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Abstract: The dynamic performance of control strategies for an X-filter process is critically analyzed, emphasizing

the advantages of model predictive control (MPC) over traditional proportional-integral (PI) control. A detailed simulation

model, grounded in the linearized expressions of the X-filter process, was developed using MATLAB-Simulink, with

parameters systematically defined and tested under various disturbance scenarios. Key performance indicators, including

steady-state behavior, oscillation magnitude, and control effort, were assessed. Results demonstrate that MPC significantly

enhances system responsiveness, achieving a steady state more rapidly than PI controllers, with notable reductions in

oscillatory behavior across key process variables. Specifically, oscillations in the manipulated variable mi were effectively

mitigated under MPC control, thereby safeguarding hydraulic pump integrity. Statistical analysis of standard deviations

for controlled variables revealed that MPC reduces variability in h1, h2, and dp by 9%, 24%, and 32% respectively,

underscoring its superior ability to maintain stability amidst high-frequency noise and external disturbances. The average

position deviation for manipulated variables further illustrates the efficiency of MPC, with reductions of up to 92% in

specific instances. Robustness testing confirms MPC’s resilience to disturbances in critical input variables, showcasing

its adaptability in complex industrial environments. Overall, the findings affirm that MPC not only optimizes set-point

tracking but also enhances process control precision, providing a compelling case for its implementation in advanced

industrial applications.

Keywords: control systems, disturbance rejection, dynamic analysis, high-frequency noise, model predictive control

(MPC), oscillation, PI controller, process variables, simulation results

1. Introduction

The pulp and paper industry is a vital sector that significantly contributes to the global economy, providing essential

materials for various applications, including packaging, printing, and writing. Within this industry, the efficiency of

production processes directly impacts operational costs and environmental sustainability. Filtration plays a crucial role in

the pulp processing stages, particularly in the removal of contaminants and impurities from the pulp slurry, which affects

the quality of the final product [1, 2].

In a Kraft pulp mill, the green liquor can be located between the recovery boiler and the causticizing plant and is

part of the transition to recover the sodium hydroxide and sodium sulfide used in the cooking process. The production

of highly clarified green liquor is particularly beneficial for the unit operations within the white liquor production plant.
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Additionally, the removal of toxic substances from green liquor has become increasingly important for modern evaporation

and bleaching processes in pulp mills. One notable example is the accumulation of magnesium in the system resulting

from the use of magnesium in the oxygen delignification process. As the magnesium content increases, the settling rate of

the green liquor tends to decrease [1].

The X-Filter, a novel cross flow film-forming filter, represents a significant advancement in filtration technology for

pulp mills. This filter operates on the principle of crossflow filtration, which facilitates continuous separation of solids

from liquids while minimizing the accumulation of retained materials on the membrane surface. As a result, the X-Filter

enhances the filtration efficiency and extends the operational lifespan of the filtering media. However, the dynamic nature

of pulp processing environments introduces various disturbances and challenges that necessitate robust control strategies

to optimize filter performance [2, 3, 4].

Control systems play a pivotal role in managing process variables and ensuring the stability of the filtration operation.

Traditional control methods, such as proportional-integral (PI) control, are widely employed in industrial settings; however,

they often struggle to cope with the inherent variability and non-linearities present in complex processes like those in pulp

mills [5]. This limitation is particularly evident when external disturbances, such as changes in feed consistency or flow

rates, disrupt the steady-state operation, resulting in suboptimal performance and increased wear on system components

[6].

Model predictive control (MPC) has emerged as a more sophisticated alternative, offering enhanced capabilities

for managing complex dynamic systems [7, 8]. By utilizing a model of the process, MPC anticipates future behavior

and optimizes control inputs over a finite horizon, effectively addressing the challenges posed by system non-linearities

and external disturbances. The application of MPC in the context of the X-Filter presents an opportunity to significantly

improve process performance, enabling faster response times, reduced oscillations, and enhanced disturbance rejection

capabilities.

This study aims to model the X-Filter process and design a control strategy that leverages MPC to optimize its

performance in a pulp mill environment. Through extensive simulations conducted in MATLAB-Simulink, the research

will compare the efficacy of the MPC against traditional PI control methods, specifically focusing on critical process

variables such as liquid levels (h1(t) and h2(t)) and pressure differentials (dp(t)).

This research not only seeks to establish the X-Filter as a pivotal technology in pulp processing but also aims to

demonstrate the superior control capabilities of MPC in managing complex filtration dynamics. The outcomes are expected

to have broader implications for the pulp and paper industry, particularly in enhancing process efficiency, reducing

operational costs, and improving the sustainability of pulp production.

This article is organized as follows: Section 2 contains the description of the process and the methodology for the

modeling, while Section 3 examines and designs the control system in detail. Finally, in Sections 4 and 5, the simulation

results are presented, and the study’s conclusions are outlined.

2. Material and methods

This section provides a comprehensive description of the process, including a detailed model of the process dynamics.

