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Abstract: The statistical Green function theory and extended two sublattice pseudospin coupled-mode model Hamiltonian. 
The modified model summing with phonon anharmonic couplings, extra spin-lattice couplings and direct spin-spin coupling 
together with an applied electric field used to explain the dielectric properties of ammonium iron alum crystal (AFeSD-
alum). The expressions for energy shift, linewidth, ferroelectric soft mode frequency, dielectric permittivity, and dielectric 
loss tangent are derived. By fitted the model values of different parameters in the above theoretical expressions. The 
thermal dependence of soft mode frequency, dielectric permittivity, and dielectric loss properties have been numerically 
calculated. Our theoretical obtained results compared well in agreement with experimental results reported by others.
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1. Introduction
The behaviour of ammonium iron sulphate dodecahydrate (NH4Fe(SO4)2·12H2O, abbreviated as AFeSD-alum) is 

typical of ferroelectric compounds [1]. AFeSD-alum correlated with the rotational motion of NH4
1+-type of monovalent 

ions, each containing a rotational group. From the studies of neutron diffraction, it is concluded that t a well-known 
asymmetric distribution of the hydrogen bonds in neighbouring the sulphate groups causes the ferroelectric phase transition 
in alums. But due to recent nuclear magnetic resonance studies and small thermal X-ray, the instability originating due 
to the asymmetrical arrangement of the bonding forces provide a high thermal dependence anharmonic contribution 
depending on the monovalent ions [1]. The AFeSD-alum crystal belongs to the alum family of double salts associated 
with the general chemical formula M1+ M3+ (RO4)2·12H2O, where M1 + is a monovalent ion (M1 + = NH4) and M3 + is a 
trivalent metal such as Fe and R is S or Se forms an isomorphous series. AFeSD-alum is ferroelectric (phase II) below 
88 K (−185 C°) and above 88 K it is paraelectric (phase I), having a cubic crystal structure [2]. This symmetry difference 
from the paraelectric phase with Pa3 space group to the ferroelectric phase with Pca21 space group appears with the onset 
of ferroelectricity.

In AFeSD-alum NH4
+ group gives rise to the order-disorder type of mechanism in the proton subsystem associated 

among these classes. This is important for the polar phase transition mechanism in alum compounds. Due to the order-
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disorder character of the ammonium family in AFeSD-alum, the hydrogen bonds correlated with these classes undergo 
some kind of ordering. Thus, the two sublattice pseudospin model Hamiltonian have applied similar to the case of 
potassium dihydrogen phosphate (KDP) system, after suitable modification. The proton motion is correlated with the 
active ammonium ion. Unlike the case of the hydrogen-bonded polar group, very little or nearly zero isotope effect is 
observed on deuteration at Curie temperature (Tc), demonstrating that the hydrogen-bonds are not primarily involved in 
the polar phase transition mechanism of alum compounds containing a large number of hydrogen bonds. The pseudospin 
motion should be greatly damped with strong anharmonic phonon couplings. The dielectric permittivity in AFeSD-alum 
crystal obeys the Curie-Weiss law in various interval ranges of temperature with ranges with one value of the Curie-Weiss 
constant (C). The unit cell lattice parameter for AFeSD-alum is at 25 C0 and at 22 C0 on deuteration [2]. The unit cell 
contains four (Z=4) formulas in the paraelectric phase (I) [2]. The density in per unit volume cell, ρ = 1.73 × 103 Kgm−3 
and on deuteration its value, ρ = 1.812 × 103 Kgm−3 [1]. The crystal growth structure in AFeSD-alum by evaporation or 
cooling methods from aqueous solution.

