and prediction accuracy. By highlighting applications across various industries, this work provides valuable

insights to researchers and engineers, paving the way for advancements in radar technology driven by robust hardware and

sophisticated algorithms.
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Acronyms

LiDAR Light Detection and Ranging UAV Unmanned Aerial Vehicle

RADAR Radio Detection and Ranging ViT Vision Transformer

LFM Linear Frequency Modulation STFT Short-Time Fourier Transform

RNN Recurrent Neural Network PWVD Pseudo-Wigner-Ville Distribution

MHSA Multi-Head Self-Attention SPS Singularity Power Spectrum

SAR Synthetic Aperture Radar GAP Global Average Pooling

FMCW Frequency-Modulated Continuous Wave ROC Receiver Operating Characteristic

DDS Direct Digital Synthesis SINR Signal-to-Interference-plus-Noise Ratio

CNN Convolutional Neural Network DP Dynamic Programming

SF-CW Step-Frequency Continuous Wave EM Electromagnetic

PRI Pulse Repetition Interval MIMO Multiple-Input Multiple-Output

PRF Pulse Repetition Frequency DOA Direction of Arrival

TFD Time Frequency Distribution NLP Natural Language Processing

RTI Range-Time Intensity SFW Stepped Frequency Waveform
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IDFT Inverse Discrete Fourier Transform OFDM Orthogonal Frequency Division Multiplexing

FFT Fast Fourier Transform GRU Gated Recurrent Unit

MFCC Mel-Frequency Cepstral Coefficients CPI Coherent Processing Interval

PCA Principal component analysis DFT Discrete Fourier Transform

FFN Feed Forward Neural Network GELU Gaussian Error Linear Unit

LN Layer Normalization CLS Classification

MSFCA Multi-Scale Filtering and Channel Attention FOPEN Foliage Penetration

1. Introduction

Radar systems have become essential in applications such as automotive safety, healthcare, surveillance, and

environmental monitoring. Their ability to function reliably under diverse weather and lighting conditions, unlike

technologies such as cameras and lidar, makes them highly versatile. By using radio waves, radars overcome limitations

posed by environmental factors like fog or darkness, offering a robust solution for real-time sensing. Recent advancements

in radar technology have also enabled compact, cost-effective, and high-resolution systems, further enhancing their utility.

A key challenge for radar systems is accurate target classification, which is vital for applications like collision avoidance,

activity monitoring, and defence. This challenge stems from the complexity of signal reflections, interference, and clutter

in real-world scenarios. Various methods have been developed to address this, including traditional signal processing

for feature extraction, machine learning for predictive modeling, and deep learning for direct feature extraction and

classification. While deep learning has shown superior performance, it often demands high computational resources and

large datasets. This review transitions to the background and history of radar technology, tracing its evolution from early

20th-century concepts to today’s advanced systems. Initially developed for military use during World War II, radar has

since incorporated digital signal processing and phased-array technology, continuously adapting to meet the needs of

various applications. This historical progression highlights the key advancements that have enabled the development of

modern radar-based target classification techniques.

2. Background and history

Radio Detection and Ranging, abbreviated as RADAR, plays an important role in modern defence systems, air

traffic control, weather forecasting, and autonomous vehicle technology, providing critical capabilities in detecting and

tracking objects over long distances in various environmental conditions. They are much more advanced nowadays and

are also used for target imaging and classification. Radar imaging involves range and cross-range profiling, as shown

in Figure 1, to capture target details, with resolution affected by pulse width. Shorter pulses or modulation techniques

enhance accuracy, while Synthetic Aperture Radar (SAR) uses Doppler shifts for improved cross-range resolution, enabling

high-resolution imaging for applications like terrain mapping and surveillance. Antenna pattern distortion complicates

this, as shown by Gaurav et al. [1, 2], while Kumawat et al. [3] proposed methods to reduce interference and improve

multi-target image accuracy. Advanced techniques like pulse compression and polarization scattering refine imagery, aiding

automatic target recognition. All radar systems, from weather to military, share core functions—searching, tracking, and

imaging. Radar creates 2D images of 3D objects by collecting reflection data from various angles, which is then mapped

to a 2D plane, with brighter points indicating higher reflectivity. The goal is to train robust CNN models for real-world

applications. This expansion in capability extends their applications to subsurface mapping, healthcare, identifying buried

or hidden objects, and accurately recognizing them. The ability to effectively ascertain target attributes allows for timely

and informed decision-making, thereby enhancing operational efficiency and safety in multiple domains. Consequently,

target classification and the determination of attributes such as range, velocity, and angle of approach continue to be

dynamic and fast-evolving fields of research, with ongoing developments and expanding applicability across various tasks.
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Table 1 provides a structured overview of the key milestones and concepts in the development of radar technology. It

highlights the contributions of various researchers and institutions, as well as the evolution of radar from its theoretical

foundations to modern advanced systems.

Figure 1. Imaging of an aircraft using radars

Table 1. Developments in radar technology

Year Contributor(s) Key contribution/concept Significance/Impact

1865 James C. Maxwell [4] Work on EM wave propagation Laid the theoretical foundation for radar.
1886 Heinrich Hertz [5] Experimentally confirmed the existence of

EM waves
Provided the first step toward applying EM principles
in radar.

1904 Christian hulsmeyer [6] Detected a ship at a range of one mile First practical demonstration of radar principles.
1915 Robert W. Watt [7] Used radio signals to detect thunderstorms Early application of radio waves for detection.
1920s Marconi [8] Pioneering work in radio communications Influenced early radar development.
1925 Tuve et al. [9] Experiment contributing to understanding

radar’s range-measuring capabilities
Furthered understanding of radar functionality.

1928 Henry Nyquist, Claude E.
Shannon

Nyquist-Shannon sampling theorem Prevents signal distortion during sampling

1930 Glaser et al. [10] Demonstrated Hyland’s work on aircraft
detection capabilities.

Highlighted radar’s significance in defense and
aviation.

1940 MIT radar laboratory [11] Development of the magnetron (1 kW,
3 GHz)

Significantly enhanced radar power and capabilities.

1940s Stanford university Invention of the klystron amplifier Provided a powerful tool for amplifying
high-frequency signal

1943 Van vleck Matched filtering Boosts signal detection, reduces noise and improves
resolution

1944 Luiz alvarez Phased-array radar Enabled electronic beam steering, enhanced radar
accuracy

1945 Herald cramer and Calvin
R. Rao

Cramer-Rao lower bound Sets limits on parameter (range, velocity etc.)
estimation accuracy in radar systems

1948 Shannon [12] Information theory and channel capacity
(C = max I(X; Y) p(X))

Provided theoretical framework for assessing radar
performance and underpins signal processing.

1950s Klauder, J. R., Price, A. C.,
Darlington, S., &
Albersheim, W. J.

Pulse compression Achieves high range resolution with long pulses,
increasing average transmitted power.

1954 Swerling [13] Target models (Swerling I–IV) explaining
RCS variations

Improved radar detection capabilities by accounting
for target complexity.

1960s Cooley and Tukey [14] Fast fourier transform (FFT) algorithm Revolutionized signal processing by enabling rapid
computation of the discrete fourier transform.

1967 Brown and William M. Synthetic Aperture Radar (SAR) Uses the motion of the radar platform to synthesize a
large antenna aperture, achieving high along-track
resolution.

1968 Ruttenburg et al. [15] Stepped frequency waveform (SFW) Improved range resolution through inter-pulse phase
coding.

1979 Schaefer, R., Schafer, R.,
& Mersereau, R.

Doppler processing Measures the change in frequency of the returned
signal to determine target velocity.

1986 Schmidth et al. [16] MUSIC (Multiple Signal Classification)
algorithm

High-resolution direction of arrival (DOA)
estimation.
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Table 1. Cont.

1989 Roy et al. [17] ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques)
algorithm

Computationally efficient DOA estimation.

2003 Bliss et al. [18] MIMO radars Improved spatial resolution and interference
resilience.

2006 S. Haykin Cognitive radar Pioneered new radar paradigm
2010 A. Hassanien et al. [19] Phased-MIMO radar Combined advantages of phased array and MIMO

systems.
2020 Fortunati et al. [20] Use of large number of antennas Improved detection accuracy and spatial resolution.
2020 Latpate et al. [21] C-band continuous wave (CW) radar system

with micro-Doppler extraction
Enhanced detection of low RCS targets and ability to
distinguish approaching from receding targets.

2020s Farlik et al. [22] Surveys of radar techniques for UAV
detection and imaging

Highlighted the importance of Doppler effect,
advancements for LSS targets, and the use of deep
learning.

2023 Sampurna et al. [23] Photonics-based radars Low cost and power consumption, lightweight and
reduced EM interference.

2023 Lakshmi et al. [24] Fuzzy logic for channel response prediction
in optical networks

Accurate (92.1%) prediction of environmental effects
on channel response.

3. Advanced radar designs and mathematical models

There are various types of radar, classified based on waveforms, antenna configurations, and signal processing

techniques. The subsequent hierarchy is shown in Figure 2. Understanding multiple radar designs is crucial for accurate

target classification, as each type excels in specific scenarios. For instance, waveform diversity enhances detection

precision, monostatic and bistatic configurations affect spatial coverage, and advanced signal processing techniques

improve resolution and interference mitigation. By leveraging these strengths, researchers optimize performance for

complex and dynamic environments, ensuring reliable and precise classification across diverse applications.

Figure 2. Types of radar

3.1 FM-CW radar

Kanzarkar et al. [25] study the design and digital architecture of frequency-modulated continuous wave (FMCW) radar,

whose transmitted frequency is linearly dependent on time, which is enhanced by direct digital synthesis (DDS) technology.

