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Abstract: The aim of this paper is to study the coupled non-linear dynamics of the behaviour of Shape Memory 

Alloys (SMA) under harmonic excitation. The thermomechanical model developed by Falk and based on Landau 

theory is used to describe the coupled thermomechanical behaviour of the SMA mass-damper-bar system. Fully 

coupled mechanical and thermal field equations are established to reveal the strong coupling phenomena arising 

from the phase transition. Then, the harmonic balance method is used to obtain the steady-state frequency 

responses. The effect of thermomechanical coupling on the frequency and time response curves is taken into 

account by modifying the heat transfer coefficient. The results show that deformation and temperature provide a 

stable sinusoidal response. The analysis of the results leads to different ways of controlling the nature and extent 

of the coupled and non-linear response of SMA-based oscillators. Comparison of the analytical results with 

experimental data from the literature validates the coupled thermomechanical nonlinear model. These results can 

be used effectively to control the external vibrations of various systems. 

 

Keywords: shape memory alloy; mass-bar-damper system; thermomechanical coupling; martensitic 

transformation and hysteresis loops  

 

1. Introduction 
 

Nowadays, one of the most essential elements of structural design for civil engineers is to build a system 

that is adaptable to environmental conditions. In this context, technological innovation and scientific advances in 

the field of novel materials with strong multiphysical coupling have led to the development of so-called smart and 

adaptive materials [1]. This class of materials, typically used as sensors and actuators, has the ability to change its 

shape and stiffness by the imposition of electric, electromagnetic, thermal or stress fields [1]. Shape memory alloy 

(SMA) are a class of smart materials with remarkable thermomechanical properties such as shape memory effect 

and pseudoelasticity [2]. These properties result from the phenomenon of phase transition between austenite and 

martensite at different stress and temperature conditions. Due to this behaviour, SMAs are used in vibration 

control, noise reduction [3], in actuation system and in vibration isolation system [4]. The pseudo-elastic nature 

of the phase transformation makes them very good candidates for vibration damping devices [5]. However, the 

inherent non-linearity and strong thermo-mechanical coupling observed in the behaviour of SMAs during phase 

transitions makes modelling difficult for most applications. Several research has been undertaken on the modelling 
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and application of SMAs in structural systems to support applied dynamic loads in the form of vibration control 

systems. 

For example, based on the model developed by Morin et al.[6], Moussa et al.[7] have numerically studied 

the forced responses of an oscillator reproducing the pseudo-elastic behaviour of SMA. The time integration of 

the equations of motion with the reduced model was performed using a Newmark scheme. Non-linear features of 

the damper response were observed, including jumps, period doubling, symmetry breaking bifurcations and 

chaotic responses. However, the study does not take into account the energy dissipation during the phase transition, 

which results in hysteresis loops. Oliveira et al.[8]  numerically studied the dynamic jumps in a shape memory 

oscillator whose stiffness is described by the Fremond model [9]. The fourth-order Runge-Kutta numerical method 

is used to solve the constitutive equations of the system. The numerical simulation results have dynamic jumps as 

a consequence of abrupt changes in the SMA system behaviour during the phase transition appear in the frequency 

responses of the system. However, the model makes solving the problem complex due to several internal variables. 

Enemark et al.[10] performed experimental and theoretical analysis of a one-degree-of-freedom oscillator with a 

pseudo-elastic SMA element. They showed that the system has a complex non-linear behaviour due to the complex 

thermo-mechanical relationships of the pseudo-elastic SMA spring. Their study were able to predict the overall 

non-linear behaviour of the system. Gaikward et al.[11]  also performed nonlinear dynamic analysis of shape 

memory devices with Duffing and Quadratic oscillators using the harmonic equilibrium method and the averaging 

method to find near-resonant responses. They showed that the strength of change due to the quadratic non-linearity 

is less than that due to the cubic non-linearity. It was observed that the SMA-based oscillator not only reduces the 

displacement amplitude effectively, but can also be used to tune the nature of the nonlinearity from softening to 

hardening.  