2.1 Process description

The flow of raw green liquor (RGL) and filtered green liquor (FGL) are key components of the process, as illustrated

in Figure 1. The process consists of two main operational units: The X-Filter (labeled as A, B, and C) and a storage tank

(labeled as D).

The X-Filter comprises three main components:

• A: A pressurized cylindrical tank.

• B: Two filter cloths.
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• C: An internal vessel.

Figure 1. Process diagram of X-Filter process plant

The storage tank (D) is also a pressurized cylindrical tank and is equipped with one inlet pipe and one outlet pipe,

while the X-Filter has three inlet pipes and two outlet pipes.

The process involves filtering a stream of RGL, labeled as f i(t), with a density of ρ i. As described in [3], f i(t) is

driven by a hydraulic pump and enters the X-Filter from both the top and bottom (refer to Figure 1). The lower inlet

generates an upward flow, flooding the X-Filter and allowing the liquor to rise to the upper part. This flow from the lower

part is combined with the inlet connected to the upper part, accumulating in an upper vessel within the filter (Figure 1).

Subsequently, f i(t) passes through two conduction channels located in the lower part of this vessel, eventually reaching

the filter cloth in part B. The filter cloth facilitates the filtration of RGL, which then accumulates in the internal vessel (C).

Compressed air is introduced through the upper pipe, generating a molar density flow denoted as wair(t) and characterized

by ρair. This compressed air flow pressurizes the system, with the X-Filter operating at pressure P1(t) and vessel C at

pressure P2(t) due to the presence of FGL.

Figure 1 also illustrates two outlets from vessel C:

• The first outlet allows a mixture of compressed air and green liquor vapor to escape due to the filtration process.

This vapor, with a flow rate denoted as wout(t) and a molar density of ρo, exits the X-Filter at pressure Po(t).

• The second outlet facilitates the evacuation of FGL, flowing at a rate denoted as f 2(t) with a density of ρo, directing

it towards D.

To ensure the proper operation of the X-Filter and D in a steady state, it is essential to maintain appropriate levels.

The levels of the X-Filter and the D are denoted as h1(t) and h2(t), respectively. Additionally, for each filter element, an

effective filter level hf(t) can be defined as the quotient of the filter volume V f divided by the filter area Af [9].

The flows wout(t) and f 2(t) are regulated by throttle control valves: control valve PDV-01 manages wout(t), while

manual valve HV-02 controls f 2(t). Lastly, the storage tank D operates as a buffer, storing FGL at a flow rate labeled f 3(t)

with density ρo and pressure P(t). This flow is regulated by control valve LV-03.

2.1.1Measurement units

• Absolute densities (ρ i, ρo): kg/m
3.
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• Molar densities (ρair, ρo): moles/m
3.

• Volumetric flows (f i(t), f 2(t), f 3(t)): m
3/s.

• Mass flows (wair(t), wout(t)): kg/s.

• Pressures (P1(t), P2(t), Po(t), P(t)): kPa.

• Levels (h1(t), h2(t), hf(t)): m.

• Volumes and areas: m3 and m2, respectively.

2.1.2Filtration process characteristics

The loss-flow filtration system features a unique design that prevents dirt particles from adhering to the filter cloth (B)

during the filtration process. In this system, the green feed liquid flows downwards over the filter element’s surface. The

pressure difference (P1(t)−P2(t)) generated within the filter element allows a portion of the green liquid to pass through

the element, while the remainder continues to flow downwards. This downward flow continuously washes away scum

particles from the surface, effectively preventing adhesion [3, 9].

During filtration, small scum particles may enter the pores of the filter element. However, regular washing of the

element can prevent this. By maintaining the pressure difference (P1(t)−P2(t)) at zero during brushing, dislodged scum

particles are effectively removed by the downward flow of green liquor [3, 9].

For analysis, the process is considered ideal if the entire RGL fully floods the X-Filter without any losses through its

walls. Additionally, the filter cloths are assumed to be homogeneous, and it is assumed that all RGL passes through them.

Furthermore, D is considered lossless, with its content well-mixed.

2.2 Process modeling

This section presents a comprehensive derivation and analysis of the nonlinear and linear dynamic models of the

X-Filter plant.

2.2.1Nonlinear dynamic model of the X-filter plant

The RGL filtration process utilizing the X-Filter comprises eight distinct operational stages [1, 3, 9]. This study

specifically focuses on two of these stages: RGL impulsion and filtration. Green liquor dregs, a byproduct generated within

pulp and paper mills, are typically disposed of in landfills. However, these dregs contain significant concentrations of

calcium carbonate, making them a viable candidate for utilization as a raw material in the production of ceramic materials,

providing a sustainable alternative to conventional disposal methods [3].

Given that the primary objective of this study is to dynamically model the filtration process, only the RGL pumping,

and filtration stages are considered. Based on the schematic of the process (see Figure 1), two main control volumes are

identified: X-Filter and D.

Amass balance around the X-Filter yields the following dynamic equation for the level variation within the X-Filter,

denoted by h1(t):

dh1(t)
dt

=
1

ρo ·AXf

· (ρi · fi(t)−ρo · f2(t)) (1)

where AXf represents the area of the X-Filter.