The study demonstrates how DDS improves the precision of sensing and range-detecting capabilities by allowing for

variable and accurate frequency modulation. DDS enables real- time waveform synthesis, which is critical for changing

radar signal characteristics in dynamic settings, resulting in higher precision in range and velocity measurements. This

integration enables real-time photography, which captures high-resolution data necessary for applications that require quick
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response, hence boosting safety through exact measurements. FMCW radar’s architecture consists of signal generators,

antennas, receivers, and processors, with DDS playing a critical role in signal production, resulting in better image

resolution and system adaptability across diverse operational conditions. Beyond typical automotive and aerospace uses,

FMCW radar is being tested in healthcare [26] for patient mobility tracking and non-invasive sensing, demonstrating its

versatility and value in a variety of disciplines as discussed by Singh et al. [27] who proposed photoplethysmography

technique. However, issues exist regarding the cost-effectiveness of DDS technology, which must be solved to promote

greater use and accessibility across a wide range of businesses. Combining FMCW radar with other sensing technologies,

such as LiDAR and cameras, improves multi-modal sensing capabilities, particularly in autonomous cars. FMCW radars

continuously transmit, and receive signals, unlike pulsed radar, from the target. This echo signal, received at the receiver

antenna, is analyzed for detection of objects and their relative motion by exploiting the change due to the Doppler effect.

The echo signal is time-shifted transmitted signal when scattered from a stationary target. But when it strikes a moving

target, its frequency either increases or decreases, to the relative motion of the target towards or away from the radar. This

change in frequency is shown in Figure 3 and is termed as Doppler Shift [28]. This shift is exploited to find the relative

radial velocity of the target. This modulation correlates with the time delay of the echo signal, thereby, allowing precise

range measurement; useful in automotive radar systems, for collision avoidance, where range resolution is critical.

Figure 3. Detection of moving objects using CW radar

Studying autodyne, homodyne, and heterodyne radar configurations of FMCW radar is essential because each offers

unique advantages in processing and interpreting radar signals for specific applications. These configurations determine

how the transmitted and received signals are mixed and processed, directly influencing the resolution, sensitivity, and noise

performance of the system.

Autodyne: This configuration, shown in Figure 4, is one of the simplest configurations. In this setup, the same

oscillator is used for both the transmission and reception of the signal. The transmitted and received signals are directly

mixed, allowing the radar to detect the Doppler shift without the need for an external mixer. This makes the autodyne radar

[29] ideal for low-cost, low-power applications. However, the drawback is that it often suffers from higher noise levels

and limited sensitivity, making it less suitable for applications requiring high precision.

Homodyne: The homodyne configuration improves upon the autodyne design by using a separate local oscillator

for the mixing process. In this setup, as Figure 5 shows, the received and local oscillator signals (typically of the same

frequency as transmitted signal) are mixed. This approach allows for better isolation between the transmit and receive

paths, resulting in lower noise levels and improved sensitivity. Homodyne radars are commonly used in applications where

the balance between complexity and performance is critical, offering a good compromise between cost and effectiveness.
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Figure 4. Block diagram for autodyne configuration

Figure 5. Block diagram for homodyne configuration

Heterodyne: This configuration represents a more advanced and complex approach to radar design. In this system,

the transmit modulation is applied at an intermediate frequency (IF) rather than directly at the carrier frequency. Then,

the modulated IF and local oscillator signal is mixed to produce the desired carrier frequency for transmission. On the

receiving side, the echo and local oscillator signal is again mixed, as shown in Figure 6, and the signal is processed at the

intermediate frequency. The primary advantage of the heterodyne configuration is its ability to separate the received signal

frequency from the transmit frequency. This separation reduces the impact of amplitude and phase modulation noise from

the transmitter, resulting in improved performance, particularly in terms of sensitivity and signal-to-noise ratio.

However, this configuration also introduces greater complexity, making it more challenging to implement and more

costly than the simpler autodyne and homodyne systems. One of the key benefits of heterodyne configuration is the

improved signal processing capabilities that come with operating at an intermediate frequency. By shifting the signal

processing away from the carrier frequency, the radar system can reduce the noise power associated with the transmitted

signal, particularly in terms of amplitude and phase noise. This noise reduction enhances the radar’s ability to detect weak

signals and improves overall system performance. FM-CW radar systems are particularly advantageous in applications

requiring compact, short-range, and cost-effective solutions. These systems are often implemented using solid-state
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technology, making them reliable and efficient. Their widespread use spans various fields, from industrial applications

such as liquid level measurement in storage tanks, illuminators in fire control systems, short-range navigation, battlefield

surveillance, altimeters, proximity fuses, and even automobile cruise control systems. As the automotive industry moves

towards making radar systems standard in new vehicles, this technology is poised to become one of the most ubiquitous

radar variants in everyday life.

Figure 6. Block diagram for heterodyne configuration

3.2 SF-CW radar

Step-frequency CW radar is a type of radar that transmits a sequence of continuous waves with varying frequencies.

It steps through a range of frequencies in discrete increments, which allows the radar to cover a broad bandwidth. This

technique enables high-resolution range measurements and precise target detection by analyzing the reflected signals at

different frequencies. Using stepped-frequency chirps to improve resolution, Arya et al. presents two novel approaches

to data processing for reducing radio frequency interference (RFI) in Ultra-Wide Band radar systems. A band-rejection

level of 40–50 dB is achieved and target detection is maintained with minimal side lobe distortion (maximum 2 dB at

12.5% band nulling) using the first method, matched filtering with virtual filtering, which uses multiple narrowband chirps

centered at different frequencies.

An RFI detector detects and nullifies chirp data affected by significant interference. To achieve a band-rejection

level of 30–40 dB, the second method—spread processing with virtual filtering—involves de-chirping received segments,

nulling those that surpass a threshold RFI level, and integrating the remaining segments. Nevertheless, this approach

suffers from more side lobe distortion (5–10 dB at 13.33% band nulling), but it saves money by lowering the target return

amplitude. Both approaches outperform conventional hardware-based RFI suppression techniques in some important ways,

including easier implementation via data processing and improved system performance. An SF-CW radar transmits a

signal composed of K sinusoidal frequencies, ranging from f0 to f0+(K −1)∆ f , where ∆ f is the frequency step size as
depicted in Figure 7. The bandwidth B of the radar is given by B = K ·∆ f . Each frequency tone is transmitted for a time
interval T , and the total transmit time of a single waveform is TK= K ·T .

A single transmit waveform at a time t is expressed as:

x(t) =
K−1

∑
k=0

rect(
t−T

2 −kT
T

)e− j2π( f0+k∆ f )t (1)

The received signal at the slow time index l and receiver antenna m is modeled by:
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sl(t,m) =
P

∑
p=1

γpmx(t−τpm(l))+εm (2)

where γpm denotes the amplitude of the p-th target, εm models clutter, and τpm(l) is the time delay of the received signal,
which is decomposed into:

τpm(l) =τd(pm)+τv p(l) (3)

Figure 7. Depiction of the single chirp of SF-CW radar

The dominant component τd(pm) relates to the distance between the radar and the target, given by:

τd(pm) =
1
c
(2dp+mδ sin(θp)) (4)

where c is the speed of light, δ is the inter-antenna distance, dp is the range, and θp is the angle. After discretization and

conversion to baseband, the normalized signal is:

s̃l(k,m) =
∞

∑
−∞

p =1Pe− j2π( f0+k∆ f )τpm(l)+ε̃m (5)

The range profile is computed using an N-point inverse fourier transform over the fast time-frequency index k:

sl(n,m) =
1
K

K−1

∑
k=0

s̃l(k,m)e j2π
kn
N (6)

which simplifies to:

sl(n,m) =
1
K

P

∑
p=1

e− j2π f0τpm(l)
sin

(
πK
N (n−N∆ f τpm(l))

)
sin

(
π

N (n−N∆ f τpm(l))
) e jπ K−1

N (n−N∆ f τpm(l)) (7)

The range profile is then: rl(n,m) = |sl(n,m)| with a maximum unambiguous range dmax, range resolution ∆d, and
range measurement granularity δd given by
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dmax=
c

2∆ f
(8)

∆d =
c

2B
(9)

and δd =
c

2∆ f N
(10)

where ∆d denotes the minimum distance between distinguishable targets. By choosing N > K, the granularity δd increases,

improving the sampling resolution of the range profile. Stepped linear frequency modulation (LFM) technique is an

innovative way to achieve high-range resolution in phased array radar systems, as described by Arya et al. [30]. He

suggests two techniques to create a wide-band equivalent response from narrow-band chirp segments, stretch processing

and matched filtering. Narrow-band alternatives are required because traditional wide-band signals cause problems such as

beam squinting in active phased array radars and grating lobe formation.

3.3 Pulsed radar

Pulsed radars send EM waves out for a very short time, between 0.1 to 10 µs, but sometimes it is more or less

depending upon the application. During this pulse, the receiver cannot detect any pulse as it is disconnected from the

antenna to protect it from the high-power waves. After the pulse is sent, the receiver reconnects to the antenna to listen for

any echoes from objects. This listening time, combined with the pulse duration, makes up one full radar cycle, known as

the pulse repetition interval abbreviated as PRI.

