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Abstract: The paper introduces the dynamic responses of a circular shaft with variable mechanical properties 

under dynamic loads. The direct construction of finite element formulation for dynamic problems, which include 

stiffness matrix, and mass matrix for circular axis. The Functionally Graded Material (FGM) shaft with material 

properties is assumed to vary continuously in the longitudinal direction investigated. Building a numerical 

program for the problem based on Bernoulli beam theory, and Newmark numerical algorithm. The obtained 

numerical results have found the kinematic response of the shaft with the longitudinal variation of mechanical 

properties under the action of dynamic loads. The results were also compared with the analytical results in some 

special cases to clarify the reliability of the calculation method. 
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1. Introduction 
 

The shaft is a common type of construction in most machine equipment. The oscillation of the shaft and 

beam with constant mechanical properties under the effect of dynamic loads has been proposed in many previous 

studies [1–7]. Functionally graded material (FGM) is created by continuously varying the volume fractions of the 

component materials, often in spatial coordinates. Thus, FGM does not have the disadvantages commonly 

encountered in layered and fiber-reinforced composites such as delamination or stress concentration. Combining 

the advantages of component materials, FGM materials are increasingly studied and widely applied in practice. 

Many researchers have investigated different aspects of the dynamic behavior of a rotating shaft by assuming it 

as a rotating Euler Bernoulli’s theory. The traditional analytical methods, especially the Galerkin method are 

employed by researchers in studying the mechanical behavior of FGM shafts, Finite element method (FEM) is 

also widely used to study the behavior of FGM shafts and beams. Several finite-element beam models for the 

analysis of FGM beams have been proposed [8,9,10]. However, in addition to torsional strain, the shaft is also 

subjected to flexural deformation at the same time, which is rarely mentioned in previous studies. This study 

focuses on the kinematic analysis of shafts whose longitudinal mechanical properties vary by finite element 

method. Which includes building a finite element formulation based on a 2-node axis element with mechanical 

properties varying along the axis.  
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2. Elastic energy function and kinetic energy of a shaft with variable 

mechanical properties 
 

Consider the circular shaft with the coordinate system being the x-axis in the direction of the circular axis 

and the y- and z-axes on the cross-section. The effective properties such as Young's modulus (E), shear modulus 

(G), and mass density (ρ) of the ceramic (c) and metal (m), respectively. The effective properties of the axially 

FGM beams evaluated by Voigt mode are as follows 

( )
m m c c

E x E v E v= + , ( )
m m c c

G x G v G v= + , ( )
m m c c

x v v  = +  (1) 
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E E  are the volume elastic modulus of ceramic and metal, respectively, 

           ,
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G G  the shear modulus of elasticity of ceramic and metal, 
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   are the mass density of ceramic and metal 
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v v  are the volume fraction of ceramic and metal 
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where n is the nonnegative grading index, and L is the length of the shaft. Based on the Euler-Bernoulli beam 

theory, the displacements u  and ω of an arbitrary point in the x and z directions, respectively are given by 
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where u(x, t) and ω(x,t) are respectively the axial and transverse displacements of a point on the x-axis at the 

midplane, φ(x,t) is the cross-sectional rotation, and t is the time variable, z is the distance of the midplane, θ is the 

angle of twist of the cross-sectional, the strain 𝜀,   and the stress 𝜎 can be obtained as follows [15]: 
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Hooke’s law: 
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E x =   ( ).G x


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r is the distance from any point of stress to the x-axis of the shaft 

The strain energy of torsion and bending shafts for an element with an initial length of 𝑙 with variable 

mechanical properties having a form:  
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In which 

F

zdF=0 ; 
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where Ve is the volume of an element of the shaft, and A is the area of the cross-section of the shaft.  

The kinetic energy of an element with an initial length of 𝑙 having a form 

( ) ( ) ( )
e e

2 2 2 2

V V

1 1
T= ρ x u +ω dV+ ρ x r θ dV

2 2
   

(8) ( ) ( ) ( ) ( )2 2 2 2 2 2

0 F(x) 0 F

1 1
= ρ x u +ω +ρ x z φ dFdx+ ρ x θ r dF dx

2 2

l l
 

    
 

     

( ) ( ) ( ) ( )2 2 2 2

y x

0 0 0

1 1 1
= F ρ x u +ω dx+ I ρ x φ dx+ I ρ x θ dx

2 2 2

l l l

 
     

where ρ(z) is mass density, θ is twist angle. 

 

 

3. Construct FEM formular of the shaft 
 

3.1 Element stiffness matrix 
 

Considering the shaft element with two typical nodes (node i, node j) with length L, due to the deformation 

characteristics of the shaft, there will be four node displacements at each node. The global element vector of nodal 

displacements for a two-node genetic FGM element (i, j) has eight components as  

 
T

i i i i j j j j
u u     =d  (9) 

The displacements u(x, t), ω(x, t), rotation φ(x, t), and twist θ(x, t) are interpolated from the nodal 

displacements as 
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where Nu, Nω, Nφ and Nθ are the matrices of shape functions. 