The rate of change in vapor flow is described by [10]:

dM(t)
dt

= ρair ·wair(t)−ρo ·wout(t) (2)
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Here,M (t) represents the molar flow rate of vapor (moles/s). Given the low-pressure conditions in the X-Filter, the

ideal gas law is applicable to relate moles to pressure P2(t) [5, 10]:

M(t) =
P2(t) ·V

R ·T
(3)

In (3), V, R, and T represent constants where V is the vessel volume (m3), R is the ideal gas constant (J/mol· K), and T
is the internal temperature (◦C) of the vessel C [5, 10]. By substituting (3) into (2), the mass balance of the X-Filter is

obtained as a function of P2(t):

dP2(t)
dt

=

(
R ·T

V

)
· (ρair ·wair(t)−ρo ·wout(t)) (4)

Additionally, the dynamics of the solid particle cake formed on the filter medium can be modeled as follows [1, 9]:

dhf(t)
dt

= 2 · P1(t)−P2(t)
µ · (Rf−α · c ·hf(t))

(5)

The factor of 2 in (5) arises due to the presence of two filtration elements. Here, µ represents the fluid viscosity

(N· s/m2), c the solid concentration in the RGL, Rf and α are empirical constants related to the filtration medium.

Amass balance around D is formulated as:

dh2(t)
dt

=
1

AD
· ( f2(t)− f3(t)) (6)

where AD denotes the cross-sectional area of D (m2). The flow rates through the control valves and the pump, designated

as PDV-01, HV-02, and LV-03 as well as M-01 (see Figure 1), are defined by the following equations for wout(t), f 2(t),

f 3(t) [10, 11]:

fi(t) = k1 ·mi(t) ·
√

h1(t) (7)

wout(t) =Cv1 · vp1(t) ·
√

P2(t) · (P2(t)−Po(t)) (8)

f2(t) =Cv2 ·

√
P2(t)−Pg(t)

Gf

(9)

f3(t) =Cv3 · vp2(t) ·

√
Pg(t)+ρo ·g ·h2(t)−P(t)

Gf

(10)

In these equations, k1 is the gain factor, Cvx denotes the valve gain (l/m) where x ∈{1, 2}, vpx(t) is the valve position
in per unit (pu), g the gravitational constant (m/s2), and Gf the specific gravity of the FGL.

Volume 4 Issue 1|2025| 191 Journal of Electronics and Electrical Engineering



2.2.2Steady-state of the X-filter plant

As part of the theoretical study for this process, understanding the system’s dynamics at steady state and clarifying the

linearization process are essential. This regime is determined by setting the derivatives in (1) and (4)–(6) to zero. The

resulting steady-state equations are given by (11).

These steady-state conditions enable the calculation of the system’s operational points (OPs), given by (12) by solving

the equation system in (11). In this context, the variables that are yet to be calculated are the pressures P1
ss, P2

ss, Pg
ss, and

Pss.

As indicated in (12), the capital letters with a superscript ”SS” are used to denote that they correspond to the variables

in steady state. In particular, at the point at which the system reaches steady state, these variables become manifest in its

dynamics.



ρi · k1 ·Mss
i ·
√

Hss
1 − ρo·Cv2√

Gf
·
√

Pss
2 −Pss

g = 0

ρair ·W ss
air−ρo ·Cv1 ·V Pss

1 ·
√

Pss
2 ·
(
Pss
2 −Pss

o

)
= 0

Pss1 −Pss2
µ·
(
Rf−α·c·Hss

f

) = 0
Cv2√

Gf
·
√

Pss
2 −Pss

g − Cv3√
Gf

·V Pss
2 ·
√

Pss
g +ρo ·g ·Hss

2 −Pss = 0

(11)



Pss
1 =

Psso
2 +

(
(0.5 ·Pss

o )2+
(

W ss
air
·ρair

Cv1
·V Pss1 ·ρo

)2) 1
2

Pss
2 = Pss

1

Pss
g = Pss

1 −Gf ·Hss
1 ·
(

k1·Mss
i
·ρi

Cv2
·ρo

)2
Pss = ρo ·g ·Hss

2 +
(

Cv2
Cv3

·V Pss1

)2
·
(
Pss
g −Pss

1

)
(12)

2.2.3State-space model of the X-filter plant

Upon determination of these OPs, the nonlinear model is linearized using a Taylor series expansion around the OPs.

The resulting linearized state-space model is expressed as:

{
ẋ(t) = As ·x(t)+Bs ·u(t)
y(t) = Cs ·x(t)+Ds ·u(t)

(13)

where the state vector x(t)=
[
ĥ1(t), ĥ2(t), ĥf(t),P̂2(t)

]T
, input vectoru(t)=

[
P̂1(t),P̂o(t),P̂g(t),P̂(t),ŵair(t),m̂i(t), v̂p1(t), v̂p2(t)

]T
,

and output vector y(t) = x(t). Symbolically, {x(t), y(t)} ∈{R4} and u(t) ∈{ R8}. The linearized matrices can be found in

the Appendix A.