The pulse repetition frequency is how many transmit/receive cycles the radar completes per second, measured in

pulses per second or hertz (Hz) as shown in Figure 8. The PRF is related to the PRI by the equation:

PRF =
1

PRI
(11)

Figure 8. PRI in pulsed radar

The duty cycle (dt ) is the fraction of time the transmitter is on during one radar cycle, calculated as:

dt=
τ

PRI
= τ ×PRF (12)

where τ is the delay time. The average power (Pavg) of the transmitted EM wave is the product of the peak transmitted

power (Pt ) and the duty cycle (dt) and PRF:

Pavg=Pt ×dt×PRF =
Pt ×dt

PRI
(13)
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A comparative analysis of FMCW, Pulsed, and SFCW radars for target classification highlights the unique strengths

and limitations of each system. FMCW radar provides superior range and velocity resolution, enabling continuous tracking

of moving targets, making it ideal for real-time classification in dynamic environments, such as automotive and surveillance

applications. Pulsed radar, while excelling in long-range detection and high-resolution profiling, requires more complex

signal processing and higher power consumption, making it better suited for applications like military and aerospace.

SFCW radar offers fine spatial resolution and performs well in noisy or cluttered environments but is less effective for

tracking fast-moving targets. Given the need for both range and velocity resolution in most classification scenarios, FMCW

radar is the most suitable choice for real-time, high-accuracy classification of moving targets.

3.4 Monostatic and bistatic radar

Radar systems typically use either a single antenna or closely placed antennas for transmission and reception, as

shown in Figure 9. The transmitter emits an electromagnetic pulse that reflects off a target, and a duplexer switches the

antenna to receiving mode to capture the echo signal. This co-located design simplifies radar systems, offering advantages

such as reduced complexity, compactness, and cost-effectiveness due to fewer components. However, challenges include

rapid switching between modes, which can cause interference, limit performance, and reduce range and sensitivity, limiting

their ability to distinguish between closely spaced targets. In contrast, bi-static radar systems use separate antennas for

transmission and reception, located at different sites, as illustrated in Figure 10. The spatial separation, ranging from a

few meters to several kilometres, minimizes interference and enhances classification capabilities. This flexibility allows

for optimized coverage and makes bi-static systems effective against stealth targets by complicating efforts to reduce

radar cross-section as Magisetty et al. [31] demonstrates improved stealth detection using a nano-composite terpolymer in

X-band radar.

Figure 9. Monostatic radar

Figure 10. Bistatic radar
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3.5 Non-coherent and coherent radars

Non-coherent radar systems detect only the amplitude of the received signal, disregarding phase information. These

systems were foundational in early radar technology and are still used in applications where signal strength, rather than

precision, is the primary concern, such as 2D ground mapping. In these cases, signal amplitude determines display

brightness, helping visualize target environments. Non-coherent systems are advantageous due to their simplicity and

cost-effectiveness, making them suitable for scenarios where targets can be easily distinguished from noise and high-

resolution imaging is unnecessary. Historically, operators played a critical role in interpreting amplitude-based signals,

making non-coherent radars pivotal in early radar operations. In contrast, coherent radar systems process both amplitude

and phase information [32], treating the received signal as a vector in a complex plane. This approach enables precise

analysis of target characteristics, capturing phase changes critical for determining velocity, direction, and motion. Coherent

radars are integral in applications like Doppler radar for measuring target speed and synthetic aperture radar (SAR) for

high-resolution imaging, where coherent processing [33, 34] produces detailed target images. These systems excel in target

identification and clutter rejection by leveraging phase information to differentiate between targets and environmental

noise. Consequently, coherent radars have become indispensable in modern radar technology, particularly in complex and

dynamic environments.

With this foundation, the next section explains multiple classification methodologies. These techniques, ranging from

traditional approaches to cutting edge machine/deep learning models, are designed to enhance the accuracy and efficiency

of radar-based target classification.

4. Methodologies

In this section, various classification techniques employed for target classification are explored, starting with basic

methods originally developed for classifying printed and handwritten text [35]. A range of approaches are examined,

including traditional machine learning algorithms such as logistic regression and naïve bayes, as well as advanced deep

learning techniques like convolutional and recurrent neural networks, self-attention mechanisms [36] and transformers.

These methods are used to extract crucial features that are then utilized to train and optimize classification models, ultimately

enhancing the accuracy and effectiveness of target classification in radar systems. All such techniques are elaborated below

and summarized in the Table 9.

4.1 Using range FFT features

The methodology integrates a novel target classification technique utilizing mm-wave radars [37] and machine learning

applied to a range of FFT features, alongside key procedural steps. It incorporates measurement setup and data acquisition

[38], followed by the radar configuration and frame structure, and the application of FFT [39, 40] for signal analysis. While

the IF signal provides a direct measure of object range, the range FFT plot undergoes statistical analysis—focusing on

peak width, height, standard deviation and area, as shown in Figure 11—to extract distinctive features of various objects

under test. Experiments classify common objects, including a pedestrian, car, and drones [41], using these features in

conjunction with ML algorithms—Logistic Regression and Naive Bayes [42]. The subsequent steps in the methodology

involve signal processing and feature extraction, leading to the deployment of ML models for object classification. This

study uses machine learning on range FFT features for mm-wave radar target classification. Rigorous validation and

performance evaluation of the proposed model is conducted.
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Figure 11. Features extracted from fast fourier transform

A. Setup and Measurement: A portable measurement setup was utilized, incorporating a complex baseband FMCW

mm-Wave radar from Texas Instruments (TI), featuring 4 transmitters and 3 receivers, and operating within the 77–81 GHz

frequency range. The objects tested included a compact drone, measuring 214 × 91 × 84 mm when folded and 322 × 242

× 84 mm when unfolded, a medium-sized car with dimensions of 4315 × 1780 × 1605 mm, and a pedestrian represented

by an adult with a height of 172 cm. A stationary radar unit was used to take measurements, and each object was moved

up to a maximum distance of 25 m, which is the measuring setup’s limit. The FMCW signal pattern was used for data

collection during these tests.

B. Data Acquisition and Processing: The data acquisition system employs a structure consisting of 4 distinct channels,

with each channel encompassing a total of 200 frames. Within each frame, there are 128 chirps, and each chirp is sampled

256 times utilizing an Analog-to-Digital Converter (ADC). Consequently, the data is organized into a four-dimensional

matrix with dimensions of 4 × 200 × 128 × 256. This arrangement facilitates the transmission of 128 chirps, ensuring that

each chirp is accurately sampled 256 times, thereby enabling comprehensive data collection for all 128 chirps. Moreover,

the echo signals, which are reflections of the transmitted chirps, are arranged in a similar fashion. This parallel organization

results in the generation of two matrices of equivalent size, thereby allowing for efficient processing and analysis of both

the transmitted signals and their corresponding echo responses. This structured data format is critical for subsequent

signal processing and feature extraction, as it enables detailed examination of the radar’s performance in target detection

and classification tasks The Fast Fourier Transform (FFT) algorithm is employed to convert time-domain data into its

frequency-domain representation by the following equation:

Xk=
n−1

∑
m=0

xm·e
i2πkm

n (14)

Each chirp or frame is specifically subjected to FFT, which yields data that illustrates amplitude as a function of

frequency. Using this frequency-domain data, a plot of amplitude (in decibel full scale, dBFS) vs range (in meters) is then

produced, where the range is derived from frequency using a predefined equation. The dBFS value represents the full-scale

amplitude of the signal. An algorithm for peak detection is subsequently applied to the range FFT plot. The algorithm looks

for the maximum value stored in the matrix in every row; it corresponds to the beat frequency. The detected peaks within

this plot correspond to the presence of targets within the azimuth field of view of the mmWave radar. Upon identifying

these peaks, key features are extracted for each detected peak [43, 44]. These features include the target’s radial range

from the radar, standard deviation of the signal, as well as the height, width, and area under each peak. These extracted

features are important inputs for the machine learning models used for target classification. Unlike conventional signal

processing approaches that primarily rely on peak detection to ascertain the presence of a target within the radar’s field of

view, this method leverages additional features, such as size and shape, to enhance classification accuracy.

By integrating these detailed features with lightweight machine learning models, the approach enables not only the

detection but also the classification of various targets within the radar’s range. The dataset used for this study consists of

three classes: human, car, and drone, with 95, 72, and 59 samples, respectively, resulting in a total of 226 data points. The

dataset was divided into training and testing sets with a 9:1 split, allocating 23 samples for testing: 10 for humans, 7 for
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cars, and 6 for drones. This dataset was used to train and evaluate two machine learning models: Logistic Regression and

Naive Bayes.

Logistic Regression: A fundamental machine learning model that operates by applying two main steps. Firstly, it

combines input characteristics and model parameters—such as weights and bias—in a linear fashion. Secondly, it applies a

non-linear activation function, the sigmoid function, which generates a probability ‘p’ denoting the sample’s chance of

falling into a specific class. Although Logistic Regression is typically used for binary classification [45], it is adapted it for

multi-class classification to handle the three classes. This was achieved using the “one-vs-all” (or “one-vs-rest”) approach,

where ‘n’ classifiers are constructed for ‘n’ classes. Until all classifiers have been generated, each classifier identifies one

class as “0” and the other classes as “1” [46]. In this dataset, with n = 3, the Logistic Regression model was evaluated. The

confusion matrix in Figure 12 indicates that the model predicted the ‘Car’ class with 0.86 accuracy, the ‘Drone’ class with

100 % accuracy, and the ‘Human’ class with 0.80 accuracy. The respective F1 scores, which represent the precision and

recall weighted average, are 0.86, 0.92, and 0.84 for “Car”, “Drone”, and “Human”.