There has considerable interest in the experimental and theoretical study of AFeSD-alum crystal. Campbell and 
Debenedetti [3] have studied the Mossbauer spectra of the paramagnetic hyperfine structure of a dilute ammonium iron alum 
crystal. Morup and Thrane [4] have obtained relaxation Mossbauer spectra of AFeSD -alum crystal in the thermal range of 
85–250 K, with the 0–5 kG an applied magnetic field. Weber [5] studied the electrogyration effect in the non-polar phase 
of ferroelectric alums. Kopcewicz et. al [6] obtained the Mossbauer spectrum measurements of proton irradiation effects 
in hydrated iron (II), ammonium sulphate, and iron (III) ammonium alum crystals. Roberts and Sambles [7] have studied 
the spin relaxation phenomena in AFeSD-alum crystal using Mossbauer spectroscopy, which explained that anomalous 
variations in linewidth with temperature should not be directly correlated with the polar phase transformation at 88 K. Lou 
and Yu [8] studied the dimorphism in methylammonium aluminum alum by X-ray diffraction and electron paramagnetic 
resonance. Cha and Strauss [9] have obtained the local structure and tunnelling energy of ammonium aluminum alum 
crystal by hole burning. Lui et al. [10] have studied morphology and compositional preparation of Al2O3 powders by 
spray pyrolysis of ammonium alum crystal. Ilhan et al. [11] have investigated the leachate by electrocoagulation using 
aluminum and iron alum electrodes. Mbow et al. [12] experimentally investigated the adjuvant action of ammonium iron 
alum crystal. Gu et al. [13] have studied the low-temperature thermal electrolytic coloration and spectral properties of 
ammonium alum crystals under various voltages. Yauri and Aliyu [14] studied the synthesis and analysis of potassium 
aluminium alum from a waste aluminium can. Gu and Li [15] studied the electrolytic coloration below 373 K and spectral 
properties of potassium alum crystals. Gu and Hao [16] studied the electrolytic coloration below 273 K and spectral 
representation properties of ammonium alum crystals with the help of a pointed anode. Petrusevski [17] studied the 
vibrational spectra and crystallographic results in a number of alums. Abdeen et al. [18] studied the X-ray and neutron 
diffraction in ferroelectric alum compounds. Chaudhury et al. [19] have proposed the anomalous dielectric behaviour 
in AFeSD-alum crystal with pseudospin lattice coupled-mode model Hamiltonian and statistical Green function theory. 
Rawat et al. [20] have obtained thermal variations of phase transition properties in AFeSD-alum crystal. Mamgain and 
Upadhyay [21] studied the thermal ferroelectric properties in AFeSD-alum crystal. Chaudhary et al. [19] have not studied 
third-order phonon anharmonic interactions. Moreover, they initially decoupled the correlation functions using the simple 
Tyablikov decoupling scheme. Earlier authors [19–21] have not considered indirect couplings, direct coupling, and an 
applied electric field in their study. Moreover, they have also decoupled the correlation functions at an early stage by 
using the simple decoupling scheme. As a result of some essential interactions were omitted from their numerical analysis. 
Ammonium iron sulphate-dodecahydrate, (NH4Fe(SO4)2·12H2O, or NH4[Fe(H2O)6](SO4)2·6 H2O, also known as ferric 
ammonium sulphate or iron alum, is a double salt in the class of alums, which consists of compounds with the general 
formula M1 + M3 + (RO4)2·12H2O. It has the appearance of weakly violet, octahedral crystals. Ferric ammonium sulphate 
can be prepared by crystallization from a solution of ferric sulphate and ammonium sulphate. Iron in ferrous sulphate is 
oxidized to ferric sulphate by addition of sulfuric and nitric acid. Upon addition of ammonium sulphate to the solution and 
damping in of the solution, ferric ammonium sulphate crystals precipitate. Figure 1 shows the chemical structure depiction 
for ammonium iron sulphate-dodecahydrate alum crystal [22–24]. Equations for these conversions ignore the degree of 
hydration of the material. Oxidation equation: 6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4H2O Synthesis 
equation: Fe2(SO4)3 + (NH4)2SO4 = 2NH4Fe(SO4)2. Ammonium iron sulphate dodecahydrate is a reagent that is used as 
a mordant in dyeing and textile printing. It is also utilized in analytical chemistry as an iron standard. In biochemistry, 
ammonium ferric sulphate is used as a catalyst for the generation of free radicals. Increased xanthine oxidase and xanthine 
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oxidoreductase activity in cultured rat cells has been demonstrated in the presence of ammonium ferric sulphate. It may be 
used as an iron source to restore enzymatic activity in apoenzymes, such as for soybean lipoxygenase. It has been used in a 
wide range of various applications, from nanomaterials to general redox processes, and is frequently used as an analytical 
reference. Following are the major areas for use of ammonium iron sulphate dodecahydrate or ferric ammonium sulphate 
or iron alum crystal includes waste water treatment, tanning, production of dyestuffs, and as an etching agent in the 
production of electronic components. It has been used in a wide area of applications, including adiabatic refrigeration 
equipment, biochemical analysis and organic synthesis.

In this work, we have modified the two sublattice pseudospin lattice coupled-mode model Hamiltonian [19]. 
The model is modified by adding the anharmonic phonon couplings, the indirect coupling, the direct coupling and an 
applied electric field. With the help of retarded thermal Green function approach [25] and Dyson equation treatment, the 
theoretical expressions for energy shift, linewidth, ferroelectric soft mode frequency, dielectric permittivity, and dielectric 
loss tangent are derived. The numerical analysis of calculations will be done to obtain the temperature dependence of 
soft mode frequency, dielectric permittivity, and dielectric loss tangent properties by fitting the model parameter values. 
Theoretically obtained results will be compared in good agreement with experimental data reported by others [26].