2.2.4 s-domain model of the X-filter plant

To facilitate the design of linear compensators that enhance the system’s operational efficiency, it is necessary to

derive the Laplace domain model of the existing multivariable linear state-space model in (13). The transformation to the

complex variable s allows for easier analysis and the design of control systems through transfer functions (TFs), which

express the relationship between Laplace-transformed inputs and outputs of the system [12, 13, 14].

By obtaining the model in terms of s, various control techniques can be applied to design compensators or controllers

that improve system performance and stability [15]. Using (13), the transformation to the s-domain yields the following:
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Y(s)
U(s)

= Cs · (s · I−As)
−1 ·Bs +Ds (14)

In this context, I is the identity matrix with the same dimensions asAs. Equation (14) provides the TFs derived from

the state-space model, detailing the relationship between inputs and outputs in the Laplace domain.

The individual TFs, represented as Gij(s), can be extracted from (14). These TFs in (14) represent the interactions

between each input and output in the system. Moreover, the complex vectors Y(s) and U(s) can be defined as Y(s) =

[H1(s), H2(s), H f(s), P2(s)]
T and U(s) = [P1(s), Po(s), Pg(s), P(s),W air(s),M i(s), VP1(s), VP2(s)]

T, where symbolically

Y(s) ∈{₡4} and U(s) ∈{₡8}.

3. Control system design

This study synthesizes two types of controllers: three feedback output PI-type linear compensators and a MPC.

Notably, the system’s output variable corresponding to the hf(t) level is excluded from this section, as, in practice, this

level in X-filters is regulated by rebase and is only relevant within the scope of a broader study.

3.1 Design of the linear feedback output controllers

To identify the control plants in the process, it is essential to understand the underlying unit operations. As described

in [3, 16], and illustrated in Figure 1, three distinct control loops are identified within the system.

The first control loop governs the regulation of the h1(t) level, while the second is associated with the filtration process,

and the third loop manages the D level, represented by h2(t). While the control loops for h1(t) and h2(t) are relatively

straightforward to define, the identification of variables crucial for operating the filtration process is more complex.

To identify these variables, a detailed understanding of the filtration dynamics is required. The loss-flow filtration

system is characterized by its ability to prevent dregs from adhering to the filter cloth during operation. During this process,

the RGL flows downward across the surface of the filter element. A pressure differential (∆P(t) = P1(t) − P2(t)) is created

within the filter element, allowing a portion of the green liquor to pass through the element while the remainder flows

downward. This downward flow continuously cleans the element’s surface, washing away scum particles and preventing

their adhesion [3].

During the filtration process, small dreg particles can infiltrate the element pores. However, this is mitigated through

regular flushing, which maintains the pressure differential (∆P(t)) on both sides of the filter element at zero. The dislodged

particles are then removed by the downward flow of green liquor. In this system, filtration capacity is controlled via

compressed air, while the flow rate of the green liquor is managed through the liquid level (h2(t)) in the D located at the

X-filter outlet [3].

Based on these dynamics and the transfer functions in (14), the process control diagram of the X-filter is derived and

depicted in Figure 2. This diagram reveals the three primary control loops in the system:

• Level Controller (LC-01): Regulates h1(t).

• Level Controller (LC-03): Regulates h2(t).

• Differential Pressure Controller (DPC-02): Regulates ∆P(t).

The design of the controllers is explained in subsequent sections. Each compensator to be designed is a PI-type

controller, chosen for its simplicity, ease of implementation, and ability to minimize steady-state errors when properly

designed [11, 12].
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Figure 2. Block diagram representing the MPC

3.1.1LC-01 Design

In the control loop depicted in Figure 3, the measured variable h1(t) is compared to its reference value h1
*(t) to

generate an error signal. This error signal is then processed by the compensator LC-01. The output of the compensator,

denoted as mi(t), acts as the command signal for the operation of the pump M-01. The compensator LC-01 plays a critical

role in achieving the desired control response by regulating the system to meet the specified set point.

Figure 3. X-Filter process control diagram. Three control loops are identified. Two level controllers, i.e., LC-01 and LC-03 and a differential pressure
controller DPC-02

The plant to be controlled in open-loop operation is represented by the TF (from (14)) G(s), which is expressed as:

H1(s)
Mi(s)

= G(s) =
K12

s
(15)

where K12 can be found in Appendix A.
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As shown in (15), the G(s) represents a plant with pure capacitance, characterized by an integrative dynamic. This

type of plant behavior is common in process control systems and is well-documented in works such as [10, 11]. Due to the

integrative nature of G(s), the direct synthesis method (DSM) is a suitable approach for controller design because of its

simplicity and effectiveness. DSM is part of the broader category of model-based control techniques.

For simplicity, the closed control loop associated with the plant G(s) is configured with unitary feedback. The

closed-loop TF is then defined as:

H1(s)
H*
1 (s)

= Q(s) =
Gc(s) ·G(s)

1+Gc(s) ·G(s)
(16)

Here, Gc(s) is the TF of the well-known PI compensator, where kc and τ i are the proportional gain and the integral

time constant of the compensator, respectively [12].