To consider both non-linearity and hysteresis, Zhuo et al.[12] studied the responses of a bar in SMA by 

developing the piecewise linear hysteretic model to reproduce the pseudo-elastic behaviour of NiTi SMAs. They 

showed that the softening non-linearity induced by the phase transition bends the frequency response curve to the 

left, while the subsequent martensite hardening further bends the frequency response curve to the right, leading to 

multi-valued regions and jump phenomena. Hysteresis has the effect of suppressing the amplitude of the system 

response. However, their model ignores the influence of temperature. In order to take into account non-linearity 

and temperature, the authors [13–15] simultaneously studied the influence of non-linearity and temperature on the 

responses of a shape memory oscillator by developing a polynomial model to describe the stiffness. They showed 

that at low temperatures, the force-strain relationship is strongly non-linear and the system has a smoothing 

behaviour. Whereas at high temperatures the force-strain relationship becomes linear and the material displays a 

hardening behaviour. However, their study was carried out under isothermal loading conditions. Studies under 

dynamic loading of the thermomechanical coupled SMA oscillator have been also studied in the literature [16–

19]. Most of them use numerical or experimental methods and do not explicitly distinguish the effects of non-

linearity and thermomechanical coupling. In contrast, the combination of analytical solutions and numerical 

results can overcome these difficulties. 

In vibratory systems containing SMA bar, the restoring force is non-linear and thermomechanically coupled 

due to the phenomenon of phase transitions. SMA Type NiTi with a composition of 55.4 wt% Ni is used. This 

type of alloy known under the trade name Nitinol (Nickel Titanium Naval Ordnance Laboratory) is superelastic 

at room temperature 25°C [20]. A polynomial model, based on Landau's theory and proposed by Falk [21] is used 

to describe the behaviour of SMAs. The model has the following expression: 

( )
( )1 2 4 632ψ ,

2 4 6

M
k T T kk

T   
−

= − +  (1) 

where
1 2 2
, ,k k k are related to the second, third, and fourth order elastic constants,  respectively [22].   the strain 

field, T  the temperature field,
M

T  is the temperature below which the martensite phase is stable.  

As shown in  

Figure 1(a), the minimum and maximum points represent the stability and instability of each phase of the 

SMA. Where M+ and M- are the two stable variants of the martensite phase induced by tension and compression 

respectively, A  the austenite phase of SMA and 
A

T  the temperature above which the austenite phase is stable 

[23]. 
A

T  is expressed as: 

2

2

1 3
4

A M

k
T T

k k
= +  (2) 
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The stress dependence   is based on Landau’s theory of a polynomial-free energy ψ , which was initially 

proposed in [24]: 

( )
( )

( ) 3 5

1 2 3

ψ ,
,

M

T
T k T T k k


    




= = − − +


 (3) 

The stress-strain curve derived from the polynomial model is presented in  

Figure 1(b). It shows that at a relatively low temperature, the SMA has a shape memory behaviour. While 

when the temperature is relatively high, the SMAs display a pseudo-elastic behaviour [25]. 

 

 
(a) 

 
(b) 

 

Figure 1. (a) Potential energy curve and (b) Stress-strain at different temperatures 

 

In this study, we present the mechanical and thermal responses of a non-linear vibration control device 

containing an NiTi SMA bar through a shape memory oscillator. An SMA bar is applied in the vibration system 

as a spring element providing the restoring force. Due to the phase transitions in SMA, the restoring force is non-

linear and thermomechanically coupled. To consider the non-linearity and thermo-mechanical coupling, le 

polynomial model, based on Landau theory is used to describe the behaviour of SMA bar. The harmonic balance 

method and the fourth-order Runge-Kutta numerical method are then used to solve the equation of motion of the 

system. The analytical approach allows us to find steady-state frequency responses. Based on the analytical results, 

we draw frequency response curves (FRC) to show the influence of heat transfer times at different environmental 

temperatures. The obtained FRC are compared with FRC in the literature. As for the numerical approach, it allows 

us to find responses in the time domain and thus reveal the hysteresis loop phenomenon due to thermomechanical 

coupling. Finally, numerical results are compared to the experimental data obtained in the literature. 