Figure 1. Chemical structure depiction for AFeSD crystal [22].

2. Model Hamiltonian for AFeSD-alum
The modified model Hamiltonian [19] for the coupled proton-phonon system summing the anharmonic phonon 

interactions, the indirect spin-lattice couplings, and the direct spin-spin coupling together with an applied electric field 
have used to explain the dielectric properties in AFeSD-alum crystal. The model Hamiltonian for the proton system in a 
rigid lattice is expressed.

(1)

where Ω represents the proton tunnelling energy, Sα
x,z called the component of pseudospin variable , 1, 2Sα α =



. Since we have considered the tunnelling integral value is small for AFeSD-alum to find its magnitude and make the 
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Hamiltonian comparable with that of the KDP-type problem. Jij and Kij are called the intrasublattice, and intersublattice 
coupling constants of the Ising-type, respectively, take the explanation of the long-range dipole-dipole forces. Ak , Bk 
and ωk are represents respectively, the normal position, conjugate momentum associated wave vector k, and harmonic 
phonon frequency associated in terms of wave vector k. The third term in the above equation (1) describes the pseudospin 
interaction with polar optic phonons, causes the two potential wells for proton motion correlated with the methyl group 
to be nonequivalent. The model Hamiltonian in terms of anharmonic interactions, pseudospin phonon interactions can be 
expressed.

(2)

The first-term two terms of equation (2) represent the 3rd- and 4th-order phonon anharmonic [27] interactions part 
of the lattice vibrations. The third term explains the indirect spin-lattice coupling between the tunnelling motion of 
one proton to the tunnelling motion of another proton. The 4th term describes the interaction of the tunnelling motion 
with polar optic phonons. For the ferroelectric crystals that are not polar above the transition temperature, symmetry 
requires this interaction to be a square function of A. The polar-optic phonons make the two potential wells minima in the 
O-H--O bond unequivalent. The 5th term describes the direct spin-spin coupling between one protonʼs tunnelling motion 
and another's tunnelling motion in a transverse field Hamiltonian. The resultant Hamiltonian to explain the dielectric 
properties in AFeSD-alum crystal takes the form.

1 2H H H= + (3)

3. Green function theory for AFeSD-alum
Following Zubarev [25], we consider the thermal Green function G (t − t') abbreviated as GF with two operators  

( )1
z
iS t  and ( )1 'z

jS t  be explained as (in units of ħ = 1).

( ) ( )1 2 1 1G ( ); ( ) ( ), ( )z z z z
i j i jt t' S t S t' i t t' S t S t' − = = − θ −   (4)

where theta (q) represents the step unit function defined as q = 1for t > 0; q = 0 for t < 0. ( )1
z
iS t  and ( )2 'z

jS t  are the 
pseudospin variables in terms of z-components,   represents the statistical average over grand canonical ensemble 
for the enclosed operator, [ ]  represents the notation for commutator and anticommutator operator and 

represents the notation for the corresponding Green function.
In the present work, we have studied the static properties and compared the theoretical results with other 

experimental data reported by others. Differentiating equation (4) with the help of model Hamiltonian, equation (3), 
then multiplying the equation on both sides by i we get.

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

G '
' , ' , ; 'z z z z

i j i j

d t t
i t t S t S t S t H S t

dt
δ

−
   = − +    (5)

We have to take the differentiation of equation (5) again with respect to time t and multiply both sides by i, we get.

( ) ( ) ( ) ( ) ( ) ( )
2

2
1 1 1 12

G '
' , , ' , ; 'z z z z

i j i j

d t t
i t t S t H S t S t H S t

dt
δ

−     = − +    
(6)

With the help of the model Hamiltonian equation (3), and Dyson equation treatment and then taking the Fourier 
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transform we get.

( ) ( )
( ) ( )

( )
11

2 2 2 2

; '2

4 4

zx
i ji ij

ij

F t S tS
G

Ω δ
ω

ω Ω ω Ω
= +

− − (7)

Now we have considered the Green function ( )'t tΓ −  defined as.

         ( ) ( ) ( )1' ; 'z
i jt t F t S tΓ − = (8)

Similarly, we have to differentiate equation (8) twice with respect to time t’ and preceding similar to that of above, 
we get the Fourier transform of equation (7).