Using (16), Gc(s) can be derived as part of the DSM, yielding:

Gc(s) =
1

G(s)
· Q(s)

1−Q(s)
(17)

To achieve first-order behavior for G(s), the desired closed-loop dynamics are set as:

Q(s) =
1

τr · s+1
(18)

where τ r is the desired time constant for the process. Substituting Q(s) into (17) gives:

Gc(s) =
1

τr ·K12

(19)

Based on (19) and following the recommendations of the DSM, the parameters of the compensator Gc(s) are defined

as:

kc = 1/(τr ·K12);τi = 10 · τr (20)

This approach ensures a well-behaved, robust control system tailored to the dynamics of the plant G(s). By utilizing

the DSM, the design process remains straightforward, while achieving effective regulation of the process variable h1(t).

3.1.2LC-03 design

Similar to the previous case (see Figure 3), the control loop in this scenario compares the measured variable h2(t)

with its reference value h2
*(t), generating an error signal. This error signal is then processed by the compensator LC-03,

which manipulates the control variable vp2(t) to directly adjust the throttling of the valve. By modifying the valve opening,

the compensator ensures the system maintains the desired set point and achieves the required control response.

The open-loop plant to be controlled, derived from (14) and represented in its canonical form, is defined as:

H2(s)
V P2(s)

= G(s) =−
K25
K21

s
K21

+1
(21)

Here, K21 and K25 are defined in Appendix A.

As seen in (21), the plant exhibits a first-order dynamic. The corresponding closed-loop control system, with the

plant G(s), is configured with unitary feedback. The closed-loop transfer function is expressed as:
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H2(s)
H*
2 (s)

= Q(s) =
Gc(s) ·G(s)
1+Gc(s) ·G

(22)

Here, Gc(s) is the TF of the well-known PI compensator, similar to case before.

Similar to the previous case, the design of the Gc(s) is obtained and defined as:

kc =−1/(τr ·K);τi =−τ (23)

where:

K = K25/K21;τ = 1/K21 (24)

This approach ensures that the designed compensator effectively handles the inverse response of the G(s) plant while

maintaining stability and achieving the desired control performance. By properly selecting τ r, the system response can be

tuned to meet specific process requirements.

3.1.3DPC-02 design

This control structure (see Figure 3) employs an indirect regulation of the pressure difference (∆ P(t)) by directly

regulating P2(t), as described by [3]. In this feedback loop, the measured variable ∆ P(t) is compared to its reference value

∆ P*(t) (where ∆ P*(t) = P1
*(t) − P2

*(t)), generating an error signal. This error signal is processed by the compensator

DPC-02, which produces the control signal vp1 to adjust the valve DPV-01.

The open-loop plant to be controlled, represented in its canonical form, and derived from (14), is defined as follows:

P2(s)
V P1(s)

= G(s) =
K44
K41

s
K41

+1
(25)

where K41 and K44 can be found in Appendix A.

As shown in (25), TF G(s) represents a first-order dynamic system. Therefore, the closed-loop control diagram for

this case is analogous to the ones described for LC-01 and LC-03.

Using DSM applied in the designs of the LC-01 and LC-03 compensators, Gc(s) is derived to regulate G(s). The

parameters of the DPC-02 compensator are given by:

kc =−1/(τr ·K);τi =−τ (26)

where:

K = K44/K41;τ = 1/K41 (27)

This approach ensures that the compensator effectively controls P2(t), enabling proper regulation of the pressure

difference (∆ P(t)) while compensating for the inverse response behavior of the system. As with the previous controllers,

tuning the parameter τ r allows for adjustment of the system response to meet desired performance criteria.
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3.2 Overview of model predictive control implementation

MPC is an advanced control technique that leverages a dynamic process model to predict future behavior and optimize

system performance. Unlike traditional controllers, MPC is particularly suitable for handling multivariable systems with

constraints, enabling precise and efficient control [8, 17].

The implementation of MPC involves the following steps, illustrated in Figure 2 which shows the MPC configuration:

3.2.1Process model identification

The first step in MPC is to develop an accurate process model, which is critical for reliable predictions of system

behavior. This involves:

3.2.1.1Data collection

Process data is collected under varying operating conditions to capture the system’s dynamic behavior [18].

3.2.1.2Model structure selection

Discrete state-space models are commonly used for process modeling. These models represent the system in the form

of input, output, state, and disturbance vectors as:

{
x(k+1) = A ·x(k)+B ·u(k)+E ·d(k)
y(k+1) = C ·x(k)+D ·u(k)+F ·d(k)

(28)

In this case, {A, B, C, D} = {As, Bs, Cs, Ds}. Also, from (28):

• x(k), u(k), y(k), x(k), and d(k) are the input, output, state, and disturbance vectors, respectively.

• MatricesA, B, C, D, E, and F define the process dynamics.

• k represents discrete time steps.

3.2.1.3Parameter estimation

• Advanced mathematical methods such as linear regression, least squares, or nonlinear optimization are employed to

estimate the parameters of the model.