 

 

2. Shape memory oscillator model 
 

To study the dynamic behavior of SMAs, we will consider a one-degree-of-freedom oscillator consisting of 

a mass m , connected to a rigid support via a viscous damping coefficient  and an SMA bar. Damping is due to 

the movement of interphases between the different phases [26]. On a macroscopic scale, it reflects the viscous 

effects of phase transformation [27]. The SMA bar are considered as nonlinear spring as shown in  

Figure 2. In a dynamical system containing SMAs, the nonlinear stiffness and the damping capacity arise 

from the nature of the phase transition and manifest themselves macroscopically through the stress-strain-

temperature relationship. Stiffness and damping capacity can be influenced by thermomechanical coupling. For 

simplicity, the softening stiffness and the hysteresis loop of the stress-strain-temperature relationship of the SMA 

bar are modeled separately as a nonlinear spring and a viscous damper in the theoretical analysis ( 

Figure 2). During the phase transition, the stiffness of the SMA bar varies non-monotonically with strain and 

temperature. Thus, it is related to internal stress ( ),T   by the following relation [28]: 

( ) ( ), . ,
R

F T A T  =  (4) 
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where A is the cross section of the SMA bar. 

 

( )F t

u

Heat exchanges 

m

REV
SMA bar


 

 

Figure 2. Model of the shape memory oscillator [6] 

 

2.1 Thermomechanical coupled equation of the system 
 

The thermomechanical-coupled equation includes the equation of motion and the equation of heat. 

 

2.1.1 Equation of motion 
 

The dynamic equation of the non-linear mass-spring oscillator ( 

Figure 2) with harmonic ( )F t  has the following expression [15]:    

( ) ( )
²

,
²

R

d u d
m F T F t

dt dt


 + + =  (5) 

where u is the mass displacement ,  m  is the viscous damping coefficient, ( ) ( )0
cosF t F t=  is the external 

excitation and ( ),
R

F T  is the restoring force provided by the SMA bar. 

The vibration being longitudinal, the displacement u of the mass is linked to the deformation field   

developed within the SMA bar by relation [29]: 

u L=  (6) 

where L is the length of the bar. 

Substitution of equations (4) and (6) in equation (5) and after manipulation we obtain the reduced form of 

the mechanical equation: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )3 5

0
2 cos

M
t t T t T t t t f t      + + − + + =  (7) 

With       

2

3 01 2

02
; ; ; ; ; ;

2

Ak FAk Akd d
f

dt dt mL mL mL mL mL

  
     = = = = = = =  

 

2.1.2 Heat equation 
 

The method for constructing the equation of motion or evolution for the mean volume temperature ( )T t of 

the bar is essentially based on the heat transfer equation and global analysis [30]. It is well known that for a body 

of volume V  and boundary surface S  (Figure 3), the differential heat transfer equation can be derived from the 

local energy balance at any position x , as: 

( )
( ) ( )

x,
. x, x,

T t
q t g t

t



−  =


 (8) 

where c = is the heat capacity per unit volume,  density, c specific heat capacity per unit mass q  is the heat 

flux  and ( )x,g t is the heat source. 
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Heat flow via conduction

Heat flow via convection

( ) ( )
1

x,
V

T t T t dV
V

= 

( )x,T t

S

V
 

Figure 3. Schematic diagram of heat transfer through the representative elemental volume (REV) [31] 

 

The lumped system analysis can be applied to equation (8) for the body under low temperature gradient 

conditions and can give a very simplified expression of the volume mean temperature. An average global volume 

of equation (8) in the region V not only defines the volume average temperature ( ) ( )
1

x,
V

T t T t dV
V

=  which 

is a function of time only, but also transforms equation (8) as: 

( )
( ) ( )

1
.q x, , , 0

   V

T t
t dV g t x V t

t V



−  =  


  (9) 

where ( ) ( )
1

x,
V

g t g t dV
V

=   

We now derive the evolution of the volume mean temperature of the sample ( )T t by localized system 

analysis. To simplify the step, we used the following assumptions: 

(i). Latent heat release/absorption and hysteresis heat release are the two internal heat sources of the material 

and their rates are approximated as being proportional to the applied strain rate and the square of the 

strain rate respectively, without separating the loading-unloading process in different subsections [32]. 

(ii). The heat flow through the two handles is modeled as heat conduction through the two end cross sections 

of the gauge, which undergoes a cyclic phase transition. 

The heat source ( )g t  in equation (9) includes the latent heat 
0

l and the hysteresis heat D . The latent heat 

arises from the phase transition and hence the rate of latent heat release can be assumed proportional to the rate 

of strain. Taking into account the assumption (i), we can write the latent heat release rate in the form 

( )0
sin

2
l t


 that satisfies the condition that the integral of the latent heat release rate during loading and 

unloading is 
0

l  and 
0

l−  respectively. At the same time, friction-like hysteresis heat is released and its rate 

increases with strain rate, is always positive in both load and unload conditions. We therefore simply assume that 

the hysteresis heat release rate is proportional to the square of the strain rate in the form ( )2
sinD t





. The 

assumption we made is mainly to simplify the model and ensure that hysteresis heat release is always positive 

during loading and unloading. We also ensure that the total hysteresis heat released in a cycle is D . 