Naive Bayes: The Naive Bayes model, another machine learning algorithm, is also applied to the dataset. This model

uses the Bayes theorem to calculate the likelihood that a given sample is a member of a specific class. Three variations of

Naive Bayes exist, depending on the type of input features: Gaussian Naive Bayes for continuous features, Multinomial

Naive Bayes for discrete features, and Bernoulli Naive Bayes for binary features. Given dataset consists of continuous

features, the Gaussian Naive Bayes variant is used. The model first calculates the likelihood ratios for the dataset and

then determines the posterior probabilities for each class. The sample is allocated to the class with the highest posterior

probability. The evaluation of the Naive Bayes model showed that it predicted both the ‘Car’ and ‘Drone’ classes with

100% accuracy as shown in Figure 13, while the ‘Human’ class was predicted with 0.40 accuracy. The corresponding F1

scores are 0.88 for ‘Car’, 0.75 for ‘Drone’, and 0.57 for ‘Human’.

C. Performance Comparison: The performance of the Logistic Regression and Naive Bayes models is compared

based on several metrics: accuracy, inference time, and model size. Logistic Regression achieved an accuracy of 0.869,

with an inference time of 0.24 ms and a model size of 1 KB. The Naive Bayes model, on the other hand, attained an

accuracy of 0.739, with an inference time of 0.1 ms and the same model size of 1 KB.

D. Limitations and Scope: This classification method avoids using complex machine learning models thus saving

computational time and resources. When range is long and/or target cross section is small, then range FFT plot may not

have distinguishable features and in such cases additional signal processing has to be explored before using machine

learning. Incorporating micro-Doppler and range-Doppler features can improve classification for targets with vibrating

parts or repeating patterns, making the model more robust.

Figure 12. Confusion matrix for logistics regression model
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Figure 13. Confusion matrix for naive bayes model

4.2 Using CNN on spectrogram

The FFT technique discussed by Muppala et al. [47] reduces the computational complexity to O ((Nloglog N )3
).

A huge amount of such high-resolution images, generated through this method, are fed to CNN architectures that learn

the features via backpropagation and minimize the loss. Then trained models are deployed on the front for assistance

[48]. Another method for classifying targets involves micro-Doppler signatures of the targets like humans [49]. This

signature, received from FMCW radar [50] helps in creating the spectrogram of the target. The spectrogram provides a

time-frequency representation of the radar signals reflected from the target. This information is crucial for analyzing the

micro-Doppler signatures of the targets [51], which reveals information about their motion and characteristics [52]. This

information is exploited to build real-time target detection and classification systems [53]. The classification techniques

implemented classification algorithms like SVM [54, 55] or Bayesian Learning technique. The high complexity and large

computation time of these algorithms make them unsuitable for implementation in real-time scenarios [56, 57]. To obtain

the frequency-related information from the micro-Doppler signatures [58], STFT is carried out [59]. The micro-Doppler

frequency is represented as:

fg =
2 f
c
[ω × r] (15)

where f is the carrier frequency, ω is the angular velocity and r is the translational displacement. The STFT mathematical

model is implemented to extract the micro-Doppler signal [60] component:

ST FT{x(t)}(τ,ω)≡X(τ,ω)=
∫

∞

−∞

x(t)w(t − τ) e−iωt dt (16)

where τ is delay time. The spectrogram images are generated by obtaining the power spectral density function from this

STFT which stores both the temporal and frequency information of the target. This is expressed as:

Spectrogram{x(t)}(τ,ω)≡ |X( τ,ω )|2 (17)

The pre-existing CNN models like Google Net, Alex Net, and ResNet display higher accuracy on the data but take

higher computation time. Therefore, Dr. Raj suggested a 15-layer CNN architecture, described in the Table 2, to train the

2400 bionic bird images and 2100 drone images over a 40-batch size with six iterations per epoch. This model classifies 200
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images with an accuracy of 87.5% and takes much less time to produce results. Kim et al. [61] employed Google Net for

drone classification, utilizing a pre-trained model and adapting it through transfer learning to meet their needs. Despite its

high accuracy, Google Net is a deep network that requires significant time and computational resources for training on large

datasets. The goal of this effort is to classify an ornithopter’s behavior in safe locations, which requires a more accurate and

computationally efficient network than Google Net. Zhang et al. [56] demonstrated that PCA, a resource-intensive machine

learning technique, was used for feature extraction and classification. However, its high computational costs present a

significant drawback compared to D-CNN approach. Another research conducted by Akella et al. [62] demonstrates

superiority over these existing methods, successfully classifying different micro-Doppler signatures of various mini-UAV

activities [63, 64, 65] such as static, flapping, and gliding ornithopters and quadcopters—with 97% accuracy utilizing

radar STFT pictures. This network is suitable for deployment in secure areas to distinguish between ornithopters, birds,

and quadcopters and requires fewer computational resources for training. In another research, Kumawat et al. [66]

introduced DIAT-µ SAT dataset which consists of 6 classes, namely, Mini-helicopter, three short—and long-blade rotor,

two-blade high-wind RC plane, quadcopter, and bionic bird, spread across 4849 micro-Doppler images. Here, STFT is

performed using a hamming window of size of 256 samples, followed by fine-tuning the VGG-16 and VGG-19 architecture

simultaneously for transfer learning [67]. This model achieves better scores for every class as shown in Table 3.

Table 2. 15-layer architecture of convolution neural network

Layer Name Description

1 Image input layer 224 × 224 × 3 image as input
2 Convolutional layer 8 3 × 3 Convolutions with 0 padding
3 Batch normalisation layer Batch normalisation
4 ReLU layer ReLU activation function layer
5 Max pooling layer 2 × 2 max pooling with stride ‘2’
6 Convolutional layer 16 3 × 3 convolutions with 0 padding
7 Batch normalisation layer Batch normalisation
8 ReLU layer ReLU activation function layer
9 Max pooling layer 2 × 2 max pooling with stride ‘2’
10 Convolutional layer 64 3 × 3 convolutions with 0 padding
11 Batch normalisation layer Batch normalisation
12 ReLU layer ReLU activation function layer
13 Fully connected layer 4 fully connected layer
14 SoftMax layer Softmax function layer
15 Classification layer Final classification output

Table 3. Performance of VGG16 and VGG19 on DIAT-μ SAT dataset

VGG 16 VGG 19

Class Precision Recall F1-Score Precision Recall F1-Score

Two blades rotor 0.93 0.96 0.94 0.97 0.95 0.96
Three long blades rotor 0.89 0.96 0.92 0.89 1.00 0.94
Three short blades rotor 0.96 0.89 0.92 0.97 0.91 0.94

Bionic bird 1.00 1.00 1.00 1.00 1.00 1.00
Two blades rotor & Bionic bird 0.97 0.93 0.95 1.00 0.94 0.97

Quadcopter 0.99 0.99 0.99 0.98 1.00 0.99
Accuracy 0.95 0.97
Macro avg. 0.96 0.95 0.95 0.97 0.97 0.97

Weighted avg. 0.96 0.95 0.95 0.97 0.97 0.97

Kumawat et al. [68] glorified the importance of small unmanned vehicle detection by processing the micro-Doppler

signatures from the target. He proposed a RadSATNet architecture to accurately identify an RC plane, a three short-blade

rotor, three long-blade rotor, quadcopter, bionic bird and mini-helicopter using X-band CW radar. Increasing the number

of classes in a classification problem reduces the hallucination effect of the deep learning model. Having a greater number

of classes than the previous models, this model shows better performance than other models discussed above. Moreover,

restricting up to 256 samples saves spectral leakage, and improves frequency resolution and amplitude accuracy. Hence, it

increases the computational efficiency as evident in the results.
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4.3 Using residual learning in CNN

Bazil et al. [69] suggests a minimum identifying at least one component. The method includes selecting a minimal

signature for one component that contains fewer components than a canonical signature. This technique does not involve

regular CNN models trained over doppler signatures [70] which contain the characteristic features of each object. It uses

FMCW radar to access frequency-intensity data within range-time domain to classify detected objects. Having mitigated

the scarcity of the labeled data, this technique utilizes time stretching, frequency shifting and noise addition methods

to further improve the model’s ability to generalize [71]. The CNN model, shown in Figure 14, is trained on raw radar

data which helps in classification of targets: car, human and UAV. There’s been a great interest in the past few years for

classifying objects by extracting features from the data. Nevertheless, various models such as Image Net [72, 73], Urban

Sound 8k [74, 75] have made significant contributions in improving the accuracy of the overall performance in object

classification, given that there exists a lot of data. The hidden relationship among features in range-time raw radar data is

deeply understood by this model, which is sometimes not obvious to humans. Certain data augmentation techniques, such

as time stretching, pitch shifting, and noise adding, compensate for the lack of data by somewhat improving performance.

A. CNN : This model slides over spectrogram representations to learn important features in each window. Such features

are useful at other positions in the image [76]. The feature maps thus formed contain such features and other semantics.

Max-pooling layer, which produces feature maps with maximum value within each kernel producing translational shifts

within the given space tend to down-sample the features to avoid the curse of dimensionality. This reduces computational

cost as well. For a given 2-D input X, kernel w, and cross correlation operation [77], is represented as:

y[i, j] =
∞

∑
m=−∞

∞

∑
n=−∞

x[m− i,n− j]w[m,n] (18)

B. Residual Learning: Increase in depth of the layers gives rise to degradation problems, like gradient vanishing

[78, 79], as it hampers the back propagation and introduces more parameters. It negatively affects the performance of the

model. This leads to higher training and thus, test biases. To solve this problem, it is stated to use skip connection, as shown

in Figure 15, which represents the underlying mapping that the network executes as H (x) and the inputs to the first layer as

x. In the event that, x is feed forwarded via a skip connection—which carries out identity mapping—the stacked layers

will simply require learning residual function F(x) = H(x)− x. Because residual function optimizes more easily with this
than with a conventional stacked network, performance loss is prevented. This enhances the model’s understanding of the

underlying mappings. Also, it compensates the peripheral information lost due to convolution and pooling.