( )
( ) ( )

( )
†

2 2

; '

4
i jF t F t

Γ ω
ω Ω

=
− (9)

where,

( ) ( )
( ) ( )

2
1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1

2 2 2
1 2 1 2 1 2 1

2 2 2 2

2
2

z z x z z x x
i ik k i ik k i ij i j i i ij ik k i

x z z x x z z x
ik k ij i j i i ij ik k ij i j i i ij

x z x z x z x
ij i j ij ik k ij i j ij ik k ij i j ij ik k i

i

F t V A S V A S J S S S S V A S

V A J S S S S V A J S S S S
K S S V A K S S V A K S S V A S
V

Ω Ω δ Ω

δ δ
Ω δ δ δ
Ω

= + − Ω + −

− + − +

− − − −

+ ( )
( ) ( )

2 2 2
1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1

2
1 1

2 2

4
2 2

z z z x z z x
k k i ik k i ik k i ij i i ij i j

x z z x x z z x x
ik k ij i i ij i j ik k ij i i ij i j i

x x
ik k i ik k i

A S V A S V A S B S S S S

V A B S S S S V A B S S S S ES
EV A S EV A S

Ω Ω δ

δ δ Ωµ
µ µ

+ + + +

+ + + + −

− −       (10)

And the †
jF  is the complex conjugate of iF  .

(11)

Substituting the value of ( )Γ ω  from equation (8) into equation (7) and then putting the resulting equation in the 
form Dyson equation form, we obtained.

( ) ( ) ( )  ( ) ( )0 0 0
ij ij ij ijG G G R Gω ω ω ω ω= +      (12)

where,



10
22

x
i

ij

S
G

Ω

π ω Ω
=

 +   (13)
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 ( )
( ) ( )†

1

; 'i i

x
i

F t F t
R

S

π
ω

Ω
= (14)

After simplifying the Dyson equation (12), we get the final expression of the thermal Green function equation (4).

( )
  ( )

1

22

x
i ij

ij

S
G

R

Ω δ
ω

π ω Ω ω
=

 − −  
(15)

And where the pseudospin frequency ( )Ω  in equation (15) is expressed as.



2 2 2a b bcΩ = + − (16)

where,

1 1 12 2 2z z z
ij i ij i ij ia J S K S B S Eµ= + − + (17)

 2b Ω=   (18)

1 1 12 2x x x
ij i ij i ij ic J S K S B S= + − (19)

The cor re la t ion  func t ions  of  the  h igher-order  Green  func t ions  in  the  Four ie r  t ransform of 
equa t ion  (9 )  a re  eva lua ted  us ing  the  symmet r i c  decoup l ing  scheme  to  ge t  t he  s imple r  Green 
functions and then put these values into the equation of response function in the Dyson equation. 
We obtained the response function with the help of a symmetric decoupling scheme done as follows: 

; ; ; ; ; ; ;PQ RS PQ R S PR Q S PS Q R QR P S QS P R RS P Q= + + + + + . We can get 
the response function, which is complex in nature, and break into the real and the imaginary parts known energy shift    
( )∆ ω  and line width ( )Γ ω  , respectively.

4. Energy shift and line width for AFeSD-alum
For vanishing small quantity, the response function  ( )R ω  can be resolved in terms of its complex form, i.e., the 

real and the imaginary parts, using the relation given.

( )
0

1 1lim
kP

i A
A i Aε

πδ
ε→

 = ± ±   (20)
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The real part called energy shift obtained as.

( )
( ) ( ) ( )







 ( )

( )






 ( )
( )

2
2 2

2 24 2 2 1

2 2 2 22 2 2 2
2 2 2

2
2 2 22 2 2 22 2 1

1

2 222 22
2 2 2

16
16

4

4 4 42

4

z
kik i k

ik k

k k k

x
xkik i k

ik ij k i ik ijik k

k k k

V a S
V Na b c

b

V a S V J N S V J NV N a

b

Ω ω ω ω
Ω

∆ ω
ω Ω ω Ω ω Ω ω ω ω Γ ω

Ω ω ω ω
Ω

ω Ω ω Ωω ω ω Γ ω

 − 
 = + + +

  − − − − +     
 − 
 + + + +

  − −− +     

( )






 ( )
( ) ( )







 ( )

22
1

22 2

222 2 2 2 22 2 2 2 21 1
1 2

2 22 2 2 22
2 2 2

222 2 2 2
1 2 1

22
2 2 2

4

4

4

4

z
k i

x z
x zkik ij i j k

ik ij k i ik ij k j

k k k

x z x
kik ij i j k ik k i

k k k

a S

b

V J S S V K N S V K N a S

b

V K S S V N S

ω Ω

ω ω ω

ω Ω ω ΩΩ ω ω ω Γ ω

ω ω ω

Ω ω ω ω Γ ω

−

 − 
 + + +

   − −− +     
 − 
 + +

  − +     







 ( )
( )

( )






 ( )
( )








2
2

2
1

22 22
2 2 2

222 2 2 222 2 2 2 2 2
1

2 222 2 22
2 2 2

2
2 2 2 2

1

2

2

4

44 4

4

4

xkk
ik k j

k k k

x kik ij ij k
ik ij k i ik k

k k k

x
kik j k

k

V N S

V B SV B N S E V N a

b

E V S

ω ω ω Ω

ω ΩΩ ω ω ω Γ ω

ω ω ω
µ

ω Ω ω ΩΩ ω ω ω Γ ω

µ ω ω ω

Ω ω ω

 − 
  +

   −− +     
 − 
 + + +

  − −− +     
 − 
 +

− ( )
22

2 24 k kω Γ ω
   +      (21)
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The imaginary part called the line width obtained as.