Thus, the average heat source in volume ( )g t is written as follow: 

( ) ( ) ( ) ( )20
1

, sin sin
2V

l D
g t g x t dV t t

V

 
 


= = +  (10) 

Applying the law of divergence, the volume integral of the local term is the outward heat exchange with the 

ambient and assuming that the temperature is uniform in the bar [19]: 

( )0
.q q .n

V S
dV dS hA T T = = −   (11) 
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where n  is the unit normal vector pointing outwards to the surface of the volume, h is the convective heat transfer 

coefficient, A  is the cross section of the SMA bar and 
0

T  the temperature of the surrounding medium. 

By substituting equations (10) and (11) in equation (9) the heat equation through the REV is written as: 

( ) ( )( ) ( ) ( )20

0

1
sin sin

2
h

l D
T t T t T t t

t

 
 

 
= − − + +  (12) 

where 
( )

   

T t
T

t


=


,

h

V
t

hA


= convective heat transfer time, h  is the natural convection coefficient of the side 

surface in the air and depends on the temperature difference and D is the dissipation of mechanical energy per 

unit volume of the 
th

n cycle [33]. 

The hysteresis loop area D  in the steady-state cycle can be easily obtained using the steady-state 

temperature [20]: 

( )

( )

( )

0 max

0 2 2

max

8 1

1
2

f r h

h

f r h

k k l t
D

t
D

k k t

 

 





+
+

+
=

−
+

 (13) 

Finally, the constitutive equations describing the evolution of the coupled thermomechanical behavior of the 

shape memory oscillator are obtained by combining the equations (7) and (12): 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

0

0

0

2 , cos

1
sin cos 2

2 2 2

R

h

t t f t T t f t

lD D
T t T t T t T

t

   

 
 

  

 + + =



= − − + + −


 (14) 

with  

( ) ( )( ) ( )( ) ( ) ( ) ( )3 5
,

R M
f t T t T t T t t t    = − + +  (15) 

 

2.2 Resolution of the equations 
 

As the response of an SMA vibration system usually first experience a transient state and eventually reaches 

a steady state, in this section, the first-order harmonic balance method and the fourth-order Runge-Kutta method 

are used to obtain expressions of steady-state and transient responses. 

 

2.2.1 Steady state solution 

 

In the case of vibrations with periodic external stresses, the main assumption consists in assuming that the 

response of a nonlinear system to a periodic excitation is a sinusoidal function of time with the same frequency 

as the excitation. Although it is unlikely that there is an explicit analytical solution for such a nonlinear-coupled 

vibrational system, an approximate analytical approach can be used to obtain the steady-state responses and reveal 

the roles of nonlinearity and thermomechanical coupling. With this hypothesis, the answers ( )t and ( )T t can 

be developed into Fourier series [34] as: 

( ) ( ) ( )

( ) ( ) ( )

0

1

0

1

cos sin

cos sin

N

n n

n

N

n n

n

t a a n t b n t

T t A A n t B n t

  

 

=

=


= + +



 = + +






 (16) 

where 
0 1 1
, ,a a b and 

0 1 1
, ,A A B  are the coefficients of the associated harmonic functions and N  is the highest 

order of the harmonics considered. 

In the same way, the nonlinear forces are written in the form of Fourier series: 
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( ) ( )( ) ( ) ( )0

1

, cos sin

N

R c cn sn

n

f t T t f f n t f n t  
=

= + +  (17) 

The residues are defined in the time domain as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 0

0

2 0

2 , cos

1
sin cos 2

2 2 2

R

h

R t t t f t T t f t

lD D
R t T t T t T t t

t

   

 
 

  

 = + + −



= + − − − +


 (18) 

To solve equation (18) , we use the Galerkin procedure which consists in calculating the average over a 

period 
2




= of the residual functions ( )1
R t  and ( )2

R t via the properties of the basic ( )cos n t and 

( )sin n t following functions: 

( ) ( )

( ) ( )

( ) ( )