Figure 14. Double layer CNN architecture with skip connection
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Figure 15. Block diagram of residual learning

C. Data set: The data set is collected through field experiments, of targets like, cars, humans and UAVs [80], moving

within 30 m, the maximum range of the FMCW radar. The radar signal intensity data is collected in the range-time domain

in the form of a wav file later to be pre-processed as a log-scaled Mel-spectrogram [81] using “librosa”. Instead of manually

extracting features using MFCC (Mel-Frequency Cepstral Coefficients), CNN models are used to learn the underlying

features and their relationships. Thereafter, data is augmented using:

Frequency Shifting: As shifting pitches in sounds don’t affect the harmonic relationships between different scales, in

the same way, frequency shifting doesn’t affect the inter-frequency distances. It is applied to each sample’s data and sync

channels. The time interval and amplitude of each data sample are maintained while shifting it by 4, 8, 16, and 32 half

steps at a time.

Noise Addition: The noise w is created at random from the uniform distribution [2, 5], reshaped to fit the amplitude

values of each sample’s length, multiplied by a scale c to regulate w’s size, and added to the sample’s data channel while

leaving the sync channel to retain its initial value. This translates the values along the amplitude axis.

Time Stretching: The raw data is converted into a frequency domain using a STFT and then a phase vocoder is used to

time-stretch the signal by rate r. The data and sync channels are also changed by the augmentation as depicted in Figure 16.

Figure 16. Augmented data distribution over layers

D. Feature Extraction: The raw range-time data shown in Figure 17 is sampled at 5682 Hz and then stored as a WAV

file. After that, the Fast Fourier Transform (FFT) is used to transform each file into a frequency domain. This yields the
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power spectrum, which is then multiplied by Mel-filters to create a Mel-scaled frequency. A log-scaled Mel-spectrogram is

then obtained by applying these values with log. The window size that is being used is 512 (frames-1) and a hop length of

512. Mel bands are set to 60 with 41 frames. The original dataset consists of 1937 segments which is increased to 3944 by

augmentation. Thereby generating segments of shape M × N where, M is the value of Mel-bands and N is the number of

frames. The spectral features and their corresponding values are extracted using the “librosa” library. Each sample’s delta

values are put together to create two input channels: delta and a log-scaled spectrogram.

Figure 17. Simulated raw data distribution over layers

E. Training Results: The CNN model, from 2 to 8 layers, is trained using different sets of hyperparameters like depth

of network, filter size, the number of filters, stride size, etc. The First Layer consists of 12 filters with a size (of 9 × 9) and

1 × 1 stride. The second Layer consists of 12 filters with a size of 5 × 5 and 1 × 1 stride. Both these layers are followed

by ReLU and Max-Pooling with 9 × 9 pool size and 1 × 1 stride. 24 filters with a size of 5 × 5 and a stride of 1 × 1 make

up the third layer. ReLU and Max-Pooling, which have a pool size of 5 × 5 and a stride of 1 × 1, come next. The fourth

Layer consists of 24 filters with size of 3 × 3 and stride 1 × 1, followed by ReLU and Max-Pooling with pool size 5 × 5

and pool stride 1 × 1.

Fifth and Sixth Layer consist of 48 filters each of size 3× 3 and stride of 1× 1, followed by the ReLU andMax-Pooling

of 3 × 3 pool size and 1 × 1 pool stride. 500 fully linked nodes make up the seventh layer, which is followed by a sigmoid

activation function and Eight Layer consists of 4 output node which represents classes: human, car, UAV and others,

followed by a softmax function. Each layer is first trained using the residual module and without it. The model is trained

using mini-batch gradient descent of batch size 32. The training data is molded into 5 folds and only 4 folds are used for

training and 1 for validation purposes. The best results are given by a 6-layer model without residual modules. The overall

validation accuracy without residual is 47.96% and with residual is 40.44% and the per-class classification accuracy is

32.1% for UAV, 72.59% for humans and 43.58% for car and 36.37% for others is shown in Tables 4 and 5.

Table 4. Best layer accuracy evaluated on augmented data

Plain Residual module

2-layers 44.18% 42.93%
6-layers 47.96% 40.44%
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Table 5. Training results on targets

UAV Human Car Others

Per class accuracy 32.10% 72.59% 43.58% 36.37%

F. Limitations and Scope: This method shows that that conventional data such as image and sound data are not the only

type of data capable of holding unique, object-dependent features, but other seemingly featureless data such as range-time

data can hold features that could be exploited by deep neural networks. Although classification accuracy of UAV seems

relatively low, those of car and human show the possibility of using the raw radar data to train deep neural networks for

classification. Since it is a DNN it uses significant number of computational resources. For higher accuracy it will require

more computational resources. Still by using techniques like skip connection, residual learning performance is increased

without increasing computational resources by much. since the dataset is in time-series, models that are effective for

interpreting time-series data, such as RNN-based models, could unveil temporal dependencies among frequency values

that could not be learned by CNNs.

4.4 Using CNN with GSAM

Shelly et al. [82] introduces an enhancement to the Alex Net model by incorporating an attention mechanism to

improve the classification of human activity micro-Doppler signatures. The attention mechanism [83, 84] enables the

model to focus on critical segments of the radar data, reducing the influence of background noise and enhancing prediction

accuracy. The use of class activation mapping further elucidates the model’s focus areas during predictions, thereby

providing insights into its decision-making process. The attention mechanism is a strategic approach in deep learning that

allows models to prioritize significant parts of the input data. It is akin to focusing on essential details in an image or text,

enhancing the model’s ability to discern crucial patterns and improve predictive accuracy.

A. Architecture: Alex Net is characterized by multiple layers, which autonomously detect patterns like edges, textures,

or shapes in images. Micro-Doppler signatures of six participants of different heights, gender and ages groups performing

eleven different activities of daily living is passed through eight layers: five convolutional layers for pattern detection and

three fully connected layers for information integration, culminating in a classification layer that employs a softmax function

to assign data to specific classes [85]. The initial two layers are succeeded by max-pooling layers, which streamlines size

of the data and boosts model efficiency. Among Alex Net’s innovations are the ReLU activation function, expediting

learning, and dropout, mitigating overfitting. The Global Spatial Attention Module (GSAM) is employed to boost the

model’s sensitivity and predictive precision. GSAM generates a 2D spatial attention mask using feature maps from an

intermediate layer. This mask accentuates vital regions by assigning higher values to pertinent areas while diminishing

irrelevant details. GSAM integrates feature maps from the final convolutional layer with those from intermediate layers,

allowing the model to concentrate on significant areas and disregard superfluous content. The global spatial attention map

can be given by:

Ms

(
F l
)
=σ2

(
f 1×1

(
σ1

(
F̂ l

Avg+ĜAvg

)
+σ1

(
F̂ l

Max+ĜMax

)))
(19)

where, σ1 and σ2 are activation functions, f 1×1 represents a convolution operation, F̂ l
Avg and F̂ l

Max are average-pooled and

max-pooled features of intermediate feature maps F l , and ĜAvg and ĜMax are pooled global features. In classic CNNs,

feature maps are sequentially down-sampled to capture larger input areas, leading to varying spatial resolutions across

layers. To formulate the attention mask, global feature maps are resized to correspond with the spatial dimensions of

intermediate feature maps. The attention-refined features are computed through element-wise multiplication of the attention

mask with down-sampled intermediate feature maps F l , as shown below

F̃ l=Ms
⊗

F̂ l (20)
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where Ms is the attention map, and F̂ l is the upsampled feature map to match the spatial resolution of the global feature map.

The GSAM is integrated into the 2nd, 3rd, and 4th layers, enhancing local information capture. The 5th layer’s activation

maps are utilized for global feature extraction, maintaining spatial context crucial for radar micro-Doppler signatures.

B. Results: To compute attention-refined features, local feature maps from the 2nd, 3rd, and 4th layers, alongside

global feature maps from the 5th layer shown in Figure 18, are processed through the GSAM, accentuating relevant regions

in both local and global feature maps. Post-refinement, these maps are aggregated with global features to form the final

prediction. Global average pooling is applied along spatial dimensions of refined and global feature maps, resulting in two

vectors. These vectors are concatenated and passed through two fully connected layers to merge local and global data. The

softmax function generates a probability distribution, with the class exhibiting the highest activation being selected as the

final prediction. The proposed method effectively enhances Alex Net’s performance in classifying radar micro-Doppler

signatures, underscoring the advantage of integrating attention mechanisms in deep learning architectures.

Figure 18. Attention enhanced Alex net architecture
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4.5 Using RNN with self-attention

This technique [86] deals with the same problem and provides outstanding results. It uses self-attention mechanism

shown in Figure 19 and gated recurrent unit, GRU [87] to process the sequence data. It is necessary to have enough

knowledge about the surrounding signals in order to properly reconstruct the original signal. The test makes use of

3 different waveforms [88]: chirp sequence, triangular [89], and MFSK. These waveforms are targeted on the object,

simultaneously, in k linear frequency chirps; The transmit signal’s phase and frequency are as follows:

Figure 19. Architecture diagram of the self-attention model

f (t) = fc+α(t − kTchirp) (21)

φ(t) = 2π

∫ t

0
f (t)dt= 2π( fct+

1
2

αt2−αkTchirpt) (22)

where Tchirp is the chirp time and Bsw is the sweep bandwidth. The FMCWwaveform’s slope is denoted by Bsw
Tchirp

, while the

transmitted signal’s carrier frequency is represented by fc. The difference between the transmitted and received frequencies

is known as the beat frequency. Then it passes through an anti-aliasing filter which removes higher-frequency signals.