( )


 ( )  ( )


 ( )  ( )



 ( )  ( ) ( )



 ( )



 ( )  ( ) ( )



 ( )

4 2 2

2 22 2
1

22
2 2 2

2 22 2
1

22
2 2 2

2

2 2
3216

2
4

82
2

4

4

z
ik i k kik k

k k k

x
ik i k kik k

k k k

ik k i

a b c

V a SV N

b

V SV N a
b

V N J

Γ ω δ ω Ω δ ω Ω δ ω Ω δ ω Ω
Ω Ω

Ω ω Γ ωΩ
δ ω Ω δ ω Ω

Ω
ω ω ω Γ ω

Ω ω Γ ωΩ
δ ω Ω δ ω Ω

Ω
ω ω ω Γ ω

   = − − + + − − +   

 + − − + +    − +  
   

 + − − + +    − +  
   

+


 ( )  ( )


 ( )  ( ) ( )


 ( )



 ( )  ( )


 ( )  ( )

2 22 2 2 2
1 1

2

22 2 2
1 1

2
2 2 2 2

2 22 2 2 2 2
1 2

2

22 2 2
1 2

4

2 2
8

4

2 2
2

x x
j i ik ij k i

x z
ik ij i j k k

k k k

x z
ik ij k i ik ik k j

x z
ik ij i j k

S V J N a S

b
V J S S

V K N S V K N a S

b
V K S S

δ ω Ω δ ω Ω
Ω Ω

ω Γ ω
δ ω Ω δ ω Ω

Ω ω ω ω Γ ω

δ ω Ω δ ω Ω
Ω Ω

ω
δ ω Ω δ ω Ω

 − − + + 

 − − + +    − +  
  

 + − − + + 

 − − + + 
( )



 ( )

( )



 ( )


 ( )  ( )



 ( )  ( ) ( )



 ( )

22
2 2 2

2 2 2
1 1

22
2 2 2

2 22 2 2 2 2
1 1

22
2 2 2

4

16 2

2
4

4 16

2
4

4

k

k k k

x x
ik k i k k ik k j

k k k

x z
ik ij k j ik ij j k k

k k k

V N S V N S

b

V B N S V B S

b

Γ ω

Ω ω ω ω Γ ω

ω Γ ω Ω
δ ω Ω δ ω Ω

Ω
ω ω ω Γ ω

ω Γ ω
δ ω Ω δ ω Ω

Ω
ω ω ω Γ ω

µ

  − +  
   

 + + − − +   − +  
   

 + − − + +    − +  
   

+


 ( )  ( ) ( )



 ( )

2 2 2 22 2 2 2
1

2 22
2 2 2

16

2
4

x
ik j k kik k

k k k

E V SE V N a
b

b

µ ω Γ ω
δ ω Ω δ ω Ω

Ω
ω ω ω Γ ω

 − − + +    − +  
    (22)

In the above equations (21) and (22),  kω  represents the renormalized phonon frequency and ( )kΓ ω  is the phonon
line width due to the contribution of phonon anharmonic interactions. We have evaluated the phonon Green function 

( ) ( )†
'; 'k kP t P t  , it is obtained as.

( ) ( )


 ( )
† '
' 2

2

4
; '

4 2

k kk
k k

k k k

P t P t
i

ω δ

π ω ω ω Γ ω
=

 − −   (23)

where,  kω  is known as renormalized phonon frequency obtained as.





 ( )
2 2

2k k k kω ω ω ∆ ω= + (24)
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We get the pseudospin phonon frequency ( )kω  as.
 ( )2 2 ,k k A k Tω ω= + (25)

The phonon energy shift Δk (ω) for phonon Green function ( ) ( )†
'; 'k kP t P t  in equation (23), obtained as.