0

0

0

2
cos cos

2
sin sin

2
sin cos 0

ij

ij

i t j t dt

i t j t dt

i t j t dt







  


  


 



=




=



=








 (19) 

where
1,

0,
ij

i j

i j


=
= 



 

The projection of each of these residual functions onto each base function gives us: 

( )

( )

01 0
0

0 0

2 0
0

2
0, 0

0,        
2 0

, 0 2

c

h

fR X t dt

N D t
A T

R X t dt












==  

=  
− − = = 







 (20) 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

21
0

1 1 1 0

2

1 1 1
1

0

1 12
0

0

1 1

2
0

2
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2 0

2 2 0
.sin 0
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2

0.cos 0

2
.sin 0 2

c

s

h

h

h

R t t dt
a b f f

a b f
R t t dt

N

t B AR t t dt

l t
t A B

R t t dt










 
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









 


 
=   − + + − =

  
− − + =  =

  
= 

 + ==  
 

− + =  = 










 (21) 

with 

( )

( ) ( )

( ) ( )

0
0

1
0

1
0

2
,

2
, cos

2
, sin

c R

c R

s R

f f t dt

f f t t dt

f f t t dt










 


 



=




=



=








 (22) 

Referring to equation (15), we calculate 
0 1
,

c c
f f and 

1s
f  and obtain the following expressions: 
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( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
2 2 2 4 2 2 2 2 2

0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1

2
2 2 2 4 2 2 2 2 2

1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1

2 2 2

1 1 1 0 1 1 0 1 0 1 1 1

2 2 3 8 40 15
2 2 4

3 5
, 4 8 12

4 8

3 5
, 4

4 8

c M

c M

s M

f a A T b B a a a b a a a a b a b

f a b a A a A T a a a b a a a a b a b

f a b a B b A T b a a b b

  

 


 


 
= − + + + + + + + + + 

 

 
= + − + + + + + + + + 

 

= + − + + + + ( ) ( )
2

4 2 2 2 2 2

0 0 1 1 1 18 12a a a b a b
 

+ + + + 
 

 (23) 

By substituting equation (23) into equations (20) and (21), the mechanical ( )
1/ 2

2 2

1 1 1
a b = + and thermal 

responses ( )
1/ 2

2 2

1 1 1
T A B= + equations at the excitation frequency   are obtained: 

( )( ) ( )

( )

22 2 2 2

1 0 0 0 1 1 0

2 2 2 2 2 2 2

1 0

2 2 0

4 1 0
h h

A f a a T A f

t T l t

   

  

 + − − − =


+ − =


 (24) 

where ( )2 2 4 2 2 4

0 1 1 1 0 0

3 5 15
3 5

4 8 2
M

A A T a a      
 

= − + − + + + + + 
 

 

In the following, the equations (24) are used to obtain the mechanical and thermal response curves in the 

frequency domain. 

For the isothermal case of the thermomechanical model, the heat equation is ignored and the temperature is 

maintained at room temperature
0

T . Of course, we can also leave h a large number ( )0
h

h t→   →  for 

the temperature to be calculated as nearly constant due to strong heat exchange. In this case if  
0

0a = i.e. the 

oscillations take place around the static equilibrium point 0 =  [35], we obtain the same expression obtained 

by Du et al.[15]:  

( )( ) ( )
2

22 3 5 2

0 1 1 1 1 0

3 5
2

4 8
M

T T f
 

     
 

− − + + + = 
 

 (25) 

 

2.1.2 Runge-Kutta method  
 

The system of equation (14) can be solved numerically by the four-order Runge-Kutta method [36] as: 

( )

( )0 0

,
dy

f t y
dt

y t y


=


 =

 (26) 

with ( )
( ) ( )

( ) ( ) ( )
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 
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 

 
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    
   − − + +     

 

. 

Where 
0 0 0
, v ,T  are the initial values of , v,T  respectively at 

0
t t= . 

Assuming that the solution of the typical initial value problem (26) is ( )y y t= , its Taylor expansion is 

written as: 

( ) ( ) ( )1

1

0
!

kn
k

i i i

k

h
y t y t y t

k
+

=

= + +  (27) 

Runge-Kutta method is essentially a numerical method indirectly using Taylor series. For the difference 

( ) ( )1i i
y t y t

h

+
−

, according to differential mean value theorem, ( )0,1   satisfying: 
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( ) ( )
( )

1i i
y t y t

y t h
h


+

−
= +  (28) 

Therefore ( ) ( ) ( )( )1
,

i i i i
y t y t hf t h y t h 

+
= + + + . 