Thus, the remaining beat phase is expressed as:

φB(t) = φ(t)−φ(t − τ)= 2π fcτ −πα(τ2−2τtk) ifτ ≤ t ≤Tchirp (23)

The target’s range R and velocity v is determined by applying 2D-FFT to the beat signal. The beat signal in the

simulated environment seems like a smooth continuous wave but in real-time, a lot of atmospheric interference [90] and

clutter creeps into it. Thus, rendering it of irregular shape.

A. Preprocessing: Firstly, the high-power interference is eliminated from the input by using a median filter. Depending

on the transmitted signal’s strength or signal attenuation from the distance between the transmitter and the target, the

amplitude of the time samples of the beat signal changes significantly.

B. Model: The basic RNN cells suffer from a gradient vanishing problem when training on quite a deep network. In

order to solve this problem, GRUs are being used in multiple layers as shown in Figure 20. The key to the attention block

is Scaled-Dot-Product Attention. Its equation is expressed as:
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Attention(Q,K,V ) = so f tmax (
QKT
√

dk
) V (24)

where, Q, K, and V are the query, key, and value respectively and dk is the dimension of the key vector. The loss function L

used here is

L =
T

∑
i=1

(yhati−yi)
2

(25)

where yhati is the label and yi is the deep learning output. L is minimized usingADAM [91], a reliable and effective default

optimizer for gradient descent algorithm. Assume that k out of n no. of channels are corrupted. The results for the model

are shown in the Table 6.

Figure 20. RNN architecture with attention block and gated recurrent unit

Table 6. Average SINR values for 50 trials

CS Triangle FMCW MFSK

No algorithm 21.613 21.252 20.751
Method I [8] 25.415 25.038 25.076
Method II [12] 27.429 27.231 28.144
Bi-RNN [20] 33.187 32.254 33.920

Attention Bi-RNN 36.700 35.147 37.425
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C. Limitations and Scope: The proposed method using RNN with self-attention effectively mitigates interference

in FMCW and OFDM radar systems, outperforming traditional techniques by restoring original signals and improving

SINR. Its advantages include enhanced accuracy, broad applicability, and better signal reconstruction, though it faces

challenges like high computational demands, reliance on quality data, and limited real-world validation. This approach

holds significant potential for autonomous driving, multi-radar environments, and real-time processing, offering a robust

foundation for interference management in radar systems. The RNN with Self-Attention technique is highly effective for

mitigating interference in FMCW and OFDM radars, outperforming traditional methods by reconstructing original signals

and achieving superior SINR. Its ability to process complex temporal relationships makes it suitable for interference-prone

environments. However, it is computationally intensive, relies on high-quality datasets, and requires real-world validation,

limiting its immediate applicability in resource-constrained scenarios.

4.6 Using vision transformer

Micro-Doppler signatures, which reflect the micromotions of targets, provide crucial details about target characteristics.

However, classifying low-resolution targets poses significant challenges due to limited spatial resolution and variations in

frequency data. This study addresses these issues using theVision Transformer (ViT), an advanced deep learning architecture

known for effectively capturing global relationships across image patches. Unlike convolutional neural networks, which

use convolutional filters to detect local spatial features, ViTs employ a self-attention mechanism [92] to model both local

and global dependencies in the data as described by Liu et al. [93]. While CNNs excel at extracting localized features

from high-resolution images, they are less effective at capturing long-range dependencies in low-resolution data like

radar spectrograms. ViTs overcome this limitation by dividing the input spectrogram into patches and processing them

as a sequence, similar to how words are analyzed in NLP tasks. This approach allows ViTs to comprehensively evaluate

relationships between patches.

A. Signal Processing: Radar signals are processed within a Coherent Processing Interval (CPI) of 87 ms, during

which multiple pulses are transmitted, and their echoes are accumulated. The relationship between CPI, the pulse repetition

interval (PRI), and the number of pulses (N) is given by:

CPI Time = N × cross PRI (26)

Each radar pulse is represented in its in-phase (I) and quadrature (Q) components, expressed as:

x(n)=xi(n)+ jxq(n) (27)

The Doppler spectrum is then computed as:

X ( f )=
N−1

∑
0

x(n) ·ê(− j2π f n/N
N

) (28)

This spectrum provides an estimate of target velocity but lacks robustness against frequency fluctuations. To improve

time-frequency distribution (TFD) analysis, the Short-Time Fourier Transform (STFT) is utilized. The STFT divides the

radar signal into overlapping segments for localized frequency analysis. It is defined as:

ST FT ( f , t)=
L−1

∑
0

w(l) · x( l + t· Nstep) · ê(− j2π f n/N
N

) (29)

where w(l) is the window function of length L, here 128 and Nstep is the step size. The STFT produces a spectrogram,

which represents the energy distribution across time and frequency. The signal x(n) of length N is divided into T , explain
by the Figure 21 segments, given by:
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T =
N −L
Nstep

+1 (30)

Figure 21. Coherent accumulation processing in fast and slow time domain

To address the loss of phase information in STFT, Bi-spectrum analysis is applied. It is defined as the Fourier

Transform of the third-order cumulant sequence:

Bt ( f1, f2)= ST FT ( f1, t) ·ST FT ( f2, t) ·ST FT ( f1+ f2, t) (31)

The diagonal bi-spectrum, focusing on the main frequency components, is given by:

Bdiag ( f , t)= | Bt ( f , f ) | (32)

By combining the STFT and Bi-spectrum outputs, a dual-channel spectrum is created, which incorporates both

amplitude and phase information for enhanced analysis. Thus, forming 2 channel images.

B. Architecture: The Vision Transformer architecture processes input images through a series of well-defined steps,

shown in the Figure 22, utilizing a self-attention mechanism for feature extraction and classification. The pre-processing is

broken down into four main steps:

a. Patch Embedding: The first step involves partitioning the input image I = H ×W ×C, H,W,C ∈ R into non-

overlapping patches of size P ×P. For an image with height H, width W, and channel depth C, this results in a total of(H
P

)
×
(W

P

)
patches. Each patch is then flattened into a vector and passed through a linear projection layer, which maps it

to a fixed-dimensional embedding space d. This is mathematically expressed as:

xi
patch= Wp· Flatten

(
Ii
patch

)
+bp (33)

where Wp and bp represent the learnable weights and biases of the linear projection, and Ii
patch denotes the i-th image

patch. To preserve the spatial relationships between patches, positional encodings are added to the embeddings, forming a

sequence of inputs:
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z0=
[

x1
patch +p1; x2

patch+p2; . . . ;xN
patch+pN

]
(34)

where pi represents the positional encoding for the i-th patch, and N =
(H

P

)
·
(W

P

)
is the total number of patches.

Figure 22. Overall architecture of proposed approach

b. Transformer Encoder: The sequence of patch embeddings z0 in the Vision Transformer is processed through a series

of transformer encoder blocks. Each encoder block consists of two primary components: multi-head self-attention (MHSA)

and a feed-forward neural network (FFN), both preceded by layer normalization. The MHSA mechanism computes

relationships between patches by using the query Q, key K and value V matrices derived from the input embeddings. These

matrices are calculated as:

Q =WQ·z , K =WK ·z (35)

and , V =Wv·z (36)

where,WQ, WK andWv are learnable weight matrices. z represents the input embeddings. The attention scores are computed
using the following equation:

Attention(Q,K,V )= so f tmax
(

Q
KT
√

dk

)
V (37)

where dk is the dimensionality of the key vectors and the softmax function ensures the scores are normalized. This

mechanism allows the model to capture dependencies between patches and focus on the most relevant regions of the input

data. After the self-attention step, the output is passed through a position-wise FFN. The FFN consists of two linear layers,

separated by a GELU (Gaussian Error Linear Unit) activation function:

FFN (x)= Linear2(GELU(Linear1(x))) (38)

where the FFN introduces non-linearity and adds representational depth, enabling the model to capture complex patterns in

the data. The output of each component is combined with the input using skip connections (residual connections), which

help preserve gradient flow and stabilize training. The steps are:

After MHSA: zout= LN ( MHSA(z))+z (39)

After FFN: zout= LN ( FFN (zout))+zout (40)
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These skip connections ensure that the model effectively learns both shallow and deep features without vanishing

gradients. The Transformer Encoder blocks repeat these operations in sequence, progressively refining the patch embeddings

for feature extraction and eventual classification.

C.Classification Token (CLS):A learnable classification token (CLS) is prepended to the sequence of patch embeddings

at the beginning. This token serves as a global representative of the entire image. During self-attention operations,

the CLS token interacts with all the patch embeddings, aggregating information from all patches. At the end of the

transformer encoder stack, the CLS token absorbed the most relevant features from the input image, encapsulating its

global representation. This token’s role is crucial for downstream tasks, such as image classification, as it effectively

summarizes the image in a single embedding.

D. Classification Head: The final step in the vision transformer architecture involves the classification head, which

processes the output embedding of the CLS token. The embedding corresponding to the CLS token zCLS is extracted after

passing through the transformer encoder stack. The zCLS embedding is passed through a fully connected layer, which

computes a probability distribution over the target classes. The mathematical formulation is:

y = so f tmax( WCLS . zCLS+bCLS ) (41)

where,WCLS are the learnable weights of the classification layer, bCLS are the biases and zCLS is the output embedding of

the CLS token. The softmax function converts the scores into a normalized probability distribution, where each value

represents the likelihood of the input image belonging to a specific class. By combining the classification token and the

classification head, ViT effectively transforms input images into meaningful class predictions, leveraging the self-attention

mechanism to process and summarize image information.