• These methods aim to align the predicted outputs with actual measured data to minimize prediction errors and

achieve high accuracy [18, 19]

3.2.1.4Validation

Validation ensures that the identified model generalizes well to unseen scenarios. A separate dataset is used to compare

the model’s predictions to actual process outputs, ensuring robustness [18].

3.3 Optimization process

Once the process model is identified, MPC employs this model to predict future system behavior and solve an

optimization problem at each control interval. The optimization process involves:
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3.3.1Objective function definition

The objective is typically to:

• Minimize the deviation of output variables from their reference values.

• Minimize control effort, i.e., the use of manipulated variables.

The general form of the objective function is defined in (29). From here,

• Np: Prediction horizon.

• Nu: Control horizon.

• y(k + i): Predicted output at time k + i.

• u(k + i): Control input at time k + i.

• yref(k + i): Desired output at time k + i.

J =
Np

∑
i = 0

(y(k+ i)− yref(k+ i))T ·Q · (y(k+ i)− yref(k+ i))+
Nu−1

∑
i = 0

u(k+ i)T ·R ·u(k+ i) (29)

• Q and R: Weighting matrices for outputs and inputs.

3.3.2Solving the optimization problem

The goal is to find the optimal sequence of control actions u(k) that minimizes the objective function J while respecting

system constraints (e.g., input/output limits).

3.3.3Applying the control action

• Only the first control action of the optimal sequence is applied to the system. This allows the controller to adapt in

real time to changes and disturbances [20].

• The optimization problem is re-solved at every control interval based on new measurements, ensuring continuous

adjustments.

3.4 Control path planning

Control path planning refers to the generation of a sequence of control actions that guide the system from its current

state to a desired state in an optimal and efficient manner. This involves:

3.4.1Prediction horizon

Using the process model, MPC predicts the system’s response to various control actions over the prediction horizon.

3.4.2Trajectory evaluation

MPC evaluates multiple potential control trajectories to minimize the tracking error and meet system constraints.

3.4.3Trajectory adjustment

At each control interval, the trajectory is adjusted based on real-time system measurements and conditions [17].

The control path planning process ensures that the system responds dynamically to disturbances while maintaining

optimal performance.
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3.5 MPC applied to the X-filter process

The application of MPC to the X-Filter process is depicted in Figure 4, which is an augmented version of the control

diagram in Figure 3. The diagram includes the MPC configuration, which is modeled according to (28) and (29).

Figure 4. Control diagram of the X-filter process, using an MPC

3.5.1 Inputs to MPC

• Measured outputs (mo(t)): Real-time measurements of the controlled variables.

• Reference variables (ref (t)): Desired output setpoints.

• Measured disturbances (md(t)): Disturbances that affect the system.

3.5.2Outputs from MPC

• Manipulated variables (mv(t)): Optimal control actions applied to the process.

4. Simulation results

The simulation model adheres to the linearized expression of the X-filter process, as defined in (13), and was

implemented using MATLAB-Simulink. The simulation parameters were derived from the constants developed earlier,

with their values presented in Table 1. Signals corresponding to disturbance and reference variables are detailed in Table

2. To enhance the analysis and evaluate system robustness comprehensively, high-frequency random noise, modeled as

additive white Gaussian noise in per unit (pu), was incorporated. This noise serves to simulate industrial disturbances

typically caused by sensor measurement errors, process vibrations, and external perturbations from connected equipment.
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Table 1. Variables & parameters in functions of Ks of the process

K-constants Values

K11 0.005
K12 0.0457
K13 0.021
K21 1.054
K22 1.154
K23 1.355
K24 1.365
K25 1.765
K31 2.045
K32 2.145
K33 2.645
K41 3.021
K42 3.001
K43 3.111
K44 3.121

Table 2. Equivalences between MPC and X-filter variables

MPC variables X-filter variables

mo h1, h2, P2
Ref h1

*, h2
*, DP*

md P1, Po, Pg, P, wair

Mathematically, these high-frequency noise disturbances are represented as

n(t) =
m

∑
i = 1

Ai · sin(2 ·π · fi · t +φi) (30)

where Ai represents the amplitude, fi the frequency, and φi the phase of the noise components. These disturbances were

intentionally designed to challenge the robustness of the two control strategies, PI and MPC, by introducing varying

high-frequency components. This noise allows for a realistic evaluation of each control strategy’s ability to suppress the

effects of such high-frequency perturbations. The process dynamics described in (13) were modeled alongside the control

algorithms, with Figure 4 illustrating the “X-filter” under MPC control and Figure 3 depicting the same process under a PI

controller.

During the simulation, the process was assumed to be in a stationary regime, with variables h1(t), h2(t), and ∆ p(t)

stabilized at steady-state values of 50% for levels and −10 kPa for pressure. The steady-state valve positions for DPV-01
and LV-03 were approximately 86% and 57%, respectively, while the pump speed percentage for M-01 was around 23%.

Additionally, key assumptions included P1 = 150 kPa, Pg = 54 kPa, Po = 110 kPa, P = 30 kPa, and wair = 650 kg/s.