( ) ( ) ( )
 

 ( )
 

 ( )
 ( )

 

 ( )
( ) ( )

  

     ( )
  

 

1 2

1 21 2

1 2 1 2
1 2 2 1

1 2 1 2

1 2 3

1 2 31 2 3

1 2 3
1 2 2 3 3 1

1 2

23
1 2

2 22 2

24
1 2 3

2

18 , ,

48 , , ,

1{

k k
k

k kk k

k k k k
k k k k

k k k k

k k k

k k kk k k

k k k
k k k k k k

k k

V k k k

n n n n

V k k k k

n n n n n n

ω ω
∆ ω π

ω ω

ω ω ω ω

ω ω ω ω ω ω

ω ω ω
π

ω ω ω
ω ω ω

ω ω ω

 
= −  

 
 

+ − × + + − 
 − + − − 

 
+ −   

 
+ +

× + + +
− + +

∑

∑

( )
     ( )

  

  ( )

3

1 2 3
1 2 2 3 3 1

1 2 3

2

22
3 1 }

higher oder terms

k

k k k
k k k k k k

k k k

n n n n n n

ω

ω ω ω

ω ω ω ω

− −
+ − + −

− − −

+ (26)

The phonon linewidth ( )kΓ ω  for phonon Green function ( ) ( )†
'; 'k kP t P t  in equation (23), obtained as.

( ) ( ) ( )
 

     

      

  

     

1 2

1 21 2

1 2 1 2 1 2

2 1 1 2 1 2 3

1 2 3

1 2 31 2 3

1 2 2 3 3 1

23
1 2

,

2
1 2 4

, ,

18 , ,

( ){ ( ) ( )}
( ){ ( ) ( )

48 , ,

(1 ){ (

[
]

[

k k
k

k kk k

k k k k k k

k k k k k k k

k k k

k k kk k k

k k k k k k

V k k k

n n
n n

k k k k

n n n n n n

ω ω
Γ ω π

ω ω

δ ω ω ω δ ω ω ω
δ ω ω ω δ ω ω ω ω

ω ω ω
π

ω ω ω

δ

 
= −  

 
× + + + − − −

+ − − − − − − +
 

+ −   
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and



 

4tanhk B
k

k k

k Tn
h

ω π
ω ω

 =  
             (28)

where, kB called the Boltzmann constant; T represents the absolute temperature.
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5. Soft mode frequency for AFeSD-alum
The response function  ( )R ω  in terms of complex nature and evaluated with the help of a symmetric decoupling 

scheme and provides the final expression of the retarded Green function equation (15) obtained as

( )
 ( )

22 2

x
ij ij

ij

S
G i

i

Ωδ
ω ε

π ω Ω ΩΓ ω
+ =

 − −  
(29)

where the soft mode frequency ( )Ω  is expressed by.




 ( )
22

2Ω Ω Ω∆ ω= + (30)

and the modified pseudospin frequency ( )Ω  is expressed as.





 ( )
2 2

2Ω Ω ∆ ω= +  (31)

where Ω  in equation (30) represents the renormalized pseudospin frequency. According to Cochran's novel idea [28]
for ferroelectricity that the ferroelectric crystals should be stable for small deformations, that a soft optic mode of 
atomic lattice vibrations have real frequencies, and the corresponding frequency goes to a minimum (soften) at a Curie 
temperature reached. This is known as ferroelectric soft mode frequency. Solving the ferroelectric soft mode frequency 
equation (30) persistently, we obtained the final expression for soft mode frequency ( )Ω  , it is obtained as
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(32)

The equation (32) represents the soft mode frequency ( )Ω  depends on the anharmonic phonon couplings, indirect
spin-lattice coupling, and direct spin-spin coupling together with external electric field terms, which is nearly equal 
to zero (condensed) at phase transition temperature in the transverse optical lattice vibration mode responsible for the 
phase transition mechanism in AFeSD-alum crystal.

6. Dielectric constant and tangent loss for AFeSD-alum crystal
The dielectric susceptibility conveniently expresses the response function of ferroelectric crystals to an applied 

external electric field. Following the Zubarev [25] and Kubo [29] formalism, we obtained the complex dielectric 
susceptibility ( )ij ωχ  in a tensor form related to the retarded Green function ( )ijG iω ε+  obtained by the relation.

( ) ( )2

0
lim 2ij ijNG i
ε

ω πµ ω ε
→

χ = − + (33)

where N represents the total sum of dipoles and mu (µ) denotes the dipole moment associated with O-H--O bond. The 
relative permittivity ( )ε ω  and dielectric susceptibility ( )ij ωχ  are formulated by the relation obtained as.
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( ) ( )1 4 ijε ω π= + χ  (34)

For simplifying calculations of ferroelectric crystals, we assume 1ε  . Therefore, we neglect the one from 
equation (34). With the help of equations (33) and (34) and thermal Green function, we get the relative permittivity ε(ω)  
obtained as.

( )
( ) ( )

( ) ( )

22 2
1

222 2 2

8 2

4

x
iN S iπ Ωµ ω Ω ΩΓ ω

ε ω
ω Ω Ω Γ ω

−

−

 − − +  =
 

− + 
 

(35)

The equation (35) shows that the relative permittivity for AFeSD-alum crystal depends directly on tunnelling 
energy, the pseudospin variable in the x-component, and is inversely proportional to the square of the soft mode 
frequency and total width.