C. Result: The proposed method is evaluated using a dataset comprising 6400 radar frames, representing six distinct

target categories: wheeled vehicles (1300 samples), tracked vehicles (1000 samples), persons walking (1100 samples),

persons running (1000 samples), unmanned aerial vehicles (UAVs) (1400 samples), and ships (600 samples). The dataset

was collected using an X-band surveillance radar system under diverse conditions, including road and hillside deployments,

to ensure a variety of target and environmental scenarios. The radar system operated within a detection range of 100 m to 5

km, providing sufficient variability in target distance and echo characteristics. The performance of the model is represented

in Tables 7 and 8.

Table 7. Accuracy and F1-Score of the method

Class Precision Recall F1-Score Accuracy (%)

Wheeled vehicle 0.936 0.945 0.940 94.36
Tracked vehicle 0.928 0.943 0.936 94.33
Person walking 0.926 0.906 0.916 90.61
Person running 0.997 0.997 0.997 99.67

UAV 0.986 0.991 0.988 99.05
Ship 0.977 0.961 0.969 96.11

Average 0.958 0.957 0.958 95.69

Table 8. Comparison of classification accuracy with STFT- and Bi-spectrum- based ViT

Class STFT + ViT Bispectrum + ViT Proposed method

Wheeled vehicle 92.07 89.18 94.36
Tracked vehicle 90.66 84.79 94.33
Person walking 88.97 81.57 90.61
Person running 96.54 95.27 99.67

UAV 94.59 92.97 99.05
Ship 91.81 93.40 96.11

Average 92.44 89.53 95.69
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4.7 Using 2D singularity power spectrum

It introduces an innovative methodology for SAR image analysis and target detection. This approach leverages the

two-dimensional singularity power spectrum (2D-SPS) within the time-frequency domain to enhance the detection of

weak targets, particularly in low SNR scenarios. By integrating the two-dimensional pseudo-Wigner-Ville distribution

(2D-PWVD) [94] for time-frequency analysis and singularity power spectrum estimation [95], the proposed method

effectively captures coupling features from both spatial and frequency domains. Experimental results indicate that this

approach outperforms traditional fractal-based methods in target detection accuracy and robustness. SAR technology

is widely recognized for its ability to generate high-resolution imagery under adverse environmental and operational

conditions. However, conventional techniques often exhibit limitations in detecting weak targets, especially in complex

scenarios with extremely low SNRs. While fractal-based methods have been employed to analyze SAR images, they

frequently fall short in precisely characterizing power distribution within these datasets. To address these challenges,

this study introduces the singularity power spectrum (SPS) as a refined metric capable of accurately capturing the power

spectrum along the singularity exponent domain, thereby providing a robust characterization of SAR image features. The

2D-PWVD algorithm is used for time frequency analysis of the SAR image I(x, r) is written as,

PW (x,r, fx, fr)=
N1

∑
k=1

N2

∑
l=1

h(k, l) · l (x+ k, r+ l) · I∗ (x− k,r− l) · e− j2π( k fx
N1 + l fr

N2 ) (42)

where, (x, r) is the time component and ( fx, fr) is the frequency component. The proposed methodology employs the

2D-PWVD to transform SAR images into four-dimensional arrays, uncovering intricate coupling information across spatial

and frequency domains while effectively mitigating cross-term interference in multi-component signals. Subsequently,

singularity power spectrum estimation is performed by calculating local singularity exponents for each pixel in the

transformed image. These exponents are grouped into subsets, and the power distribution of these subsets is utilized to

compute the 2D-SPS. This process yields a comprehensive and reliable representation of SAR image features. For target

detection, the maximum SPS value at each pixel is extracted and utilized as a feature vector. This vector serves as the

input to a detection framework, which employs threshold optimization through receiver operating characteristic (ROC)

analysis. This approach ensures high sensitivity and specificity in discriminating targets from background noise. The

proposed method, diagrammatically represented in Figure 23, is validated experimentally using SAR images obtained from

the Terra SAR-X radar satellite, encompassing scenarios with and without weak ship targets. The results demonstrated a

clear distinction between target regions and background areas, with singularity exponent values effectively characterizing

the targets. The framework achieved near-perfect classification performance, with an area under the ROC curve (AUC)

reaching 1.0, significantly surpassing the detection capabilities of conventional constant false alarm rate methods and other

SPS-based approaches. Additionally, a detailed parameter sensitivity analysis highlighted the critical influence of sliding

window size and subset count on detection efficacy.

In conclusion, the proposed SPS-SAR methodology represents a substantial advancement in SAR image processing,

particularly in detecting weak targets within noisy and complex environments. This approach has demonstrated potential

to improve the operational efficiency of radar-based surveillance systems. Future research will focus on optimizing the

framework’s parameters and integrating the method with deep learning architectures to enhance feature extraction and

facilitate multi-target classification, further advancing the capabilities of SAR image analysis technologies.

4.8 Using RadHARNet architecture

Chakraborty et al. [96, 97] introduced an innovative approach to target classification utilizing mm-wave radar in

conjunction with machine learning techniques presented in this study, with a focus on features derived from range-FFT.

The preparation of a comprehensive dataset is initiated, where radar data from a diverse group of human subjects engaged

in various activities across different distances and orientations is captured. Rigorous preprocessing is applied to this

data, including filtering and transformation via STFT, resulting in detailed time-frequency maps. Significant features are

extracted from these maps, which are subsequently used for the training and validation of machine learning models. The
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DIAT-RadHARNet, a novel D-CNN architecture, is employed for the classification of these features. Advanced techniques

such as depth-wise separable convolutions and multi-scale filtering are integrated into the model to optimize performance

while minimizing computational load. Comprehensive performance evaluations of the proposed models are conducted,

with dataset preparation, D-CNN architecture, and results discussed in the subsequent sections. In the preparation of the

dataset, a diverse group of 30 human subjects, representing various genders, weights, and heights, are selected. These

subjects are instructed to perform different suspicious activities at distances ranging from 10 m to 0.5 km from the radar.

The activities are performed at seven distinct orientations (0°, ±15°, ±30°, and ±45°) to simulate realistic conditions. Raw

radar data is collected over 3 s under varying environmental conditions and processed using MATLAB. A 600-Hz low-pass

filter is applied to remove high-frequency noise, while clutter from stationary and slow-moving objects is suppressed

through digital filtering techniques. The filtered signals are then transformed using STFT, utilizing a 2048-length hamming

window, 4096-point DFT, and 97.65% overlap. The resulting spectrograms, which reveal intraclass correlations in torso,

hand, leg, and body movements, are organized by class, resulting in a total of 3780 samples—80% of which are allocated

for training and 20% for validation.

The DIAT-RadHARNet architecture shown in Figure 24 is inspired by MobileNetV2, InceptionV3, Senet, and Blaze

Face, and is designed around five core principles to enhance performance and efficiency. Feature map depth in convolution

operations is optimized by weighting channels based on their significance. Depth-wise separable convolutions are employed

to reduce the model’s parameter count and computational load. Multiple filter sizes (1 × 1, 3 × 3, 5 × 5) are used in depth

wise convolutions to balance global and local feature extraction. Different-sized kernels are applied to the same input

tensor to handle variability in human activities, orientations, and distances. Global average pooling (GAP) layers replace

fully connected layers to minimize trainable parameters and improve model efficiency. The DIAT-RadHARNet model is

composed of 55 layers, including 13 separable convolutional layers, max-pooling, batch normalization, ReLU activation,

dropout, dense layers, and softmax for classification. Spectrogram images, resized to 256 × 256 × 3, are processed by the

model, which also includes normalization and augmentation. The architecture is mathematically represented as:

DIAT −RadHARNet(x) = β ( f FC( f D( f G( f MSFCAi( f M( f B(σ ×
(

f Ci (x∗wi+bi)
)
))))))) (43)

where f Ci denotes the convolutional layers, f B represents batch normalization, f M is max-pooling, f MSFCAi indicates

multi-scale filtering and channel attention, f G refers to the GAP layer, f D is dropout, and f FC refers to fully-connected

layers. The initial convolutional layer applies 96 filters of size 3 × 3 with a stride of 2, producing an output of 128 × 128

× 96, which is processed through max-pooling and batch normalization.

Figure 23. Flowchart of SAR ship detection based on 2D-SPS
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The output is then fed into three Multi-Scale Filtering and Channel Attention (MSFCA) blocks, each containing

convolutional layers and batch normalization. The output is fed into three Multi-Scale Filtering and Channel Attention

(MSFCA) blocks. Each block includes:

f P1 (x)= f B (
σ
(

f Ci ( f x∗wi+bi)
))

(44)

f P2 (x)= f B (
σ
(

f Ci ( f x∗wi+bi)
))

(45)

f P3 (x)= f B (
σ
(

f Ci ( f x∗wi+bi)
))

(46)

where f Ci is the convolutional layer, f B is batch normalization, x is the input feature map, wi and bi represent weights and

bias, respectively. The outputs from these paths are combined:

f A1 (x)= f P1 (x)⊕ f P2 (x)⊕ f P3 (x) (47)

Figure 24. Layer description of the DIAT-RadHARNet architecture

The combined feature map f A1 (x) undergoes further processing:

f A2 (x)= σ
(

f B ( f A1 (x)
))

⊕ f P4 (x) (48)

f P4(x) captures channel interdependencies through GAP layer, followed by a multilayer perceptron that reduces the
feature map to 1 × 1 ×M and multiplies it with the original input:
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f P4 (x)= σ

(
f Ci

(
f Mul (

α
(

f FC (
σ
(

f FC ( f G ( f x)
))))))

∗ f x
)

(49)

where, f P4 (x) is the GAP layer, f Ci represents the fully connected layers, f Mul is the multiplication layer, and α is

the sigmoid activation function. The outputs from these blocks are combined and further processed to capture channel

interdependencies through GAP and a multilayer perceptron that reduces the feature map and multiplies it with the original

input. Exceptional performance across varying environmental conditions was demonstrated by the DIAT-RadHARNet

model. An accuracy of 99.22% was achieved under normal weather conditions, with only minimal misclassifications.