The element stiffness matrix is derived from the strain energy of an element U, and it has the form 
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3.2 Element mass matrix 
 

The element mass matrix is derived from the shape functions for the displacement field. we write the kinetic 

energy (8) in the following form 
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  is the mass matrix for an element. 
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muu, mωω, mφφ, mθθ   are the axial mass matrix, the transverse mass matrix, the bending mass matrix, and the 

twisting mass matrix, respectively. 

The equations of motion for 2D-FGM shaft can be written in the context of the finite element analysis as 

[11–13] 

MD + KD = F  (16) 

where ,D D are the total vectors of nodal displacements and accelerations. M, K and F are the mass matrix, the 

stiffness matrices and the nodal load vector of the shaft, respectively. 

 

 

4. Numerical results and discussion 
 

A computer code based on the developed formulation (16) and Newmark numerical algorithm [13,14] is 

developed and employed to study the dynamic behavior of the shaft in this Section Computations are carried out 

on FGM shaft made of steel SUS304 and aluminium Al2O3. Assume the mechanical properties of the material 

change from the left to end of the shaft, the left of the shaft is steel material, and the right end of the shaft is purely 

ceramic (Fig.1). To investigate the effect of shear strain and twist strain, for illustration, there is considered the 

shaft with constant cross-section, and shaft containing gear in the middle. The average radius of the gear is R, and 

the shaft has the following parameters: L = 0,5 (m), d = 0,02 (m), R = 0,06 m, the forces acting on the shaft at the 

midpoint of the shaft have the form P = P0.cos(Ωt); M = R.P0.cos(Ωt); P0 = 2000 (N). The material data for 

constituents are as follows: Em = 2,1.1011 (N/m2), Gm = 8.1010 (N/m2), ρm = 7860 (kg/m3), Ec = 3,8.1011 (N/m2), Gc 

= 18.1010 (N/m2), ρc = 3960 (kg/m3). 
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Figure 1. FGM shaft with dynamic loads 

 

 

4.1 Testing the calculation program and numerical algorithm 
 

 To ensure the accuracy and convergence of the finite element model as well as the applied numerical 

algorithm, the FEM numerical results of the mathematical model built in the above section will be compared with 

the traditional analytical (GT) results. For simplicity, we consider the case of the problem where mechanical 

properties are constant: Ec = Em = E = 2.1011 (N/m2); Gc = Gm = 8.1010 (N/m2); ρm= ρc = 7860 (kg/m3) 

The maximum deflection and torsion angle of the shaft with a homogeneous material calculated by the 

traditional analytical method is calculated by the formula [16]: 
3

0

max

y

P L cos(Ωt)
z =

24,65.E.I
 (17) 

0

max

x

P RLcos(Ωt)
φ =

2.G.I
 (18) 

 
Table 1. Comparison of the maximum deflection, torsion angle of the shaft by FEM and analytical results with Ω = 20 (rad/s) 

 

Time (s) FEM Deflection (m) 
Analytical Deflection 

(m) 
FEM Torsion (rad) 

Analytical 

Torsion (rad) 

0 0.0063 0.0063 0.0234 0.0234 

0.1 0.0026 0.0026 0.0098 0.0098 

0.2 0.0041 0.0041 0.0153 0.0153 

0.3 0.0060 0.0061 0.0225 0.0225 

0.4 9.11.10−4 9.22.10−4 0.0034 0.0034 

0.5 0.0053 0.0053 0.0197 0.0197 

0.6 0.0053 0.0053 0.0198 0.0198 

0.7 8.56.10−4 8.66.10−4 0.0032 0.0032 

0.8 0.0060 0.0061 0.0224 0.0224 

0.9 0.0041 0.0042 0.0155 0.0155 

1 0.0026 0.0026 0.0096 0.0096 

 
Table 2. Comparison of the maximum deflection, torsion angle of the shaft by FEM and analytical results with Ω = 60 (rad/s) 

 

Time (s) FEM Deflection (m) 
Analytical Deflection 

(m) 
FEM Torsion (rad) 

Analytical 

Torsion (rad) 

0 0.0063 0.0063 0.0234 0.0234 

0.1 0.0060 0.0061 0.0225 0.0225 

0.2 0.0053 0.0053 0.0198 0.0198 

0.3 0.0041 0.0042 0.0155 0.0155 

0.4 0.0027 0.0027 0.0099 0.0099 

0.5 9.66.10−4 9.77.10−4 0.0036 0.0036 

0.6 8.01.10−4 8.11.10−4 0.0030 0.0030 
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0.7 0.0025 0.0025 0.0094 0.0094 

0.8 0.0040 0.0041 0.0150 0.0150 

0.9 0.0052 0.0053 0.0194 0.0194 

1 0.0060 0.0060 0.0223 0.0223 

 

The results in Tables (1–2) with different frequencies when comparison of deflection and torsion angle 

calculated by the FEM method and traditional analytical method shows the reliability and accuracy of the FEM. 