In ferroelectric AFeSD-alum crystal, some power losses developed in the form of electromagnetic energy that 
separates the losses due to conduction and those due to spontaneous polarization properties of dielectric materials. The 
useful method to explain the losses in the ferroelectric crystals is by means of the dielectric loss tangent obtained by 
the correlation of the imaginary to the real parts of the complex dielectric permittivity. It is represented by tan δ and 
expressed as.

( )
( )

( )
( )22

2
tan

imaginary part of  
real part of  

ε ω Γ ω Ω
δ

ε ω ω Ω
= = −

− (36)

From equation (36), we observe that the loss tangent depends directly on tunnelling energy and total width and 
is inversely proportional to the difference square of the harmonic phonon frequency and the square of the ferroelectric 
mode frequency.

7. Numerical calculations for AFeSD-alum crystal
For the study of dielectric properties of AFeSD-alum crystal. We have done modelling of the different physical 

quantities for AFeSD-alum compound, as shown in table 1 obtained by modelled and from the literature for numerical 
analysis.

Table 1. Model values of various physical parameters for AFeSD-alum [19]

Physical parameters Parameter values Unit in symbols
Tc 88 K

C 425 K

Ω 0.15 cm−1

Vik 6.49 cm−1

Jij 183.49 cm−1

Kij 140.54 cm−1

ωk 5.00 cm−1

Bij 0.0015 cm−1
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Nk (at Tc) 2.675 cm−3

Ak 0.05 × 10−17 erg/K
In the present work, throughout our modelling of various parameters of experimental data with theoretically 

derived expressions, we used µ = 1.405 × 10−18 esu and N = 2.5 × 1022 cm−3 for the AFeSD-alum; the whole calculations 
were carried out in the center of the Brillouin zone where the second-order polar phase transition occurs with the effect 
of zero applied electric field (E=0). By putting the model values of different physical parameters, the thermal variations 
of ferroelectric mode frequency ( )Ω , dielectric permittivity ( )ε ω  , and dielectric loss tangent (tan δ) by using the
equations (32), (35), and (36) have been calculated, as shown in figures (2), (3), and (4). With the help of model 
parameters, we have calculated the temperature dependence of soft mode frequency, dielectric constant and loss tangent 
forAFeSD-alum crystal, shown by the following tables ((2), (3) and (4) and figures ((2), (3), and (4)). The theoretical 
values obtained have been compared with experimental results reported by Mitsui [26].

Table 2. Experimental data [26] and theoretically obtained values of soft mode frequency for AFeSD crystal

Temperature (K) Soft mode frequency Experimental Theoretical calculation of soft mode frequency

85 30.664 30.485

86 28.021 28.352

87 24.913 24.889

88 4.003 4.342

89 12.465 11.114

90 15.435 14.807

91 18.654 17.939

92 21.525 21.125

93 22.983 22.978

94 23.667 24.048

95 24.376 24.986

96 24.958 25.384

98 26.122 26.684

100 27.051 27.663

102 28.328 28.722

104 29.254 29.456
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Table 3. Experimental data [26] and theoretically obtained values of dielectric constant for AFeSD crystal

Temperature (K) Dielectric constant experimental Theoretical calculation of dielectric constant

85 15.234 15.155

86 18.708 19.884

87 29.242 30.786

88 74.531 74.462

89 63.864 63.444

90 57.964 56.636

91 53.458 51.829

92 50.141 48.121

93 45.846 44.295

94 41.012 40.348

95 39.364 38.199

96 38.436 37.052

98 36.894 35.615

100 34.647 33.466

102 32.756 31.674

104 30.022 29.526

Table 4. Experimental data [26] and theoretically obtained values of loss tangent for AFeSD crystal

Temperature (K) Loss tangent experimental Theoretical calculation of loss tangent

85 0.304 0.307

86 0.328 0.317

87 0.422 0.369

88 0.941 0.938

89 0.849 0.854

90 0.819 0.802

91 0.773 0.758

92 0.743 0.725

93 0.708 0.688

94 0.665 0.656

95 0.632 0.641

96 0.619 0.629

98 0.602 0.614

100 0.595 0.607

102 0.586 0.599

104 0.581 0.586
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Figure 2. Thermal variation of soft mode frequency for AFeSD-alum (symbols: correlated values with experimental data [26]; solid line: present 
theory)

Figure 3. Thermal variation of dielectric constant for AFeSD-alum (red diamond: experimental data)
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Figure 4. Thermal variation of loss tangent for AFeSD-alum (symbols: correlated values with experimental data [26], solid line: present theory) 