High accuracy of 99.05% was maintained under adverse weather and low-light conditions, while the highest accuracy of

99.29% was observed during long-range target operations. Overall, the DIAT-RadHARNet model achieved a top accuracy

of 99.22%, balancing high performance with computational efficiency. The model, comprising 213,793 parameters and 55

layers, is noted for its lightweight nature and superior performance compared to other models such as VGG-16, Mobile

Net, and Blaze Face, providing an effective solution for radar-based target classification.

4.9 Using spatial frequency domain processing

Foliage Penetration (FOPEN) radar systems are critical for detecting and identifying objects disguised in dense

foliage. To deal with foliage and environmental clutter, FOPEN radar systems use complex signal processing and imaging

techniques. Polarimetric radar imaging [98] and synthetic aperture radar (SAR) are important tools for improving target

recognition and imaging in such complicated situations. Range-Doppler methods are used to estimate target velocity, which

helps identify moving objects hidden behind foliage. As Nakshatra et al. [99] illustrate, developing indigenous FOPEN

radar technologies is critical for reducing reliance on imported systems and adapting solutions to unique operational

settings. To maintain continuous performance, these systems must be flexible to changing weather conditions and foliage

densities. Cognitive radar systems [100], which use machine learning and artificial intelligence, can augment FOPEN

radar capabilities by allowing for autonomous decision-making and adaptive signal processing. FOPEN radar systems

have applications other than ground-based target detection. They can also identify and track flying objects covered by tree

canopies, enhancing their utility in security operations and environmental monitoring. The spatial frequency domain method

represents a substantial advancement in the detection of moving targets using radar systems, addressing several limitations

inherent in conventional Fourier transform techniques, such as difficulty in distinguishing target peaks and the requirement

for prolonged time intervals to resolve all relevant frequencies accurately. These issues limit the ability for real-time

processing and complicate radar data analysis. To overcome these limitations, the spatial frequency domain method offers

a more refined and effective alternative. This approach involves transforming radar data into spatial frequencies [101],

thereby enabling a more nuanced analysis of target detection. The transformation process entails converting each sample

in the Pulse Repetition Period (PRP) into a spatial frequency, denoted as f s. The relationship between spatial frequency

and target distant R from radar is given by the formula:

fs=
2R
c

(50)

where c is the speed of light. This conversion is pivotal, as it allows the radar system to differentiate targets based on

their distance from the radar. Targets located at greater distances generate higher spatial frequencies due to the longer

round-trip travel time of the radar signal. Subsequent to the spatial frequency transformation, the IDFT is applied to the

spatial frequency data. It is mathematically expressed as

x(t)=
1
N

N−1

∑
k=0

X ( fk)e j2π
kt
N (51)

where, x(t) represents the time-domain signal, X ( fk) denotes the spatial frequency components, N is the total number of

samples, and t signifies time. Applying the IDFT [102], translates the spatial frequency data back into the time domain,

which effectively reduces noise bandwidth and enhances the signal clarity. This improvement in clarity facilitates more
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accurate identification of moving targets. A critical element of the spatial frequency domain method is clutter rejection. This

process isolates moving targets from stationary clutter by comparing radar returns from successive pulses. Specifically, the

difference between the current pulse return Rcurr (t) and the previous pulse return Rprev (t) is computed using the formula

Rdi f f (t)=Rcurr (t)−Rprev (t) (52)

This subtraction effectively eliminates stationary targets, or clutter, leaving only the signals from moving objects.

Consequently, the radar system can concentrate on analyzing the characteristics of these moving targets. The final step in

the spatial frequency domain method involves analyzing target range and movement through RTI plotting. By generating

an RTI plot from the IDFT results, the distance of targets over time is visualized. This plot provides two crucial pieces of

information: the range, which indicates the distance of targets from the radar, and the intensity, which reflects the strength

of the radar return signal and signifies the presence of targets.

5. Merits and demerits

Merits: FMCW radar systems are highly regarded for their exceptional resolution range and velocity measurement

accuracy, making them ideal for precise target classification in applications such as autonomous driving and defence.

This capability allows for effectively differentiating closely spaced targets in both distance and speed. Additionally, the

continuous wave nature enables real-time data processing, which is crucial in dynamic environments. The system’s

robustness against interference and clutter further enhances its performance in noisy or complex environments, and its low

cost and compact design make it versatile for various applications, from consumer electronics to industrial uses.

Table 9. Summary of the discussed techniques

Reference Radar signal
representation

Network
model

Task Object type Dataset Remarks/Limitation

Bhatia et al. Range FFT
features

Logistic
Regression,
Naive Bayes

Target
Classification

Cars, drones,
humans

Simulated Limited to basic feature
extraction; struggles in
cluttered or dynamic
scenarios.

Upadhyay et
al.

Spectrogram of
micro-Doppler
signatures

CNN Motion Analysis
and Classification

Moving objects Self-developed Requires large datasets;
computationally
expensive for real-time
applications.

Vishwakarma
et al.

Micro-Doppler
signatures

CNN with
Global Spatial
Attention
Module

Target
Classification

Humans,
vehicles

Custom Dataset Improves noise resistance
but increases
computational
complexity.

Han et al. Raw radar data
(range-time plots)

Residual CNN Object Detection UAVs, cars,
humans

Simulated Requires extensive
preprocessing; reduced
accuracy for UAV
classification.

Mun et al. Temporal radar
signal data

RNN with
Self-Attention

Interference
Mitigation and
Reconstruction

Moving and
static targets

Simulated High computational cost;
limited real-world
validation.

Ma et al. Spectrogram
patches

Vision
Transformer

Classification Low-resolution
radar data

Public Dataset Not suitable for real-time
tasks without
optimization.

Xiong et al. SAR radar
images

Custom
Implementation

Weak Target
Detection

Weak ships,
static objects

Simulated Computationally
intensive; requires
optimal parameter tuning.

Chakraborty et
al.

Millimetre wave
radar images

Custom
Lightweight
CNN

Human Activity
Recognition

Humans Custom Dataset Limited application scope
outside human activity
scenarios.

Lakshmin-
arayanan et al.

Spatial frequency
representation

Custom Signal
Processing
Pipeline

Clutter Rejection
and Target
Detection

Moving targets
in clutter

Simulated Complex signal
processing pipeline;
struggles with dynamic,
non-linear targets.
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Demerits: Despite its advantages, FM-CW radar also faces challenges, such as the need for complex and

computationally intensive signal processing, which can increase system costs and complexity, particularly in real-time

applications. The system’s susceptibility to multipath effect can lead to inaccuracies in target classification, requiring

advanced but not always effective signal processing techniques. Additionally, FM-CW radar performance can be heavily

influenced by environmental conditions, such as weather and terrain, potentially reducing detection accuracy. Lastly,

while it excels in range and velocity resolution, FM-CW radar often has limited angular resolution, making it difficult to

distinguish between closely spaced targets with similar characteristics, which may necessitate more complex and costly

antenna designs or additional sensors.

6. Future directions

The integration of advanced ML algorithms with FM-CW radar systems is anticipated to greatly enhance target

classification accuracy. Future research is expected to focus on developing sophisticated signal processing methods to

address current limitations like multipath effects, environmental dependencies, and signal noise. Hybrid sensor fusion,

combining the radar with other modalities like LiDAR, cameras and ultrasonic sensors, is a promising approach to improving

classification by leveraging complementary data. Moreover, ongoing efforts in miniaturization and cost reduction will

be crucial for expanding the adoption of radar. The integration of real time AI, particularly through edge computing will

further enhance the radar’s ability to make quick, accurate decisions.

7. Conclusions

Radar attracted interest fromAI community. The use of CNN with GSAM, RNN and self-attention, vision transformer,

2D-SPS are significant milestones because these methods solve the problem of micromotion detection of targets. These

approaches are useful for reducing background noise and enhances prediction accuracy. The study highlights a range of

methodologies, from traditional approaches to advanced machine and deep learning techniques, and assess their respective

strengths and challenges. Radar systems advancement reviewed in Table 1 shows their robustness and ability to operate

under diverse conditions, remain vital across industries such as, automotive, healthcare and security. Our review paper

structured according to advanced radar design and mathematical model, including different types of radar and AI models.

While recent advancements, such as the use of transformers, have significantly improved classification accuracy, they

also introduce challenges like high data requirements and computational complexity. All these methods have associated

advantages and disadvantages, since they are employed as an input to deep learning algorithms for various purposes.

Traditional methods, though less demanding in resources, continue to offer viable solutions in specific scenarios. As radar

evolves, addressing key challenges such as mitigating false positives and false negatives, improving object localization,

and managing environmental complexities is essential.

Future advancements in radar systems will depend on improved hardware robustness and computational capabilities,

enabling more efficient processing of complex datasets and enhancing image classification accuracy. Robust hardware will

address environmental challenges, while advanced algorithms will tackle issues like false negatives, object localization,

and handling multiple targets. These developments will improve precision and adaptability, ensuring radar technology

continues to advance in various fields [103].
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