However, in the case of mechanical properties of variable materials (or FGM materials), analytical results are not 

available, so using the FEM is the best method to simulate the kinematic behavior of the shaft structure. 

 

4.2 Relationship between maximum shaft deflection and time 

 
The relationships between the shaft deflection over time with the different frequencies of the excitation 

forces are shown in the Figure 2. From these results, it can be seen that the dependence of the maximum deflection 

on the frequency of the excitation force is quite clear. The number of vibrations which the shaft executes increase 

with increasing the excitation frequency. When paying attention to the vibration amplitude over time of the largest 

deflection, we also see the dependence of the vibration amplitude on the material parameter (n), specifically when 

n is small (n = 1), the deflection has a larger amplitude than the amplitude with high material parameter (n = 5). 

That means, the vibration amplitude decreases when increasing the material parameter (n). However, the number 

of cycles performing the oscillation does not depend on the material parameter but on the frequency of the 

excitation force, the material parameter affects the amplitude of the oscillation.  

 

 
 

Figure 2. Relationship between maximum deflection (m) and time t(s)  

 

4.3 Relationship between the maximum torsion angle of the shaft and time 
 

The effect of the material parameter (n) and the oscillation frequency (Ω) on the torsional vibration of the 

FGM shaft can be seen in Fig. 3. Similar to the horizontal oscillation described above, the number of the torsional 

vibrations which the shaft executes increase with increasing the excitation frequency and the vibration amplitude 

decreases when increasing the material parameter (n).  
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Figure 3. Relationship between maximum torsion angle (rad) and time t(s) 

 

4.4 Natural frequency of oscillation 
 

We consider the fundamental frequency parameter of the dimensionless horizontal oscillation of the shaft, 

which defined by [2]: 

2

1

m

m y

A
L

E J


 =  (19) 

where 1 is the fundamental horizontal oscillation frequency of the shaft. 

The fundamental frequency parameter of the dimensionless torsional oscillation of the shaft has the form: 

1

m

m

L
G


 =  (20) 

where ψ1 is the fundamental torsional frequency of the shaft.  

The convergence of the fundamental frequency parameters received in Tables (3÷4) can be seen in that the 

numerical program converges quite quickly with a grid of 30 elements with all variable values of the material 

parameters. It is also possible to see the effect of the material parameter on the fundamental vibrational frequencies 

of the shaft. As the material parameter n increases, the fundamental frequencies also increase, which is consistent 

with the fact that the stiffness of the shaft increases as the frequency n increases.  

 
Table 3. Convergence of the fundamental transverse oscillation frequency parameter µ 

 

n 
Number of Elements (nELE) 

6 10 16 20 30 40 

0.2 10.7725 10.7719 10.7719 10.7719 10.7719 10.7719 

0.5 11.8941 11.8935 11.8934 11.8934 11.8934 11.8934 

1 13.3539 13.3531 13.3530 13.3530 13.3530 13.3530 

2 15.3056 15.3045 15.3044 15.3044 15.3044 15.3044 

3 16.4702 16.4690 16.4688 16.4688 16.4688 16.4688 

4 17.1838 17.1826 17.1824 17.1824 17.1824 17.1824 

5 17.6343 17.6330 17.6328 17.6328 17.6328 17.6328 
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Tab 4. Convergence of fundamental torsion oscillation frequency parameter γ  
 

n 
Number of Elements (nELE) 

6 10 16 20 30 40 

0.2 1.6028 1.5973 1.5966 1.5965 1.5964 1.5964 

0.5 1.7735 1.7671 1.7663 1.7662 1.7661 1.7661 

1 1.9721 1.9646 1.9636 1.9635 1.9634 1.9634 

2 2.2011 2.1920 2.1909 2.1908 2.1907 2.1907 

3 2.3283 2.3185 2.3173 2.3171 2.3171 2.3171 

4 2.4108 2.4005 2.3992 2.3991 2.3990 2.3990 

5 2.4689 2.4585 2.4572 2.4570 2.4570 2.4570 

 

 

5. Conclusions 
 

The article has built a FEM model for the circular shaft element under the effect of harmonic force with 

mechanical properties changing along the longitudinal shaft. The finite element model is built based on Bernoulli’s 

theory, which is quite commonly used in engineering and gives high reliability.  

Building elastic deformation energy functions, and kinetic energy functions for variable mechanical shafts. 

From there, it is possible to build FEM formulas such as stiffness matrix, and mass matrix. Based on the FEM 

method combined with the Newmark digital algorithm has built a numerical program by Matlab software, which 

helps to simulate the kinematic behavior of the shaft. 

The results obtained from the FEM equation using numerical algorithms and Matlab software give reliable 

results when compared with the results of the analytical method and the results of the convergence of the frequency 

parameter. Through the simulation results, it is possible to select the material parameter along with the excitation 

force frequency suitable for each problem with the structure or axial detail, thereby increasing or decreasing the 

vibration according to the wishes of the user. 
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