Defining ( )( )*
,

i i
K f t h y t h = + +  as the average gradient in  1

,
i i

t t
+ , the 

*
K  in the fourth-order 

Runge- Kutta method can therefore be calculated from the following expressions: 

( )1 1 2 3 4
2 2

6
i i

h
y y K K K K

+
= + + + +  (29) 

with : 

( ) ( )1 1 2 1 3 2 4 3
; , ; , ; , ; ,

2 2 2 2
i i n n n n n n n n

h h h h
h t t K f t y K f t y K K f t y K K f t h y hK

+

   
= − = = + + = + + = + +   

   
 

 

 

3. Results and discussions 
 

This section presents the frequency response curves (FRC) from the analytical solution, the hysteresis loop 

phenomenon and the time domain response curves; and discusses the effect of temperature and convective heat 

transfer time. The chemical, mechanical and thermal properties of the material are listed in the Table 1.  

 
Table 1. Chemical, mechanical and thermal properties of the NiTi SMA [15, 20] 

Properties symbols Units Values 

The specific heat capacity cp J/ kgK 500 

Volumic mass ρ kg /m3 6450 

Heat capacity per unit volume λ = ρcp J/m 3 K 3.225 × 10 6 

Latent heat l0 J/m3 77.4 × 10 7 

Overall convection coefficient h W /m2K 100 

Isothermal hysteresis loop zone D0 MPa 5.33 

Temperature coefficient for 

forward transformation stress 
kf MPa/K 6.56 

Temperature coefficient for reverse transformation 

stress 
kr MPa/K 7.09 

Martensitic phase temperature TM K 208 

Ambient temperature T0 K 298 

Viscous damping coefficient   Ns 100 

Mass m Kg 5 

Length L m 1 
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Amplitude of Excitation Force F0 N 2000 

cross section A m2 3.83 × 10 -3 

Materials constants 

k1 Kg / s 2K 459.6 

k2 Kg /s 2 m 2 3.59 × 10 5 

k3 Kg /s 2 m 4 3 × 10 6 

 

3.1 Hysteresis loops 
 

The hysteresis phenomenon translates the energy dissipation capacity of material when it passes from one 

phase to another. Although the phenomenon of hysteresis has been the subject of several studies in the literature 

[22, 39–41], here we represent this phenomenon from the semi-analytical expressions obtained by the Runge-

Kutta method (equation (29)). The Figure 4 shows the thermal hysteresis. It is caused by the cooling and heating 

processes during heat exchange between material samples (conductive heat transfer) and between the material and 

the external environment (heat transfer by convection). The heating process induces a transformation M+ 

(Martensite) →A (Austenite), and another sharp jump in strain values occurs when the transformation takes place. 

The two sudden jumps in stress during the cooling A→M (upward arrow) and heating M → A (downward arrow) 

processes do not coincide (Figure 4(a)). In other words, the temperatures at which the transformations take place 

during the cooling and heating processes are different. Therefore, there is a hysteresis loop caused by the thermal 

load. The fact that the thermal hysteresis loop curves bend to the left and to the right is due to the softening non-

linearity of the material behavior at high heat exchange (Figure 4 (a and b)) and the hardening non-linearity at low 

heat exchange (Figure 4(c)) respectively.  

 

 
 

(a) (b) 
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(c) 

 

Figure 4. Thermal hysteresis loops at different heat transfer times 

In order to validate the ability of the model to simulate the strain-temperature hysteresis of phase transitions 

in SMAs, the model predictions (with th=28.22s) are compared with the experimental data reported by Maletta et 

al.[40] (with th=30s). The  

Figure 5 highlights the effect of the heat transfer time on the hysteresis loop. It shows that when the heat 

transfer time is large, the analytical result approaches the result of experimental data. Because the experiment was 

conducted under conditions of strong heat exchange. As the heat transfer time decreases, the hysteresis loop tends 

to disappear and the strain-temperature relationship tends to be linear. The two sudden jumps in strain during 

cooling processes A (austenite) →M (martensite) indicated by up arrow and heating processes M → A indicated 

by down arrow do not coincide [41] .The model prediction results are in good agreement with the experimental 

data. Thus, the developed model can be used in the following to analyse the influence of heat transfer on properties 

of SMA. 