8. Results and Discussion for AFeSD-alum
In the present paper, by modifying the extended two sublattice pseudospin lattice coupled-mode model, 

Hamiltonian has used to explain the dielectric properties of AFeSD-alum. We have added the anharmonic phonon 
interactions, indirect spin-lattice couplings, and direct spin-spin coupling together with an external electric field in the 
modified model Hamiltonian. With the help of Green function theory and modified two sublattice model Hamiltonian, 
we have derived the expressions for energy shift, line width, ferroelectric mode frequency, dielectric permittivity, and 
dielectric loss tangent properties. By setting the model values of various physical parameters given in table (1) and by 
using the equations (32), (35), and (36), the temperature variations of the ferroelectric mode frequency ( )Ω , dielectric
permittivity ( )ε ω  and dielectric loss tangent tan δ have been obtained and depicted in figures (2), (3), and (4). The 
obtained results for ferroelectric soft mode frequency dielectric constant permittivity, and tangent loss depicted in 
figures (2), (3), and (4), respectively, and compared well with experimental results reported by others [26] for dielectric 
constant, loss tangent, and correlated data for ferroelectric mode frequency for AFeSD-alum compound. Our theoretical 
results agree well with the experimental results reported by Mitsui [26].

Therefore, from figure (2) and equation (32), it is observed that the ferroelectric mode frequency ( )Ω  decreases as
we approach the low-temperature side towards the phase transition temperature. At Curie temperature (Tc) ferroelectric 
frequency becomes infinitesimally small and then increases above it as the value of temperature increases. Our obtained 
result for ( )Ω  is in good agreement with experimental observations. From figure (3) and equation (35), relative
permittivity initially increases as the value of temperature increases from the low side and becomes anomalously large 
at Curie temperature (Tc). Above the Curie temperature, the dielectric permittivity value decreases with the increasing 
value of temperature. Our obtained result for dielectric constant is in good agreement with experimental observations 
of Mitsui [26] and the similar behaviour obtained for loss tangent (tan δ) and equation (36) for AFeSD-alum crystal 
depicted in figure (4).

9. Conclusions
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In the present study, from the above results and discussion, we can be understood well that with the help of 
retarded Green function theory along with the two-sublattice pseudospin lattice coupled-mode model Hamiltonian 
extended with anharmonic phonon couplings, indirect spin-lattice couplings, direct spin-spin coupling together with 
an external electric field explains the phase transition properties of AFeSD-alum crystal clearly. The 3rd- and 4th-order 
phonon anharmonic interaction terms significantly affect the thermal variations of soft mode frequency, dielectric 
permittivity, and dielectric tangent loss properties in ferroelectric AFeSD-alum crystal. As the earlier authors [19–21] 
used a simple decoupling method and decoupled the correlations at initial steps, due to which some critical interaction 
results disappeared from their results. The energy shift and line width are contained in the additional terms of the present 
work. This ultimately provides the renormalized ferroelectric soft mode frequency. Our theoretical obtained results are 
better than earlier authorsʼ results [19–21], quantitatively. Unlike the case of hydrogen-bonded ferroelectrics, very little 
or no isotope effect is observed on the transition temperatures indicating that the H bonds are not primarily involved 
in the transition mechanisms of alums having a large number of H bonds. The dielectric constant in AFeSD alum 
follows the Curie-Weiss law in different temperature ranges with only one Curie-Weiss constant (C). Similar behaviour 
found in loss tangent. The soft modes in ferroelectric crystals are the typical polar modes. A soft mode is not always 
a polar mode but for ferroelectric transitions it is always a polar mode. Above Curie temperature (Tc), the soft mode is 
the lowest frequency transverse optic phonon (TO). Below Tc, the soft mode becomes a symmetric mode. Therefore, 
it is Raman active. In typical cases, its frequency follows the equation ( )2 0TO ck a T Tω = = − , where a is a constant 
[23]. Raman spectra of soft modes in the ferroelectric phase (T < Tc) depends on the angle between the spontaneous 
polarization and the phonon propagation direction. Soft mode frequencies for k = 0 modes are related to the dielectric 

constant by Lyddane-Sachs-Teller relation [24] defined as, 
2

0
2
LO

TO

ε ω
ε ω∞

= , where 0ε  is the static dielectric constant and ε∞

is the high-frequency limit of the dielectric function. For soft mode 0TOω →  we see that 0ε → ∞ , a characteristic of 
ferroelectricity. This relation produces one essential anomaly needed to explain a ferroelectric transition. This relation 
produces one essential anomaly needed to explain a ferroelectric transition. Authors concluded that our calculations 
predict dielectric constant which can be potential applications in ferroelectric materials such as memory devices, 
capacitors, transducers, nonlinear optics, etc.
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