The impact of high-frequency noise on system performance is evident from an analysis of Figures 5 and 6. While

both control strategies are affected by noise, the MPC system exhibits significantly greater noise attenuation. The MPC

controller’s predictive capability and optimization-based algorithm inherently act as a low-pass filter, effectively minimizing

high-frequency oscillations in manipulated variables (mi(t), vp1(t), and vp2(t)). This is in contrast to the PI controller, where

sinusoidal coupling of high-frequency disturbances with manipulated variables is more pronounced. Such oscillations,

when left unmitigated, may adversely impact sensitive equipment such as hydraulic pumps and valves, leading to potential

damage and reduced operational efficiency. Quantitatively, the robustness of the MPC system is further validated through

reduced oscillation amplitudes and standard deviations in key process variables (h1(t), h2(t), and ∆ p(t)) compared to the PI

controller. The noise mitigation efficiency (ηnoise) was calculated using the following:

ηnoise = 100% · σPI−σMPC

σPI
(31)
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For h1(t), the noise mitigation efficiency is 9%, meaning that σMPC is reduced to 91% of σPI. For h2(t), the noise

mitigation efficiency is 24%, reducing σMPC to 76% of σPI. Finally, for ∆ p(t), the noise mitigation efficiency is 32%,

with σMPC being 68% of σPI. These values confirm the superior noise suppression capability of MPC over PI, particularly

in terms of oscillation amplitude and variability reduction in key process variables.

(a)

(b)

(c)

Figure 5. Simulation results under transients. (a) h1(t). (b) h2(t). (c) dp(t)

(a)

Figure 6. Cont.
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(b)

(c)

Figure 6. Simulation results of the manipulated variables, under transient. (a) mi(t). (b) vp1(t). (c) vp2(t)

The dynamic behavior of the process, as observed in the state variables h1(t), h2(t), and ∆ p(t), is detailed as follows.

At t = 40 s, h1(t) undergoes a perturbation, dropping from 50% to 30%. The steady state is restored faster under MPC

control (56.4 s) than with PI (67.7 s). At t = 60 s, ∆ p(t) undergoes a vacuum increase, reaching −30 kPa. The oscillation
with MPC is reduced to 4%, compared to 13% under PI control, while steady-state recovery is faster with MPC (62.3 s vs.

66.3 s). At t = 80 s, h2(t) increases from 50% to 80%. The oscillation is significantly lower under MPC (0.65%) compared

to PI (19.45%), and steady-state recovery is quicker (83.5 s vs. 93.7 s).

The behavior of manipulated variables further highlights the contrast between the two controllers. With PI control,

sinusoidal coupling is observed in mi(t), vp1(t), and vp2(t), likely due to high-frequency noise. These oscillations are absent

in the MPC-controlled system, where smoother trajectories for manipulated variables are evident. Figure 6 highlights this

difference, with MPC demonstrating its ability to mitigate high-frequency perturbations effectively.

System robustness is further validated through disturbance tests in P1(t), Pg(t), Po(t), P(t), and wair(t). MPC maintains

superior control stability and performance, as demonstrated by the reduced variability in critical process variables (Figures

7 and 8). The probability density function of the standard deviation for the controlled variables confirms that MPC achieves

notable reductions in variability, with improvements of 9%, 24%, and 32% for h1(t), h2(t), and ∆ p(t), respectively. These

calculations confirm the enhanced robustness of MPC, particularly in handling industrial noise and disturbances.

(a)

Figure 7. Cont.
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(b)

(c)

Figure 7. Probability density function of the standard deviation. (a) h1. (b) h2. (c) dp

(a)

(b)

(c)

Figure 8. Probability density function of the standard deviation. (a) mi. (b) vp1. (c) vp2

5. Conclusions

The simulation results of the X-filter process, evaluated under both model predictive control (MPC) and proportional-

integral (PI) controllers, underscore an appropriate performance, robustness, and industrial relevance of the MPC approach

in managing complex, nonlinear systems with inherent dynamics. This study provides a quantitative and qualitative

assessment of key process variables—h1(t), h2(t), and ∆ p(t)—demonstrating the MPC’s superiority in achieving precision

control, faster response times, and enhanced disturbance rejection compared to traditional PI control strategies.
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Dynamic performance comparisons reveal that the MPC controller significantly outperforms the PI controller in

terms of both transient and steady-state behavior. For instance, the steady-state response for h1(t) under MPC was

achieved approximately 11.3 s faster than under PI control, showcasing its superior capability to quickly stabilize the

process after disturbances. Additionally, MPC demonstrated a dramatic reduction in oscillation amplitudes, with h1(t)

oscillations reduced from 25% under PI control to 8.63% under MPC, and ∆ p(t) oscillations reduced from 13% to 4%.

Such improvements in control precision are critical in ensuring process stability, minimizing energy consumption, and

avoiding detrimental mechanical stress on industrial components.