 

 
Figure 5. Comparisons between model predictions and experimental data reported by [40] 

3.2 Time domain analysis 
 

The influence of heat transfer time on the time responses is now investigated. It is found that at a large value 

of heat transfer time, the maximum amplitude of thermal response decreases with time (Figure 6). This decrease 

with time is due to the damping caused by the heat exchange of the material with the external environment.  While 

at low values of heat transfer time, the thermal response evolves sinusoidally with time as in the undamped system. 

This shows that the SMA vibration system can go from a transient state to a permanent state. These time response 

curves are similar to those obtained by Yin et al.[20]. For the mechanical responses (Figure 7), the time of heat 

transfer has almost no influence. This is because the phase transition from martensite to austenite is induced by 

the temperature. 
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Figure 6. Temperature evolution curve as a function of heat transfer time, for an intermediate frequency 0.1 Hz 

 

 
Figure 7. Mechanical response - time curve as a function of heat transfer time 

3.3 Frequency domain analysis 
 

In this section, the time influence of heat transfer 
h

t  on the frequency responses is analyzed via the analytical 

solution equation (24). Results presented in Figure 8 shows that, the maximum response amplitude decreases 

when h
t  increases. Furthermore, at 0

h
t s= , we obtain the FRC in the isothermal case [15]  i.e the heat exchange 

is strong between the material and the environment. we note that a given room temperature, at low heat transfer 

time, the mechanical frequency response curves bend to the right while at high heat transfer time, the mechanical 

frequency response curves bend to the left. The first bending to the left is due to the softening behaviour in the 

martensitic phase, while the bending to the right is due to the hardening behaviour in the austenitic phase. These 

phenomena come from the energy dissipation caused by the heat exchange between the material and the 

environment, which is reflected in the hysteresis loop of the strain-temperature curves  

Figure 5. These observations show how much the system responses in SMA depend on both the non-linearity 

and the condition in which the system exchanges energy with the external environment. Thus, the convective heat 

exchange in the SMA bar has the effect of damping the vibration response amplitude, which is related to the 

pseudo-elastic property of SMA. This is why SMA are used as a vibration damper device [42]. While the non-

linearity gives it the shape memory effect property. The latter is widely exploited in actuators. 
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(a) 

 
(b) 

Figure 8. Mechanical frequency response curve as a function of heat transfer time 

 

The Figure 9 shows the influence of the convective transfer time on the thermal frequency response. It can 

be seen that when h
t  > 1s, the thermal response increases and quickly reaches the plateau even at low excitation 

frequencies, but when time approaches zero, the plateau will be reached at a high excitation frequency (> 250 Hz). 

It also shows that as the heat transfer time h
t  increases, the system reaches the steady state faster. This shows that 

the state of the system can be controlled by the exchange of heat with the external environment.  

 
Figure 9. Effect of heat transfer time on thermal frequency responses 

These different response-frequency curves show that the dynamic behavior of a system made in SMA can 

be controlled by heat exchange. The hysteretic behavior of SMA results from the coupling between mechanical 

(strain) and thermal responses. 

 

 

4. Conclusion 
 

The objective of this paper was to discuss the non-linear dynamics of the SMA behavior through a mass-

bar-damper system taking into account the thermomechanical coupling. A polynomial model has been proposed 

to describe the force-deformation relationship of the SMA bar, and then the harmonic balance method and the 

Runge-Kutta method of order fourth are used to obtain responses in the frequency and time domains respectively. 

The numerical responses of the systems in the frequency and time domains are plotted and the effects of ambient 

temperature and heat transfer time have been analyzed. It is found that, as the ambient temperature increases, the 
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resonant frequency gradually increases, while the amplitude decreases. Furthermore, at a given room temperature, 

at low heat transfer time, the mechanical frequency response curves bend to the right while at high heat transfer 

time, the mechanical frequency response curves bend to the left. The first bending to the left is due to the softening 

behaviour in the martensitic phase, while the bending to the right is due to the hardening behaviour in the austenitic 

phase. These phenomena come from the energy dissipation caused by the heat exchange between the material and 

the environment, which is reflected in the hysteresis loop of the strain-temperature curves. Finally, the thermal 

responses can change from a transient state to a stable sinusoidal state in time even under high heat exchange. 
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