The robustness of MPC was further validated through the introduction of high-frequency noise, modeled as additive

white Gaussian noise, to simulate real-world industrial disturbances, including sensor inaccuracies, mechanical vibrations,

and external perturbations from auxiliary equipment. The MPC effectively mitigated the impact of noise, acting as a

dynamic low-pass filter for manipulated variables (mi(t), vp1(t), and vp2(t)) and reducing sinusoidal coupling effects,

which were pronounced in the PI-controlled system. This noise rejection capability is not only essential for maintaining

control stability but also for extending the operational lifespan of critical equipment such as hydraulic pumps and valves

by minimizing wear and tear induced by oscillatory inputs.

Sensitivity analysis of the standard deviations (σ ) of key controlled variables provides a quantitative measure of the

performance enhancements achieved with MPC. For h1(t), h2(t), and ∆ p(t), MPC achieved variability reductions of 9%,

24%, and 32%, respectively, compared to PI control. These reductions highlight the system’s improved stability, precision

in set-point tracking, and resilience against perturbations. Furthermore, the analysis of average position deviation (APD)

revealed that MPC effectively coordinated control actions among the manipulated variables. For instance, APD reductions

for mi(t) and vp2(t) were 88% and 92%, respectively, demonstrating smoother and more efficient control action trajectories.

While vp1(t) exhibited a slight increase in APD, this trade-off was acceptable given the substantial overall performance

improvements across other variables, further validating the robustness of the MPC design.

The study also incorporated a comprehensive sensitivity analysis to evaluate the MPC’s adaptability to perturbations in

system parameters and input disturbances, including P1(t), Pg(t), P(t), andwair(t). The results confirmed that MPC exhibited

superior disturbance rejection and maintained stable control performance even under significant parameter variations,

a critical requirement for modern industrial processes subject to fluctuating operational conditions. This sensitivity

analysis demonstrates MPC’s robustness and capability to adapt to varying system dynamics without compromising control

performance, positioning it as an ideal solution for complex and dynamic industrial environments.

In conclusion, the findings of this study establish model predictive control as a technologically advanced and robust

alternative to traditional PI controllers in regulating the X-filter process. By achieving faster response times, substantial

reductions in oscillations, superior disturbance rejection, and improved equipment longevity, MPC positions itself as an

indispensable technology for optimizing performance in highly dynamic and complex industrial applications. Furthermore,

its adaptability to high-frequency noise and system parameter variations ensures its applicability in a wide range of

operational scenarios.

Future research should focus on real-time implementation strategies, integration of adaptive control techniques, and

experimental validation in industrial-scale environments to further extend the capabilities of MPC. Additionally, exploring

hybrid control methodologies that combine MPC with machine learning-based predictive analytics may offer transformative

advancements in optimizing nonlinear process control systems.
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Appendix A

The matrix in (13) can be defined as:
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As=


0 0 0 K11

0 −K21 0 K22

0 0 K31 −K32

0 0 0 −K41



Bs=


0 0 K11 0
0 0 −K23 K24

K32 0 0 0
0 K42 0 0

0 K12 0 0
0 0 0 −K25

0 0 0 0
K43 0 −K44 0


Cs = I4×4,Ds = 04×8

(A1)

and the matrices I4×4 and 04×8 represent the identity matrix of size 4×4 and the null matrix of size 4×8, respectively.
Symbolically, {As, Cs} ∈M 4×4 {κ} and {Bs, Ds} ∈M 4×8 {κ}.

The Ks constants cab de found and described as follows:



K11 = 0.5 · Cv2

AXf·
√

Gf·
(
Pss2 −Pssg

)
K12 =

k1·ρi·
√

Hss
1

ρo·AXf
K21 = 0.5 · ρo·g·Cv3

·V Pss2
AD·
√

Gf·
(
Pssg +ρo·g·Hss

2 −Pss
)

K22 = 0.5 · Cv2

AD·
√

Gf·
(
Pss2 −Pssg

)
K23 =

0.5
AD·

√
Gf

·
(

Cv2√
Pss2 −Pssg

+
Cv3

·V Pss2√
Pssg +ρo·g·Hss

2 −Pss

)
K24 = 0.5 · Cv3

·V Pss2
AD·
√

Gf·
(
Pssg +ρo·g·Hss

2 −Pss
)

K25 =
Cv3
AD

·
√

Pssg +ρo·g·Hss
2 −Pss

Gf

K31 = 2 · α·c·
(
Pss1 −Pss2

)
µ·
(
Rf−α·c·Hss

f

)2
K32 =

2
µ·
(
Rf−α·c·Hss

f

)
K41 = 0.5 ·

(R·T
V

)
·

(
Cv1

·V Pss1 ·ρo·
(
2·Pss2 −Psso

)√
Pss2 ·

(
Pss2 −Psso

)
)

K42 = 0.5 ·
(R·T

V

)
·Cv1 ·V Pss

1 ·ρo ·
√

Pss2
Pss2 −Psso

K43 =
(R·T

V

)
·ρair

K44 =
(R·T

V

)
·Cv1 ·ρo ·

√
Pss
2 ·
(
Pss
2 −Pss

o

)

(A2)
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